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Referees' comments: 

Referee #1 (Remarks to the Author): 

This study provides evidence for high-dimensional representation of working memory (WM) that is 

maintained across distributed cortical regions in mice. The authors develop a novel behavioral task 

that requires mice to switch between a visual discrimination task and a delayed non-match-to-

sample task with similar behavioral statics that allow dissociation of WM from motor preparation 

and reward expectation. Focal optogenetic inactivation of visual areas and M2 during WM reveal 

distributed involvement of these cortical regions. 2-photon calcium imaging shows that WM 

information is embedded in high-dimensional representations, which differ from visual 

representations during stimulus presentation. Simultaneous optogenetic inactivation and axonal 

imaging show that WM representations are impacted by silencing of specific cortical regions within 

reciprocally coupled corticocortical loops, suggesting that reciprocal interactions between regions 

are required to maintain WM. 

This is an exciting and technically impressive study that combines several cutting-edge approaches in 

a well-controlled behavior to gain insights into the network mechanisms of WM. Experiments and 

analyses are carefully done. Statistics are appropriate and descriptions of p values/error bars are 

accurate. The study is significant because it provides evidence for potential alternative mechanisms 

of WM (differing from classic persistent activity dynamics) reflected in high-dimensional dynamics 

that require distributed cortical regions. The results are powerful because they demonstrate a link 

between the discovered WM activity dimensions and behavior, even under conditions where activity 

is optogenetically perturbed. I have a few comments which could be addressed through additional 

analysis. 

Major: 

1) The nature of WM. A key premise of the interpretation is that the WM engaged in this study is the 

“maintenance of mnemonic sensory information”. However, what information is maintained in WM 

is not completely clear from the analysis. 

a. Surprisingly, the authors found that top activity modes in visual areas and M2 do not differentiate 

WM and discrimination task. Instead, the difference in delay activity is found in high-dimensional 

dynamics (quantified as activity projections on a task dimension, CD_task). However, the across-task 

comparison of activity dimensions encoding the stimulus, CD_cue, is not examined. Is the stimulus 

information present during the delay in the discrimination task, but just orthogonal to task 

dimension (as implied in Fig 3a)? If stimulus information is equally persistent during the delay and 



the activity in the two tasks only differ in the task dimension, this could warrant a different 

interpretation. 

b. If the delay activity in WM differs between correct reject and false alarm (FA) (suggested by Fig 3k 

and n), the activity difference may reflect a degradation of stimulus information maintenance or 

reflect an impending motor response. Can the authors discuss whether the two possibilities can be 

differentiated? 

2) Interpretation of FA in WM task. In the behavioral experiments (Fig 1), a key behavioral feature of 

WM is an increase in FA rate with increased delay duration, which implies a degradation of WM 

maintenance over time. However, the stimuli used in the WM task (+45 and -45 deg) are the 

rewarded stimuli from the discrimination task. This presents a potential confound, because another 

interpretation could be that mice are progressively more likely to respond in blocks where a 

rewarding stimulus is repeatedly presented. Can the data dissociate WM degradation from an urge 

to respond to the rewarding stimulus? One possible solution could be to examine the WM task 

performance when an unrewarded stimulus is used as the cue. For example, the behavioral data 

from imaging experiments using rotated visual stimuli, which use non-rewarded stimuli as cues in 

some blocks, could clarify this question. 

3) High-dimensional WM representation. The finding that informative dimensions for task and 

stimulus decoding are higher during WM than during stimulus presentation is very interesting (Fig 3). 

A few points could be better clarified. 

a. How are the principal components and variance explained calculated in Fig 3b? Presumably these 

are calculated based on single trial activity, but the description is missing. 

b. Does the higher dimensionality result from single cells responding sparsely and in uncorrelated 

manner as suggested by the activity-silent WM storage hypothesis? This is implied in several places 

in the text but could be better shown or explained. 

c. The results show that stimulus information is maintained in high-dimensional dynamics during 

WM and collapsed activity along CD_cue predicts behavioral errors. Is the collapsed activity due to a 

reduction in dimensionality of delay activity? Related, does the dimensionality of stimulus activity 

differ between the WM and discrimination task? 

Minor: 

1) Do the authors have an explanation for why M2 inactivation only transiently affects behavior, but 

AM inactivation induces persistent effect? Slower timescale activity is usually associated with frontal 

cortical regions. Here, it seems the results break that expectation. 

2) For axon imaging + target-region inactivation experiment, is the disruption of activity limited to 

CD_cue or does the inactivation also affect the CD_task activity? 

3) Line 352: typo. “… following area AM inactivation (Fig. 4k)”. This is likely referring to Fig 4e. 



4) Line 432-434, “The selective disruption of working memory representations in corticocortical 

feedback projections by the inactivation of ongoing feedforward activity provides direct evidence for 

the mechanistic role of functional cortical feedback loops for the maintenance of internally 

generated cognitive representations.” I did not fully follow this conclusion. The results show that the 

inactivated cortical region plays a role in maintaining WM, and the inactivation also affects 

downstream cortical regions that project back to the inactivated region, which suggests that their 

interactions are required. But it is not clear if the affected cortical feedback signal itself is required 

for WM maintenance. Can the authors more clearly explain their interpretation? 

Referee #2 (Remarks to the Author): 

This study is an excellent combination of a unique, highly challenging behavioral paradigm and best-

of-class physiology and activity perturbation. In brief, the authors designed a novel task, in which 

mice alternated between a working memory task and a discrimination task allowing to match 

stimuli, movement and reward statistics across tasks. This novel task helps disentangle neural 

representations of working memory from other behavioral variables. The authors carried out 

multiple perturbation experiments and showed that working memory is distributed across areas of 

neocortex. Simultaneous axonal recordings during inactivation of a distal cortical area further shed 

light on the role of interareal reciprocal interactions in the maintenance of working memory. This is 

highly valuable, important and timely work whose results will be of great interest to the 

neuroscience community. I feel that some analyses could be performed in a more straightforward 

way and more clearly presented, which would further improve the manuscript. 

Major comments: 

1. The task is great. Very impressive. 

2. In the analysis of population data, the use of “high-dimensional representations” and the related 

conceptual model was confusing to me. “High dimensional representations” could mean 

representations that live in higher dimensions, or it could mean representations that are themselves 

high dimensional. It felt to me that on occasion the manuscript switches between those two 

meanings. To step back, there are two clear findings: (i) Task related information is present in 

population activity. (ii) Using only the first PCs that capture a large part of the variance is insufficient 

to fully capture this information. What this means is that the task related information is present in 

dimensions of activity space that don’t capture much variance. In their decoding analysis the authors 

find that a one dimensional decoder performs well. Therefore, the task-related dynamics themselves 

are not necessarily high dimensional. As an example, one can have a model in which the task-

relevant dynamics are one (or low) dimensional and orthogonal to another set of dynamics that are 

not task relevant and capture a large amount of variance, which would be inline with the findings. 

The third finding is that a large number of neurons is needed to arrive at good decoding. It is related 

to dimensionality but not in a very straightforward way since the representation may be low 

dimensional yet a large number of neurons may just be necessary to estimate the dynamics in the 

low variance part of the population activity that allows to decode working memory. I believe the 



authors have a different model in mind, one in which (I state it here simplified) working memory is 

distributed across many neurons, but a neuron doesn’t have information in every trial, but rather 

only in a small subset of trials. In this scenario, trial-averaging would average away this decoding 

contribution, pushing it into low variance components and unless one has access to many neurons, 

most trials will be un-decodable, consistent with their findings (as a side note there is a potential 

problem in this model: since the decoder is fixed it has to assign the same weight to a neuron 

whether it is in a trial in which that neuron happens to be informative or not, but if the signal in 

informative trials is strong enough the decoder will still work). I think it is hard (and unnecessary) to 

argue for this model and it is best to revise statements in the text to clarify the specific findings and 

the possible interpretations more generally, and not just in relation to this model. 

3. In terms of the CD_task, I also feel that the text and analysis follow one particular interpretation 

for these dynamics when the full picture might be more complex. The authors state that it “captures 

the activity introduced by working memory engagement by contrasting the delay activity in the two 

task blocks following identical sensory input”. While this is a possible interpretation, another 

possible interpretation is that there is a context-signal that “tells” the circuit which task it is in, 

unrelated to the specific computations necessary for remembering the cue. The way CD_task was 

defined may in fact favor such a signal, as memory of the cue may be present in the discrimination 

blocks of the task despite the fact that it isn’t behaviorally useful. I realize that the memory cannot 

be quite the same due to the differential results of length-of-delay on behavior and the differential 

perturbation effects (and that the projection has complex dynamics), but these results are not 

enough to justify assuming no memory. The reason it is potentially important to consider these 

different scenarios is in the interpretation of projections on CD_task. This interpretation differs 

whether one has in mind a context-signal or a reflection of the actual process of working memory. 

One way to get more quantitative purchase on this question is to directly test differences in the 

preservation of cue information through the delay epoch between the Discrimination task and the 

WM task (see also comment 7 below). Specifically, one possible analysis could be calculating a 

CD_cue that contrasts between the -15° cue and +15° cue in the Discrimination task and then 

compare the activities in their respective CD_cue in the Discrimination task and WM task. This 

comparison can be done for CD_cue both at the delay epoch and at the stimulus period. It would be 

interesting to see whether there is any consistent difference, for example, activity in the 

discrimination blocks along CD_cue may decay faster than in the WM task. Or perhaps there is no 

significant difference between the blocks which would suggest that working memory is also 

maintained in the Discrimination task, despite it being unnecessary for successful completion of the 

trial. 

4. The presentation of the results of the population analysis could be made more straightforward. In 

particular, Fig. 3e, k, h, n are the main quantitative findings in their section and are in my opinion 

unnecessarily confusing. The text states: “We observed that in both areas AM and M2, disruption of 

the CD_cue activity or CD_task activity during the WM task, as measured by the failure to correctly 

classify a given trial’s cue or task identity, was predictive of incorrect responses to the subsequent 

stimulus (Fig. 3e, h, k, n,)”. It is possible I missed something, but the way the data is summarized in 

these plots seems unnecessarily difficult to absorb. Since the cue direction is built as a decoder of 

cue, the state of the decoder (on one side or another of an assumed threshold) should relate to the 

represented cue and a switch to the other side of the threshold should correlate with errors. It 



therefore seems more straightforward to directly compare the state of the decoder to the action at 

the end of the delay. While there is an imbalance in trial types since 80% of the trials are match 

trials, the analysis still seems relevant in its simpler form. The current choice of comparing decoder 

accuracy separately in CR and FA trials and the claim that a reduction is expected seems a very 

complex presentation of this statement. I believe the idea is similar, that a mistake in decoder 

indicates a switch to the opposite cue and this should happen more in FA trials, and a decrease in 

accuracy means more errors, but the multiple inversions make it harder to understand, in my 

opinion. Especially given the text which conflates the activity and the decoder and uses the word 

disruption which can be easily confused with an active perturbation. In addition, the use of 

“preceding” in the axis labels is ambiguous. It could mean that the preceding trial was a CR or FA, not 

that the delay period preceded a CR or FA outcome. 

5. The analysis of the time course of single trials in lines 296-308 is presented as highly informative 

of activity underlying working memory. “The slope of this relationship is indicative of the persistence 

of working memory representations over the course of the delay, and the R2 is indicative of their 

robustness over time”. While it is true that single-trial dynamics during the delay period are 

interesting, and the slope and R2 of a comparison between the first and second part of the 

projection on a decoder are relevant metrics, they are not as central as presented. For instance, in a 

straightforward decoding model of a comparison to threshold, the decoder projection values can 

become completely scrambled between the first and second part of the delay period (yielding zero 

R2 between the first and second parts of the delay period), yet as long as each trial doesn’t cross the 

threshold there is no loss in performance. It is possible that I misunderstood the analysis, and the 

way the different trial types were treated means that a zero R2 would necessarily mean complete 

mixing between condition types, but I don’t think that is the case given the way data is plotted in Fig. 

3 (see also next comment). If this is true then there are simpler ways to show and describe this 

effect. 

6. In general, it was difficult for me to follow the precise details of the population analysis. The first 

part of the analysis is based on a pooled pseudo-population, with trial-averaging, but then the 

analysis switches to single-trial dynamics and decoding (with no trial averaging). The mechanics of 

how single trial analysis relates to sessions (each with different trial numbers) wasn’t clearly 

described. I believe the authors used single session analysis that leaves one trial out and then just 

pooled these left out trials across all sessions, but it wasn’t clear whether the values given would be 

changed if averages across sessions are taken, and I am not sure I correctly followed what was 

performed. Clearer descriptions in the main text would be useful as well as longer explanations in 

the methods (and/or putting code in a code repository). 

7. Regarding the point that dynamics in the high variance components of the two task blocks are 

very similar, one possibility (as alluded to in comment 3) is that since the animals were trained on 

both tasks, they adopt a strategy in which they memorize the cue in all block types. This puts the 

experiments in a bit of a catch 22: in order to compare the dynamics one has to train the same 

animal on both tasks, but if one trains the animal on both tasks, the animal could memorize the cue 

in all task conditions. In principle this could perhaps be addressed by animals first learning the 

discrimination task and then adding the working memory task (perhaps also vice versa in separate 

animals), while performing longitudinal imaging. I believe these experiments would be too time 



consuming, especially given that the study already goes above and beyond the standard in terms of 

behavioral training. I therefore don’t suggest the authors actually collect this data, but if the authors 

have existing data for the discrimination task alone (in separate animals) they could argue for its 

similarity to the full task data to make the scenario of working memory training changing the 

dynamics for both block types less plausible. The authors should also raise this option, and/or argue 

against it, in the discussion section. 

8. Going back to the role of CD_task as in comment 3 above, I was wondering whether one can try to 

analyze trials in which dynamics go into the wrong state in terms of task and see whether there is a 

specific prediction to be made regarding different relevance for the state of CD_cue, i.e., what 

should one expect assuming that there might be a mistake in the assignment of the task. For 

instance, would a crossing of threshold in both CD_task and CD_cue compensate for each other? I 

believe it is not so simple since the relation between the cue and probe are different in 

discrimination and WM blocks, but perhaps something can be done. Related to this point, it wasn’t 

clear to me whether CD_task and CD_cue were explicitly orthogonalized or they were just generally 

found to be orthogonal. 

9. In the simultaneous imaging and perturbation of figure 4, even when activity remained perturbed, 

the 95% CI mostly don’t overlap for most of the short delay, in particular for AM (as the shortest 

short delay is 0.8 seconds). This may imply that one shouldn’t expect a behavioral effect. It is 

possible that the read out is more graded, but it is worth commenting on that. In addition, how the 

CIs were calculated is not shown. 

10. I was confused by how cue rotation figured into the task block structure. If I understood 

correctly, the mice can switch task blocks quickly because the absence/presence of a vertical grating 

is informative of the task block (line 793-794). But if the vertical grating can now be rotated and 

appear in both tasks, do mice recognize the task because there is only one cue type? I was also 

confused by the statement in line 808-809 that “in between two rotation blocks, the stimulus 

orientation angles were changed slowly…” Does that mean the angles of the grating changed 

continuously? It would help to clarify these issues. 

11. In the section “Cortical feedback loops maintain distributed working memory representations”, it 

is suggested that the representation of working memory disrupted by distal inactivation might be 

recovered if the delay is long enough. It would be useful to generate a version of Fig. 1h in which 

trials are grouped according to delay length (as in Fig. 4m) and check for the effect there as well. 

Minor comments: 

1. Statistics for behavioral analysis and perturbations were not clear. 

2. Line 166 states “… but were more diverse in their temporal profiles (Fig. 2c)”. It was not quite 

clear to me what is meant here. The two blocks in Fig. 2c look quite similar. 

3. Line 171: “Surprisingly, however, working memory engagement did not alter the temporal profile 

of the trial-averaged activity of individual cells” I am not sure what is the precise claim. Do no 

neurons have a different response, even by chance? Perhaps the statement related to changes 

above some chance level? 

4. Line 225-7: “Furthermore, this analysis did not reveal any clear subpopulations of cells whose 



delay activity was selective to either task.”What exactly does this mean? 

5. Line 313: “(Fig. 3e, h, k, n,)” unnecessary comma at the end. 

6. Title EDF 7: “Stimulus rotations ensured identical sensoy inputs across the two tasks”, correct to 

sensory. 

7. Lines 334-5: I believe a reference to Fig. 4b and Fig. 4h should be added. 

8. in Fig. 1a the reward sign only appears in the WM task but not the Discrimination task, while this 

contingency is simpler, it is still worth having the reward sign. 

9. For Fig. 2g and 2i, I expected to see three different trajectories, one for each delay group, but it 

seems that in the initial part of the trajectories the different delays combine into one line. Is this a 

plotting effect and there are actually three lines there? Or were they combined artificially? It would 

be good to clarify in the legends. 

10. Line 352: in “…following area AM inactivation (Fig. 4k; …)”. Should “Fig. 4k” be “Fig. 4e”? 

11. Line 976: the word “first” is in italics. This seems unnecessary. 

12. I found the vertical axes in Extended Data Fig. 10 g and h and their description confusing. Please 

clarify.
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We thank the reviewers for their very constructive feedback and great suggestions for further analysis 
which have helped improve the manuscript by further clarifying the nature of the working memory 
representations in the neocortex. We have performed all of the suggested analyses and revised our 
manuscript accordingly, adding several new Extended Data Figures in order to accommodate these 
analyses. 

There was one common query raised by both reviewers regarding the maintenance of sensory 
representations during the inter-stimulus delay period (major comment 1a from reviewer #1 and major 
comment 3 from reviewer #2). Specifically, the reviewers asked if it was possible to discern whether 
the recorded neural populations maintained the sensory information of the previous stimulus even 
when working memory was not behaviourally necessary (i.e. during the Discrimination task). We 
addressed this issue by further exploring the Cue related delay activity, operationalized as CDCUE 
activity, during the Discrimination task, and examining whether, and how, neural representations of 
the preceding stimuli during the delay periods of the Discrimination task were maintained. We 
compiled these analyses into a new Extended Data Fig. 13 (printed on next page) and a new 
paragraph in the Results section of the manuscript. 

We found that the neural population activity discriminating the preceding stimuli in the WM task 
(CDCUE activity) was largely absent during the delay period of the Discrimination task, with only 58% 
of trials correctly classified in areas AM and M2 (as opposed to 89% and 80% accuracy in AM and 
M2, respectively, for matched stimuli during the WM task; black lines in Extended Data Fig. 13a, e). 
Importantly, CDCUE activity failed to maintain sensory information during the Discrimination task 
even when the preceding stimuli were identical to the ones in the WM task (i.e. comparing the two 
tasks across opposing rotation blocks, as in Fig. 3), and cross-validation ensured that there was no 
difference between how the Discrimination and WM task trials were treated with respect to the 
identification of the CDCUE. As a negative control, we observed that the subspace of population 
activity discriminating the Cues during the presentation of the stimuli (stimulus period CDCUE; i.e. the 
turquoise lines in Fig. 3a), identified during the WM task, was able to correctly predict the 
presentation of the same stimuli during the Discrimination task (95% and 79% classification accuracy 
for areas AM and M2, respectively; turquoise lines in Extended Data Fig. 13a, e). This indicates that, 
in contrast to the delay period representations of preceding Cues, the sensory representations of the 
Cues were encoded in a similar manner whether or not the mouse was engaged in the WM task. 
Furthermore, delay CDCUE activity during the Discrimination task was less robust (measured as the R2 
of the first and second half of the delay activity epochs, p < 0.001, in both areas) and decayed faster 
(measured as the slope of the first and second half delay activity relationship, p < 0.05 in area M2 and 
p < 0.001 in area AM), as compared to the delay activity along the same population activity subspace 
during the WM task, and did not predict correct behavioural responses to the subsequent stimuli 
during the Discrimination task (p > 0.05 in both areas; Extended Data Fig. 13b-d, f-h). Together, 
these results indicate that, during the Discrimination task, even when the delay-stimulus trial structure 
was identical to the WM task, the neural populations we recorded from did not maintain the 
representations of previous stimuli during the inter-stimulus delay periods. 

The new paragraph in the results section states these results as folows: 

“To examine the specificity of working memory representations to the WM task, we explored 
the maintenance of stimulus information during the Discrimination task delay periods. We 
found that the neural population activity encoding the preceding Cues during the delay periods 
of the WM task (CDCUE activity) was largely absent during the Discrimination task, with an 
average of 58% of trials correctly classified in areas AM and M2 (as opposed to an 89% and 
80% classification accuracy in AM and M2, respectively, during the WM task; black lines in 
Extended Data Fig. 13a, e). As a negative control, we observed that population activity 
discriminating the Cues during their presentation in the WM task (Stimulus period CDCUE; i.e. 

Author Rebuttals to Initial Comments:
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the turquoise lines in Fig. 3b), was able to correctly predict the presentation of the same stimuli 
during the Discrimination task (95% and 79% classification accuracy for area AM and M2, 
respectively; turquoise lines in Extended Data Fig. 13a, e). This indicates that, in contrast to the 
delay representations of preceding Cues, the sensory representations of the Cues were encoded 
in a similar manner whether or not the mouse was engaged in the WM task. Furthermore, delay 
CDCUE activity during the Discrimination task was less robust (measured as the R2 of first and 
second half delay activity epochs, p < 0.001 in both areas) and decayed faster (measured as the 
slope of the first and second half delay activity relationship, p < 0.05 in area M2 and p < 0.001 
in area AM) as compared to the delay CDCUE activity during the WM task, and did not predict 
correct behavioural responses to the subsequent stimuli during the Discrimination task (p > 0.05 
in both areas; Extended Data Fig. 13b-d, f-h).” 

 

 
Extended Data Fig. 13 | Cue representations during the delay were selective to the WM task. a, The percentage of trials 
which had their Task (left column) or Cue (middle and right columns) correctly classified using CDTASK and CDCUE activity, 
respectively. Classification was performed using activity from the trials’ delay periods (black) or stimulus periods 
(turquoise). Trials for task classification were taken from both the Discrimination and WM tasks, as in Fig. 3, and trials for 
Cue classification were split into left-out Discrimination task trials (right column) and the orientation-matched WM task 
trials (middle column) classified using the same training trials to identify CDCUE during the WM task. Average classification 
accuracy is shown for area AM experiments (n = 18). Error bars represent 95% CI across experiments. b, Single-trial 
population activity of an example experiment from area AM, aligned to the onset of the delay, and projected onto the CDCUE. 
Trials are split into Discrimination task trials (blue lines) and the orientation-matched WM task trials (red lines). Only trials 
with sufficiently long delay periods (≥ 2 s) are shown. c, Z-scored single-trial CDCUE projections of area AM activity in the 
second half (>1.6 s) of the delay period plotted against the first half (<1.6 s) of delay period (i.e. each point is one trial). 
Trials were split by task (Discrimination task trials in blue, orientation-matched WM task trials in red). Only trials with 
sufficiently long delay periods (≥ 2 s) were included in this analysis (n = 2,921 trials collected from 18 experiments). Solid 
and dashed lines represent the slopes and 95% CI of a fit regression model. The models’ coefficients of determination (R2) 
and slopes, and their differences between the two tasks (both p < 0.001, difference greater than zero, one-sample t-test), are 
printed in the top left. d, The proportion of Cue trials where the delay CDCUE activity correctly classified the preceding Cue 
stimulus, split by task. Delay periods were split based on whether they preceded a Correct Rejection (CR) or False Alarm 
(FA) to the subsequent Cue (p < 0.001, n = 3,580 trials for the WM task, p = 0.96, n = 5,782 trials for Discrimination task, 
Fisher’s exact test). Error bars represent 95% CI. e-h, as in a-d but for area M2 experiments. g, n = 1,882 trials from 13 
experiments. Model coefficients of determination (R2) and slopes differences between the two tasks (p < 0.001 and p < 0.05, 
respectively, difference greater than zero, one-sample t-test). h, Pre-CR and pre-FA difference, p = 0.33 for Discrimination 
task and p < 0.05 for WM task, n = 3,670 and n = 2,575 trials from 13 experiments, Fisher’s exact test.  
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We have also identified two mistakes in the manuscript figures. 

1) The figure panels Fig. 2h and Fig. 2j, showing the low-dimensional trajectory separation between 
the Working Memory and Discrimination tasks over the course of the delay and stimulus periods, 
were plotted incorrectly. We have updated these two panels. The statistical analyses and the 
associated figure legends were not affected and remain unchanged.  

2) The number of significance stars in panel Fig. 4m was incorrect (was 2 instead of 1), for both 
delay durations in area AM silencing experiments. This has been fixed. The reported statistics and 
the associated figure legends were correct and remain unchanged. 

 

We address all other reviewer comments below, in order: 
 
Reviewer #1 (Remarks to the Author): 
 
This study provides evidence for high-dimensional representation of working memory (WM) 
that is maintained across distributed cortical regions in mice. The authors develop a novel 
behavioral task that requires mice to switch between a visual discrimination task and a delayed 
non-match-to-sample task with similar behavioral statics that allow dissociation of WM from 
motor preparation and reward expectation. Focal optogenetic inactivation of visual areas and 
M2 during WM reveal distributed involvement of these cortical regions. 2-photon calcium 
imaging shows that WM information is embedded in high-dimensional representations, which 
differ from visual representations during stimulus presentation. Simultaneous optogenetic 
inactivation and axonal imaging show that WM representations are impacted by silencing of 
specific cortical regions within reciprocally coupled corticocortical loops, suggesting that 
reciprocal interactions between regions are required to maintain WM. 
 
This is an exciting and technically impressive study that combines several cutting-edge 
approaches in a well-controlled behavior to gain insights into the network mechanisms of WM. 
Experiments and analyses are carefully done. Statistics are appropriate and descriptions of p 
values/error bars are accurate. The study is significant because it provides evidence for 
potential alternative mechanisms of WM (differing from classic persistent activity dynamics) 
reflected in high-dimensional dynamics that require distributed cortical regions. The results are 
powerful because they demonstrate a link between the discovered WM activity dimensions and 
behavior, even under conditions where activity is optogenetically perturbed. I have a few 
comments which could be addressed through additional analysis. 
 
Major: 
 
1) The nature of WM. A key premise of the interpretation is that the WM engaged in this study 
is the “maintenance of mnemonic sensory information”. However, what information is 
maintained in WM is not completely clear from the analysis. 
 
a. Surprisingly, the authors found that top activity modes in visual areas and M2 do not 
differentiate WM and discrimination task. Instead, the difference in delay activity is found in 
high-dimensional dynamics (quantified as activity projections on a task dimension, CD_task). 
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However, the across-task comparison of activity dimensions encoding the stimulus, CD_cue, is 
not examined. Is the stimulus information present during the delay in the discrimination task, 
but just orthogonal to task dimension (as implied in Fig 3a)? If stimulus information is equally 
persistent during the delay and the activity in the two tasks only differ in the task dimension, 
this could warrant a different interpretation. 

We have further explored the maintenance of prior sensory information during the delays of the 
Discrimination task in the first part of the rebuttal, see above (addressed together with major comment 
3 of reviewer #2). We found that stimulus information during the delay, operationalized as CDCUE 
activity, was largely absent during the Discrimination task. 

  
b. If the delay activity in WM differs between correct reject and false alarm (FA) (suggested by 
Fig 3k and n), the activity difference may reflect a degradation of stimulus information 
maintenance or reflect an impending motor response. Can the authors discuss whether the two 
possibilities can be differentiated? 

The presence of premotor activity during the delay, confounding the WM maintenance related activity 
(i.e. CDTASK or CDCUE activity), and leading to the observed degradation of CDTASK and CDCUE 
activity prior to false alarm (FA) responses, is indeed an interesting possibility. One observation that 
speaks against this possibility is that the relationship between CDTASK and CDCUE activity with 
subsequent FAs was not present during the Discrimination task (Fig. 3e, h, k, n), suggesting that task-
agnostic premotor activity is not sufficient to explain this result. We have added a new Extended 
Data Fig. 12 to the manuscript which shows this difference more clearly by plotting average trial 
scores (activity projected onto the CDCUE and CDTASK), per experiment, with statistics calculated 
accordingly.  

 
Extended Data Fig. 12 | Working memory subspace population activity predicted correct behavioural responses 
during the working memory task. a, Z-scored CDTASK delay activity of individual experiments from area AM (n = 18), 
split by behavioural outcome (CR and FA), and averaged across Discrimination task (blue) and WM task (red) trials (p < 
0.001 for the WM task, p = 0.21 for the Discrimination task, signed-rank tests). Horizontal bars represent medians. b, 
Proportion of trials with their task correctly classified using CDTASK delay activity prior to CRs or FAs, as in Fig. 3.e, plotted 
for individual experiments from area AM (n = 18, p < 0.01 for the WM task, p = 0.79 for the Discrimination task, signed-
rank tests). c-d, as in a-b, for area M2 experiments (n = 13; Z-scored CDTASK delay activity differences p < 0.05 and p = 0.79 
for WM and Discrimination task trials, respectively, and task classification accuracy differences p < 0.01 and p = 0.91 for 
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WM and Discrimination task trials, respectively, signed-rank tests). e-h, As in a-d, for CDCUE activity during the WM task. 
e-f, For area AM experiments (n = 18; Z-scored CDCUE delay activity differences p < 0.01 for both Cue A and Cue B trials, 
and Cue classification accuracy difference p < 0.01, signed-rank tests). g-h, For area M2 experiments (n = 13; Z-scored 
CDCUE delay activity differences p < 0.001 and p = 0.19 for Cue A and Cue B trials, respectively, and Cue classification 
accuracy difference p < 0.001, signed-rank tests).  

 

To investigate this possibility with a more direct approach, we took a similar decoding strategy to the 
one used for CDCUE and CDTASK identification in order to find a linear subspace of activity which 
could predict FAs in either task, and tested if this subspace could generalize across tasks (i.e. identify 
a premotor signal in the Discrimination task which predicts FAs during the WM task, and vice versa). 
However, somewhat surprisingly, we were not able to predict the majority of FAs with such a linear 
decoder (experiment-averaged cross-validated test accuracy of 57% and 60% during the WM task in 
areas AM and M2, respectively; 50% chance accuracy; Rebuttal Fig. 1), although it should be noted 
that as a minority of trials were FAs in our data, this limited the ability for our models to avoid 
overfitting, and regularization of the models was required. 

 
Rebuttal Fig. 1 | Predicting upcoming behavioural responses from task-agnostic delay activity. a, Decoding of FA 
responses to stimuli using population activity from area AM experiments (n = xx) during the immediately preceding 
interstimulus delay periods. Circles are individual experiments’ average cross-validated classification accuracies. The first 
column shows decoding results following training of the decoder on Discrimination task trials and testing on Discrimination 
task trials (leave-one-out), the second column for training and testing on WM task trials, the third column for training on 
Discrimination task trials and testing on WM task trials, and the fourth column for training on WM task trials and testing on 
Discrimination task trials. Only training and testing on WM task trials showed a significant decoding performance across 
experiments (p < 0.01, as compared to 50% chance accuracy, signed-rank test). b, The eigenspectrum of the covariance of 
population activity during the delay, prior to CRs (grey line) and FAs (black line), for area AM experiments (n = 18, p = 
0.38, signed-rank test). Shaded regions are the 95% CI across experiments. c-d, as in a-b for area M2 experiments (n = 13). 
c. Only decoding from WM trials following WM training showed significant classification accuracy (p < 0.05). d, No 
significant difference in the dimensionality of delay activity prior to CRs and FAs; p = 0.07, signed-rank test. 

Furthermore, training such a ‘FA decoder’ exclusively on Discrimination task trials, and testing on 
WM task trials, resulted in a chance level classification accuracy (signed-rank test against a 50% 
chance level; Rebuttal Fig. 1a, c), and the dimensionality of the population activity (estimated as the 
eigenspectrum of the covariance of the delay activity) did not significantly differ between delays prior 
to correct rejections and FAs (Rebuttal Fig. 1b, d; this is further elaborated upon in our response to 
your comment 3c below). These results give us more confidence that the relationship between CDTASK 
and CDCUE activity with subsequent behavioural responses, despite being relatively weak, is 
nevertheless quite significant, and that this relationship does not reflect any clearly dominant (or at 
least linearly decodable) confounding premotor signal. 

We introduced the possibility of a common premotor signal corrupting WM-related population 
activity, and argued against it, in the relevant section of the Results: 
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“Reduction of delay period CDTASK activity did not predict incorrect responses during the 
Discrimination task, nor were behavioural responses associated with changes in the 
dimensionality of the population activity during the delay (Extended Data Fig. 9), suggesting 
that the relationship between delay-period CDCUE and CDTASK activity and subsequent 
behavioural responses was not explained by task-agnostic premotor activity.” 

 
2) Interpretation of FA in WM task. In the behavioral experiments (Fig 1), a key behavioral 
feature of WM is an increase in FA rate with increased delay duration, which implies a 
degradation of WM maintenance over time. However, the stimuli used in the WM task (+45 
and -45 deg) are the rewarded stimuli from the discrimination task. This presents a potential 
confound, because another interpretation could be that mice are progressively more likely to 
respond in blocks where a rewarding stimulus is repeatedly presented.  

Thank you for raising the possibility that a positive relationship between FA rate and delay duration in 
WM blocks could be a byproduct of the increased rate of the presentation of previously rewarded 
stimuli during the WM blocks. We believe that our data speaks against this interpretation. We 
observed that responses to Probe stimuli during the WM task, despite having the same reward 
contingency as the Cues, were unaffected by the delay duration in the WM blocks (Extended Data 
Fig. 3). This precludes a simpler ‘progressively more likely to respond’ phenotype, and instead 
indicates that the effect of the delay duration was specific to WM performance. Such degradation of 
performance over time, whether by decay or interference, is a hallmark of working memory (e.g. 
Pasternak & Greenlee, 2005, 10.1038/nrn1603; Barrouillet et al., 2018, 
10.1080/17470218.2017.1358293), as there is no reason why WM performance, specifically, should 
be dependent on delay duration other than due to a degradation of the maintained WM information 
over time. 

We have updated the relevant sentence in the Results section which addresses this concern: 

“Crucially, this effect was specific to the maintenance of mnemonic sensory information, as 
responses to the Probe stimuli during the WM task, despite having the same reward contingency 
as the Cues, did not depend on the preceding delay length (Fig. 1d and Extended Data Fig. 3b; 
n = 9 mice, all p > 0.05).” 

 

Can the data dissociate WM degradation from an urge to respond to the rewarding stimulus? 
One possible solution could be to examine the WM task performance when an unrewarded 
stimulus is used as the cue. For example, the behavioral data from imaging experiments using 
rotated visual stimuli, which use non-rewarded stimuli as cues in some blocks, could clarify this 
question. 

Thank you for suggesting this analysis. We first measured the relationship between the delay duration 
and subsequent correct responses during the WM task in our imaging data, and then tested whether 
this relationship was different depending on if the stimuli during the WM task were matched or 
rotated away from the Target stimuli in the preceding Discrimination task. The delay length-WM 
performance relationship for individual experiments from the imaging dataset is shown in Rebuttal 
Fig. 2a. We found that the strength of this relationship in WM task blocks, which followed 
Discrimination task blocks that were of the same rotation block (i.e. shared Target and Cue stimuli) or 
of the rotated away rotation block (i.e. different Target and Cue stimuli), was not significantly 
different (p < 0.05; Rebuttal Fig. 2b). This was also true when correcting for any differences in the 
initial Discrimination task delay duration effects (data in Purple, calculated by simply subtracting the 
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Discrimination task effect from the subsequent WM task effect). This analysis indicates that the effect 
of delay duration on WM performance was present even when the WM Cues were not rewarded in the 
preceding Discrimination task blocks. 

 
Rebuttal Fig. 2 | Orientation of rewarded stimuli in the preceding Discrimination task was not related to the delay 
duration dependence of WM performance. a, A summary of delay duration effects across all imaging experiments 
(individual lines), in both tasks (WM red, Discrimination blue), as measured by the proportion of correct responses to stimuli 
following short (<1600 ms) and long (>1600 ms) delay durations. Thick lines are averages across experiments. Percentage of 
correct responses was significantly reduced during the WM task (p < 0.001), and did not differ during the Discrimination 
task (p = 0.31). b, Effect of delay duration on correct responses (measured as the difference between the two columns in a), 
per experiment (individual circles), for the WM (red) and Discrimination (blue) tasks, and the difference between the two 
tasks (purple), plotted separately for experiments when the Discrimination task block that was preceding the WM task block 
was of the same stimulus rotation (not rotated, i.e. the WM Cues were matched to the Discrimination task Targets), and 
different rotation (rotated out, i.e. when the WM Cues were of a different orientation to the Discrimination task Targets). 
There was no significant difference between these conditions (p = 0.56, p = 0.91, and p = 0.79 for the Discrimination task, 
WM task, and difference between tasks, respectively, rank-sum tests). 

 
3) High-dimensional WM representation. The finding that informative dimensions for task and 
stimulus decoding are higher during WM than during stimulus presentation is very interesting 
(Fig 3). A few points could be better clarified. 
 
a. How are the principal components and variance explained calculated in Fig 3b? Presumably 
these are calculated based on single trial activity, but the description is missing. 

Principal components were calculated separately for each experiment, with the single trial activity 
simply concatenated in time (which is effectively the raw population timeseries with data from unused 
trials ignored). The decoding accuracies from PCs of this population activity and the variance 
explained by the PCs are accordingly averages across experiments, and shaded error bars are CIs 
across experiments. The text in the results section (line 293) currently directs the reader to the 
Methods section, where these details are provided (line 1053). 

We have updated the text in the Results section to be more clear: 

“In order to assess the sparsity of this population encoding and to dissociate the number of cells 
required for decoding from the total activity variance explained, we performed a similar 
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decoding sweep with each experiment’s population activity projected onto the Principal 
Components (PCs) of the population activity (PCs were calculated independently per 
experiment, from all of the single-trial population activities concatenated in time; see 
Methods).” 

 
b. Does the higher dimensionality result from single cells responding sparsely and in 
uncorrelated manner as suggested by the activity-silent WM storage hypothesis? This is implied 
in several places in the text but could be better shown or explained. 

The activity-silent WM storage hypothesis (Stokes, 2015, 10.1016/j.tics.2015.05.004) does predict 
high-dimensional population activity patterns reflective of WM which are similar to what we have 
observed in our data. However, as we additionally observe ‘dominant’ and sustained population 
activity patterns that are not related to WM, it is difficult to disambiguate whether the sparsity of 
WM-subspace specific signals (i.e. single cell contributions to single trial CDTASK and CDCUE activity) 
is arising from structured ‘hidden’ network states (e.g. short term plasticity or functional connectivity 
states) or, for example, from local recurrent dynamics which are obscured by (potentially input 
driven) low-dimensional dynamics (e.g. Galgali et al, 2021, 10.1101/2021.07.19.452951). Single cell 
stimulation experiments are perhaps the most promising avenue for disambiguating the physiological 
basis of WM-specific high-dimensional activity patterns. 

The related ‘Hot-Coal’ theory of WM (Lundquist et al, 2021, 10.1101/2020.12.30.424833) is likewise 
supported by the relegation of WM representations to the high-dimensional modes of population 
activity that we observed, but further work using electrophysiological measurements is required for us 
to identify the hallmarks of such WM models, such as WM informative events being restricted to 
gamma bursts.  

We have added these links to the Discussion section of the manuscript: 

 “Instead, our results provide support for an alternative representational scheme for working 
memory maintenance, whereby dispersed cell populations encode working memory with trial-
to-trial variable and uncorrelated delay activity patterns. Such high-dimensional population 
codes have recently been associated with ‘hot-coal’ (Lundqvist et al., 2021) or ‘activity-silent’ 
(Stokes, 2015) theories of working memory maintenance, although further investigations with 
electrophysiology and targeted causal network perturbations, respectively, will be necessary to 
draw direct comparisons.” 

 
c. The results show that stimulus information is maintained in high-dimensional dynamics 
during WM and collapsed activity along CD_cue predicts behavioral errors. Is the collapsed 
activity due to a reduction in dimensionality of delay activity? Related, does the dimensionality 
of stimulus activity differ between the WM and discrimination task? 

This is a great question. We have generated a new Extended Data Fig. 9 with a thorough analysis of 
the eigenspectrum of the covariance of the population activity during the delay and stimulus periods, 
across tasks, and prior to correct behavioural responses and errors. Interestingly, we did not find any 
differences in the dimensionality of the data between tasks or between different behavioural outcomes 
in either task. 

We have updated our Results text with the following: 

“Furthermore, the dimensionality of the population activity (eigenspectrum of population 
activity covariance) did not differ significantly between tasks (Extended Data Fig. 9).” 
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 “Reduction of delay period CDTASK activity did not predict incorrect responses during the 
Discrimination task, nor were behavioural responses associated with changes in the 
dimensionality of the population activity during the delay (Extended Data Fig. 9), suggesting 
that the relationship between delay-period CDCUE and CDTASK activity and subsequent 
behavioural responses was not explained by task-agnostic premotor activity.” 

 

 

 

Extended Data Fig. 9 | Dimensionality of population activity across tasks and behavioural responses. a-c, The 
eigenspectrum of the covariance of the population activity during the interstimulus delay period, shown as the variance 
explained by the first 20 Principal Components (PCs). PCs were calculated separately for individual experiments similarly to 
Fig. 3b (see Methods). Thick line is the average and shaded region is the 95% CI across experiments (n = 18). a, Trials split 
by task (Discrimination task in blue, WM task in red). There was no significant difference between tasks in the variance 
explained by the first PC (p = 0.46, signed-rank test). b-c, Trials split by behavioural response to subsequent stimulus during 
the Discrimination (b) and WM (c) tasks (CR grey, FA black). CR trials were randomly selected to match the number of FA 
trials per experiment, and this was permuted 100 times and the results averaged per experiment. There was no significant 
difference between tasks in the variance explained by the first PC in either task (p = 0.33 and p = 0.54 for Discrimination and 
WM task, respectively, signed-rank tests). d-f, as in a-c but for area M2 experiments (n = 13, p = 0.16, p = 0.19, and p = 
0.77, for differences between task, behavioural response during Discrimination task, and behavioural response during WM 
task, respectively). g-i, as in a-c but for population activity during the stimulus (n = 18 experiments, p = 0.68, p = 0.64, p = 
0.85, differences between task, behavioural response during Discrimination task, and behavioural response during WM task, 
respectively). j-l, as in d-f but for population activity during the stimulus (n = 13 experiments, p = 0.85, p = 0.42, p = 0.42, 
differences between task, behavioural response during Discrimination task, and behavioural response during WM task, 
respectively). a-l, Delay activity was significantly lower dimensional than stimulus activity in area AM (26% variance 
versus 19% variance explained, respectively, by the first PC, averaged across 18 experiments, p  < 0.001, signed-rank test) 
and area M2 (20% variance versus 14% variance explained by the first PC, respectively, averaged across 13 experiments, p 
< 0.05, signed-rank test). 

 
Minor: 
 
1) Do the authors have an explanation for why M2 inactivation only transiently affects 
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behavior, but AM inactivation induces persistent effect? Slower timescale activity is usually 
associated with frontal cortical regions. Here, it seems the results break that expectation. 

We had few a priori expectations regarding differences between areas in the transience of behavioural 
effects following optogenetic inactivation, as such differences could stem from multiple overlapping 
mechanisms. For example, if the timescales of the activity patterns observed in the inactivated areas 
determined the effects on behaviour, then our data would indeed break expectations, but if the 
transience was caused by the re-entrainment of local recurrent dynamics by ongoing long range 
cortical input following the cessation of inactivation, then the recovery of behaviour would be 
dependent on a given area’s long-range connectivity patterns. Another potential mechanism could be 
the degree to which ‘activity-silent’ mechanisms (e.g. short term plasticity states; not disrupted by 
optogenetic inactivation) vs. population dynamics are recruited to maintain WM. 

Interestingly, the fact that behaviour recovered following area M2 inactivation is consistent with 
observations from another frontal cortical area, ALM, following delay inactivation when mice were 
performing a motor preparation task (Li et al., 2016, 10.1038/nature17643). In light of their model, 
our results would suggest that transcallosal input from the contralateral hemisphere would function 
differently in posterior visual cortical areas (i.e. not being able to re-entrain local AM dynamics).  

We added a section in the Discussion section to further address this result. 

“Furthermore, the behavioural and neural consequences of inactivation differed in their 
transience, with different cortical areas showing varying degrees of recovery following 
inactivation. The ability for behaviour and neural activity to recover following area M2, but not 
area AM, inactivation during the early delay period can be contrasted with the timescales of 
activity patterns observed locally in these areas, which have been found to be slower in anterior 
regions (Murray et al., 2014), but is consistent with recent reports of the re-entrainment of 
population activity in the frontal cortex following inactivation (Li et al. 2016).” 

 

2) For axon imaging + target-region inactivation experiment, is the disruption of activity 
limited to CD_cue or does the inactivation also affect the CD_task activity? 

While our axonal imaging and inactivation experiments were conducted with the same behavioural 
task design as the cell-body imaging experiments (i.e. with alternating task and rotation blocks), we 
sometimes had difficulty tracking individual boutons across task blocks (which were separated in time 
by around 20 minutes) due to issues such as axial drift. As further analyses of cross-task activity (i.e. 
CDTASK) would have required generating a second heavily curated data set which only included stable 
axonal imaging experiments, we chose not to include such analyses in this manuscript, and limited our 
analyses to within WM blocks. 

 
3) Line 352: typo. “… following area AM inactivation (Fig. 4k)”. This is likely referring to Fig 4e. 

Fixed, thank you. 
 
4) Line 432-434, “The selective disruption of working memory representations in corticocortical 
feedback projections by the inactivation of ongoing feedforward activity provides direct 
evidence for the mechanistic role of functional cortical feedback loops for the maintenance of 
internally generated cognitive representations.” I did not fully follow this conclusion. The results 
show that the inactivated cortical region plays a role in maintaining WM, and the inactivation 
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also affects downstream cortical regions that project back to the inactivated region, which 
suggests that their interactions are required. But it is not clear if the affected cortical feedback 
signal itself is required for WM maintenance. Can the authors more clearly explain their 
interpretation? 

We believe a key factor that makes the dependence of feedback activity on ongoing feedforward 
activity ‘direct evidence for’ the functional role of cortical feedback loops is the reciprocal nature of 
our observations – area M2 feedback carrying WM representations required area AM activity and area 
AM feedback required area M2 activity. As such, although our experiments do not test precisely if the 
feedback WM representations were causally maintaining the target area’s WM representations (testing 
this would require subspace specific axonal manipulations – currently technologically unfeasible), our 
experiments do confirm a specific experimental prediction which has been proposed by some of the 
theoretical studies which we cited (e.g. Friston, 2010, 10.1038/nrn2787;  Lee & Mumford, 2003, 
10.1364/josaa.20.001434). Specifically, we confirmed that, consistent with the role of feedback loops 
maintaining and coordinating internal cognitive representations, the feedback activity of WM between 
areas in a recurrent loop is dependent on activity in their targets. Accordingly we believe ‘provides 
direct evidence for’ is sufficiently tempered. 

 
 
Reviewer #2 (Remarks to the Author): 
 
This study is an excellent combination of a unique, highly challenging behavioral paradigm 
and best-of-class physiology and activity perturbation. In brief, the authors designed a novel 
task, in which mice alternated between a working memory task and a discrimination task 
allowing to match stimuli, movement and reward statistics across tasks. This novel task helps 
disentangle neural representations of working memory from other behavioral variables. The 
authors carried out multiple perturbation experiments and showed that working memory is 
distributed across areas of neocortex. Simultaneous axonal recordings during inactivation of a 
distal cortical area further shed light on the role of interareal reciprocal interactions in the 
maintenance of working memory. This is highly valuable, important and timely work whose 
results will be of great interest to the neuroscience community. I feel that some analyses could 
be performed in a more straightforward way and more clearly presented, 
which would further improve the manuscript. 
 
Major comments: 
1. The task is great. Very impressive. 
 
2. In the analysis of population data, the use of “high-dimensional representations” and the 
related conceptual model was confusing to me. “High dimensional representations” could 
mean representations that live in higher dimensions, or it could mean representations that are 
themselves high dimensional. It felt to me that on occasion the manuscript switches between 
those two meanings. To step back, there are two clear findings: (i) Task related information is 
present in population activity. (ii) Using only the first PCs that capture a large part of the 
variance is insufficient to fully capture this information. What this means is that the task 
related information is present in dimensions of activity space that don’t capture much variance. 
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In their decoding analysis the authors find that a one dimensional decoder performs well. 
Therefore, the task-related dynamics themselves are not necessarily high dimensional. As an 
example, one can have a model in which the 
task-relevant dynamics are one (or low) dimensional and orthogonal to another set of 
dynamics that are not task relevant and capture a large amount of variance, which would be 
inline with the findings. The third finding is that a large number of neurons is needed to arrive 
at good decoding. It is related to dimensionality but not in a very straightforward way since the 
representation may be low dimensional yet a large number of neurons may just be necessary 
to estimate the dynamics in the low variance part of the population activity that allows to 
decode working memory.  

Your appraisal of our data and results is very much in line with what we wished to convey. Perhaps an 
important differentiation that could help with some confusion is that the intrinsic dimensionality of 
the population activity (alternatively referred to as the dimensionality of the dynamics) is a concept 
which we have not explored in this manuscript. The fact that a one dimensional linear decoder could 
identify WM representations implies that the dynamics of these representations are either one 
dimensional or kept orthogonal through time (e.g. rotational), but says nothing about the embedding 
dimensionality of these representations (the number of dimensions of the ‘ambient’ neural space 
explored by these representations) – the type of dimensionality which we explored in this manuscript. 
Embedding dimensionality is an important metric as it gives insights into the local network operations 
(Jazayeri & Ostojic, 2021, 10.48550/arXiv.2107.04084), how the information can be decoded by 
downstream brain areas, and has been a focus in recent theories of WM mechanisms (e.g. Lundqvist 
et al., 2021, 10.1101/2020.12.30.424833). 

Furthermore, as you pointed out, the fact that most cells have some information about WM (i.e. the 
representation of WM being dispersed in the population) is not sufficient as a measure of the 
embedding dimensionality, as, for example, if this signal was highly correlated across all cells within 
the population then it would imply different neural mechanisms and read out strategies (e.g. 
subsampling from the population being a reasonable strategy). As such, we used ‘high-dimensional 
embedding’ to summarize two properties of the WM representations we observed; that a large 
proportion of cells carried WM representations and that the correlated modes of this population 
activity were not sufficient to capture these WM representations. 

I believe the authors have a different model in mind, one in which (I state it here simplified) 
working memory is distributed across many neurons, but a neuron doesn’t have information in 
every trial, but rather only in a small subset of trials. In this scenario, trial-averaging would 
average away this decoding contribution, pushing it into low variance components and unless 
one has access to many neurons, most 
trials will be un-decodable, consistent with their findings (as a side note there is a potential 
problem in this model: since the decoder is fixed it has to assign the same weight to a neuron 
whether it is in a trial in which that neuron happens to be informative or not, but if the signal 
in informative trials is strong enough the decoder will still work). I think it is hard (and 
unnecessary) to argue for this model and it is best to revise statements in the text to clarify the 
specific findings and the possible interpretations more generally, and not just in relation to this 
model. 

We agree that our data does not exclusively lead to this particular model for WM representations. We 
referenced this model in our text as it is an existing relevant model for WM representations in the 
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field that is consistent with our data (as opposed to, e.g. persistent sensory activity a la Romo et al., 
1999, 10.1038/20939). We have qualified our statements further in the Discussion: 

 “Instead, our results provide support for an alternative representational scheme for working 
memory maintenance, whereby dispersed cell populations encode working memory with trial-
to-trial variable and uncorrelated delay activity patterns. Such high-dimensional population 
codes have recently been associated with ‘hot-coal’ (Lundqvist et al., 2021) or ‘activity-silent’ 
(Stokes, 2015) theories of working memory maintenance, although further investigations with 
electrophysiology and targeted causal network perturbations, respectively, will be necessary to 
draw direct comparisons.” 

We hope that the changes made to the text as part of this revision do emphasise the specific findings. 
If there are any sections that are still too interpretative, please point them out, and we’d be happy to 
revise further.  

 
3. In terms of the CD_task, I also feel that the text and analysis follow one particular 
interpretation for these dynamics when the full picture might be more complex. The authors 
state that it “captures the activity introduced by working memory engagement by contrasting 
the delay activity in the two task blocks following identical sensory input”. While this is a 
possible interpretation, another possible interpretation is that there is a context-signal that 
“tells” the circuit which task it is in, unrelated to the specific computations necessary for 
remembering the cue. The way CD_task was defined may in fact favor such a signal, as 
memory of the cue may be present in the discrimination blocks of the task despite the fact that 
it isn’t behaviorally useful. I realize that the memory cannot be quite the same due to the 
differential results of length-of-delay on behavior and the differential perturbation effects (and 
that the projection has complex dynamics), but these 
results are not enough to justify assuming no memory. The reason it is potentially important to 
consider these different scenarios is in the interpretation of projections on CD_task. This 
interpretation differs whether one has in mind a context-signal or a reflection of the actual 
process of working memory. One way to get more quantitative purchase on this question is to 
directly test differences in the preservation of cue information through the delay epoch between 
the Discrimination task and the WM task (see also comment 7 below). Specifically, one possible 
analysis could be calculating a CD_cue that contrasts between the -15° cue and +15° cue in 
the Discrimination task and then compare the activities in their respective CD_cue in the 
Discrimination task and WM task. This comparison can be done for CD_cue both at the delay 
epoch and at the stimulus period. It would be interesting to see whether there is any consistent 
difference, for example, activity in the discrimination 
blocks along CD_cue may decay faster than in the WM task. Or perhaps there is no significant 
difference between the blocks which would suggest that working memory is also maintained in 
the Discrimination task, despite it being unnecessary for successful completion of the trial. 

This is a great point, and we addressed it at the onset of this rebuttal (combined with response to 
major comment #1 of reviewer #1). We found that stimulus-related activity during the delay period 
(CDCUE) was largely absent during the Discrimination task, even though the stimulus period CDCUE 
activity (i.e. response to the stimulus itself) was similar across tasks.  

Nevertheless we do appreciate that whether CDTASK activity reflects a “context-signal or a reflection 
of the actual process of working memory” is a question which we do not address. One observation 
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which lends support to CDTASK being related to WM processes (and not simply a context signal for 
which task the mouse is in) is that CDTASK activity was more robust and persistent during the WM 
task as compared to the Discrimination task (Fig. 3d, g), and predicted correct behavioural responses 
only during the WM task (Fig. 3e, h). Further insights would perhaps require ensemble specific (i.e. 
CDTASK subspace specific) single-cell optogenetic perturbations in future experiments to be 
adequately answered. 

We have expanded the relevant section of the results: 

We found that both the slope and R2 of the CDTASK activity was higher when the mice were 
performing the WM task as compared to the Discrimination task (Fig. 3d, g), suggesting that 
CDTASK activity reflected representations integral to WM instead of WM-agnostic context 
signals such as those that reflect the task the animals are engaged in, and supporting the role of 
attractor-like dynamics for the maintenance of working memory representations (Murray et al., 
2017; Inagaki et al., 2019, Koyluoglu et al., 2017). 

 
4. The presentation of the results of the population analysis could be made more 
straightforward. In particular, Fig. 3e, k, h, n are the main quantitative findings in their section 
and are in my opinion unnecessarily confusing. The text states: “We observed that in both areas 
AM and M2, disruption of the CD_cue activity or CD_task activity during the WM task, as 
measured by the failure to correctly classify a given trial’s cue or task identity, was predictive of 
incorrect responses to the subsequent stimulus (Fig. 3e, h, k, n,)”. It is possible I missed 
something, but the way the data is summarized in these plots seems unnecessarily difficult to 
absorb. Since the cue direction is built as a decoder of cue, the state of the decoder (on one side 
or another of an assumed threshold) should relate to the represented cue and a switch to the 
other side of the threshold should correlate with errors. It therefore seems more straightforward 
to directly compare the state of the 
decoder to the action at the end of the delay. While there is an imbalance in trial types since 
80% of the trials are match trials, the analysis still seems relevant in its simpler form. The 
current choice of comparing decoder accuracy separately in CR and FA trials and the claim that 
a reduction is expected seems a very complex presentation of this statement. I believe the idea 
is similar, that a mistake in decoder indicates a switch to the opposite cue and this should 
happen more in FA trials, and a decrease in accuracy means more errors, but the multiple 
inversions make it harder to understand, in my opinion. 

Thank you for pointing this out. We used the proportion of trials correctly classified (%) as a measure 
because it allowed us to pool data across experiments (as all trials are assigned either a correct or 
incorrect), and perform a high power Fisher’s exact test for significance. We have now evaluated the 
ability of population activity along WM coding dimensions (CDTASK and CDCUE) to predict 
subsequent behavioural responses in a manner closer to the data, by looking at individual 
experiments’ population activity projections onto the WM coding dimensions prior to correct 
rejections and false alarms, and performed the appropriate statistics (signed-rank tests across 
experiments). These analyses are compiled in a new Extended Data Fig. 12. These analyses confirm 
that CDTASK and CDCUE activity during the delay period was able to predict correct behavioural 
responses to the subsequent Cues during the WM task. 
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Extended Data Fig. 12 | Working memory subspace population activity predicted correct behavioural responses 
during the working memory task. a, Z-scored CDTASK delay activity of individual experiments from area AM (n = 18), 
split by behavioural outcome (CR and FA), and averaged across Discrimination task (blue) and WM task (red) trials (p < 
0.001 for the WM task, p = 0.21 for the Discrimination task, signed-rank tests). Horizontal bars represent medians. b, 
Proportion of trials with their task correctly classified using CDTASK delay activity prior to CRs or FAs, as in Fig. 3.e, plotted 
for individual experiments from area AM (n = 18, p < 0.01 for the WM task, p = 0.79 for the Discrimination task, signed-
rank tests). c-d, as in a-b, for area M2 experiments (n = 13; Z-scored CDTASK delay activity differences p < 0.05 and p = 0.79 
for WM and Discrimination task trials, respectively, and task classification accuracy differences p < 0.01 and p = 0.91 for 
WM and Discrimination task trials, respectively, signed-rank tests). e-h, As in a-d, for CDCUE activity during the WM task. 
e-f, For area AM experiments (n = 18; Z-scored CDCUE delay activity differences p < 0.01 for both Cue A and Cue B trials, 
and Cue classification accuracy difference p < 0.01, signed-rank tests). g-h, For area M2 experiments (n = 13; Z-scored 
CDCUE delay activity differences p < 0.001 and p = 0.19 for Cue A and Cue B trials, respectively, and Cue classification 
accuracy difference p < 0.001, signed-rank tests).  

Especially given the text which conflates the activity and the decoder and uses the word 
disruption which can be easily confused with an active perturbation. In addition, the use of 
“preceding” in the axis labels is ambiguous. It could mean that the preceding trial was a CR or 
FA, not that the delay period preceded a CR or FA outcome. 

We agree that our language was ambiguous. We have updated the relevant Results section text. 

“We observed that in both areas AM and M2, a reduction of CDCUE activity or CDTASK activity 
during the WM task delays, as measured by the failure to correctly classify a given trial’s cue 
or task identity, was predictive of incorrect responses to the subsequent stimulus (Fig. 3e, h, k, 
n; Extended Data Fig. 12 shows these results in terms of individual experiments’ CDTASK and 
CDCUE activity).” 

We have also updated the behaviour prediction axis labels of Figure 3 to be more clear. 
 

 
5. The analysis of the time course of single trials in lines 296-308 is presented as highly 
informative of activity underlying working memory. “The slope of this relationship is indicative 
of the persistence of working memory representations over the course of the delay, and the R2 
is indicative of their robustness over time”. While it is true that single-trial dynamics during the 
delay period are interesting, and the slope and R2 of a comparison between the first and 
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second part of the projection on a decoder are relevant metrics, they are not as central as 
presented. For instance, in a straightforward decoding model of a comparison to threshold, the 
decoder projection values can become completely scrambled between the first and second part 
of the delay period (yielding zero R2 between the first and second parts of the delay period), yet 
as long as each trial doesn’t cross the threshold there is no loss in performance. It is possible 
that I misunderstood the analysis, and 
the way the different trial types were treated means that a zero R2 would necessarily mean 
complete mixing between condition types, but I don’t think that is the case given the way data 
is plotted in Fig. 3 (see also next comment). If this is true then there are simpler ways to show 
and describe this effect. 

Thank you for pointing out this potential source of confusion. While you have correctly understood 
the reasoning behind our use of R2 and slope for analysing single trial dynamics, we did not intend for 
these measures to be used to gauge the ability of the neural population to predict either Tasks or Cues. 
The ‘mixing of condition types’ within the neural population is instead measured by the cross-
validated performance of our decoding, which is presented in Fig. 3b and Extended Data Fig. 11 (the 
horizontal lines representing the experiment averaged classification accuracy of left-out trials). The R2 
and slope of early/late delay coding dimension activity of single trials is instead a measure of the 
stability of the population activity along the calculated coding dimensions. 

We have revised the relevant Results section text to be more clear. 

“The slope of this relationship is indicative of the persistence of working memory 
representations over the course of the delay, and the R2 is indicative of their robustness over 
time. Importantly, these measures are agnostic of whether the Cue or Task identities of the trials 
were correctly predicted (i.e. the classification accuracy).” 

 
6. In general, it was difficult for me to follow the precise details of the population analysis. The 
first part of the analysis is based on a pooled pseudo-population, with trial-averaging, but then 
the analysis switches to single-trial dynamics and decoding (with no trial averaging). The 
mechanics of how single trial analysis relates to sessions (each with different trial numbers) 
wasn’t clearly described. I believe the authors used single session analysis that leaves one trial 
out and then just pooled these left out trials across all sessions, but it wasn’t clear whether the 
values given would be changed if averages across sessions are taken, and I am not sure I 
correctly followed what was performed. Clearer descriptions in the main text would be useful as 
well as longer explanations in the methods (and/or putting code in a code repository). 

We believe some confusion arises from what is being plotted in Fig. 3b and Extended Data Fig. 11. 
These are single experiment classification accuracies averaged across experiments, with the error bars 
accordingly representing the 95% CI across experiment. Cross validation within each experiment was 
done by taking one trial out and calculating the coding dimensions from the remaining trials, and then 
classifying the left out trial (i.e. correct or incorrect Task or Cue), and repeating this procedure for all 
of the trials, once per experiment. For analyses of single trial coding dimension dynamics, the same 
procedure was done but with the left-out trial’s population activity projected onto the coding 
dimensions identified from the remaining trials. For some analyses, to pool across experiments, we 
either pooled the Z-scored projection strength of all trials within each experiment (i.e. when they were 
left out for calculating the coding dimensions) for Fig. 3.d, g, j, m, or simply pooled each trial’s 
correct/incorrect classification (when it was left out) for Fig. 3.e, h, k, n. A version of Fig. 3.e, h, k, 
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n, but with the trial-averaged Z-scored projection strengths (i.e. calculated separately for each 
experiment) is presented in the new Extended Data Fig. 12 (see our reply to your comment 4 above). 

We have expanded the relevant Methods section to clarify our analyses.  

 “All reported Task or Cue decoding accuracies were the average cross-validation (leave-one-
out) test accuracies, calculated by averaging each trial’s prediction of Task or Cue given the 
coding dimensions derived from the respective experiment’s remaining trials (i.e. one 
classification accuracy was derived per experiment). All projections of the neural population 
activity onto the respective coding dimensions (e.g. Fig. 3c, f, i, l, and Fig. 4e, k) are likewise 
the projections of the activity of left-out single trials onto the coding dimensions calculated 
from their respective experiment’s remaining trials.” 

The analysis code is available in an online repository: github.com/ivan-voitov/loops 
 
7. Regarding the point that dynamics in the high variance components of the two task blocks 
are very similar, one possibility (as alluded to in comment 3) is that since the animals were 
trained on both tasks, they adopt a strategy in which they memorize the cue in all block types. 
This puts the experiments in a bit of a catch 22: in order to compare the dynamics one has to 
train the same animal on both tasks, but if one trains the animal on both tasks, the animal 
could memorize the cue in all task conditions. In principle this could perhaps be addressed by 
animals first learning the discrimination task and then adding the working memory task 
(perhaps also vice versa in separate animals), while performing longitudinal imaging. I believe 
these experiments would be too time consuming, especially given that the study already goes 
above and beyond the standard in terms of behavioral training. I therefore don’t suggest the 
authors actually collect this data, but if the authors have 
existing data for the discrimination task alone (in separate animals) they could argue for its 
similarity to the full task data to make the scenario of working memory training changing the 
dynamics for both block types less plausible. The authors should also raise this option, and/or 
argue against it, in the discussion section.  

This is an interesting line of thought. We believe our data supports the view that the population 
encoding of WM is specific to the WM task, given that CDCUE activity is largely absent during the 
Discrimination task (new analysis presented in Extended Data Fig. 13), and that the CDTASK activity, 
although present in the Discrimination task (by virtue of its derivation), is more robust and more 
persistent during the WM task (Fig. 3).  

Nevertheless, the activity patterns that are shared across tasks may potentially not be observed if the 
mice were trained only on the Discrimination task, and emerge only following WM task training, 
perhaps due to the increased difficulty or training time required for the WM task (e.g. the 
Discrimination task alone, being Pavlovian in nature, may be ‘performed’ using quicker neural 
structures than the neocortex, as suggested by our reaction time results and optogenetic inactivation 
experiments). In such a framework, these shared activity patterns may be related to aspects of the task 
such as timing, reward expectation, and motor preparation. In support of this idea, several recent 
studies have suggested a role for low-dimensional dynamics which is agnostic of the information kept 
in WM, such as the maintenance of a timing signal (Meirhaeghe et al., 2021, 
10.1101/2021.11.08.467806), or to support the orthogonalization of sensory input with respect to 
premotor activity (Libby & Buschman, 2021, 10.1038/s41593-021-00821-9) – processes which may 
be useful even in simple tasks (i.e. to maximize the reliability of behavioural responses), but not 
normally recruited under simpler (e.g. Pavlovian) learning experience. Interestingly, our findings 
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somewhat contradict a recent preprint, Arlt et al. (2021; 10.1101/2021.12.10.472106), that training 
mice on a more difficult task would increase the necessity of the neocortex for a previously trained 
simpler task, as we found no requirement of the neocortex for the Discrimination task during the delay 
even when blocked together with the WM task (of course, however, the tasks used for these 
experiments are not interchangeable). 

Unfortunately we do not have recordings from mice which were only trained on the Discrimination 
task, as the clarity of our cranial windows and viral expression times limited our flexibility in data 
collection, and as such we always made sure to record both tasks in each mouse as soon as was 
possible.  

We have added a section in the Discussion section to bring up this point. 

Similar two-task designs have previously been used to disambiguate the neural correlates of 
specific cognitive processes by isolating neural representations of interest from ‘condition-
independent’ neural activity (Tajima et al., 2017; Panichello & Buschman, 2021). One potential 
drawback of the two-task design is that neural activity may be recruited which would otherwise 
be absent if the mice were only trained on one task. Accordingly, although we identified shared 
neural activity patterns between our Discrimination and WM tasks, the extent to which such 
WM-independent signals would arise if mice were trained only on the Discrimination task is 
unknown. Nevertheless, ethological behaviour is characterized by flexible switching between 
a vast repertoire of previously learned behaviours, and two-task designs therefore impose a 
reasonably conservative control for investigating neural correlates of cognitive processes. 

 

8. Going back to the role of CD_task as in comment 3 above, I was wondering whether one can 
try to analyze trials in which dynamics go into the wrong state in terms of task and see 
whether there is a specific prediction to be made regarding different relevance for the state of 
CD_cue, i.e., what should one expect assuming that there might be a mistake in the assignment 
of the task. For instance, would a crossing of threshold in both CD_task and CD_cue 
compensate for each other? I believe it is not so simple since the relation between the cue and 
probe are different in discrimination and WM blocks, but perhaps something can be done.  

Thank you for this interesting suggestion. We performed the analysis as you suggested, where we 
took trials which had their Task correctly or incorrectly classified during the WM task blocks, and 
then looked at the Cue classification accuracy of these trials. We further split trials into those 
preceding CRs and FAs. We found that there was no compensation of Task information with Cue 
information, and, in fact, there was a mutual disruption of both Task and Cue encoding, wherein when 
population activity had difficulty predicting the Task, it also failed to predict the preceding Cues. A 
simple interpretation of this could be that these two types of WM representations are co-dependent. 
There was a modest correlation (Pearson’s r) between CDTASK and CDCUE activity of 0.26 ± 0.18 for 
area AM experiments and 0.18 ± 0.26 for area M2 experiments (mean ± 95% CI across experiments). 
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Extended Data Fig. 14 | Relationship of Cue and task representations. a, Delay period averaged population activity, per 
WM task trial, from an example experiment in area AM, projected onto the CDTASK (horizontal axis) and CDCUE (vertical 
axis). Black points represent individual trials’ delay period activity prior to CRs and red points prior to FAs. CDTASK and 
CDCUE were identified independently for each trial using all remaining trials (i.e. leave-one-out cross-validated). Points 
below zero correspond to trials in which the task (horizontal axis) or Cue (vertical axis) was incorrectly classified. b, The 
prediction of preceding Cues from the population activity during the delay (measured as classification accuracy, i.e. the 
percentage of trials below zero on the vertical axis of a), when the Task was incorrectly (left column) or correctly (right 
column) classified, for all trials pooled from area AM experiments (n = 3,452 CR trials and n = 405 FA trials pooled from 18 
experiments; p < 0.001 and p < 0.01 for CR and FA trials, respectively, Fisher’s exact tests). Error bars represent 95% CI. c, 
The Pearson’s correlation coefficient (r) between CDTASK and CDCUE delay activity, per area AM experiment (n = 18; 
greater than zero, p < 0.001, one-sample signed rank test). Horizontal bar represents median. d, As in b, but for area M2 
experiments (n = 2,378 CR trials and n = 395 FA trials pooled from 13 experiments; p < 0.001 and p < 0.01 for CR and FA 
trials, respectively, Fisher’s exact tests). e, as in c, but for area M2 experiments (n = 13, p < 0.05, one-sample signed rank 
test). 

We have added the corresponding text to our Results section: 

“Notably, when the delay activity failed to predict the current task (i.e. CDTASK 
misclassification), the Cue information encoded in the delay activity (measured as CDCUE 
classification accuracy) was concomitantly lower (Extended Data Fig. 14), revealing a link 
between these two coding dimensions (Pearson’s r = 0.26 ± 0.18 for area AM experiments and 
0.18 ± 0.26 for area M2 experiments; mean ± 95% CI across experiments). 

 

Related to this point, it wasn’t clear to me whether CD_task and CD cue were explicitly 
orthogonalized or they were just generally found to be orthogonal. 

No we did not orthogonalize them. They were found to be (roughly) orthogonal. The correlation 
coefficient (r) of individual trial scores (delay-averaged population activity of single trials projected 
onto the CDTASK and CDCUE) was 0.20 ± 0.16 (mean ± 95% CI across all experiments). We added the 
relevant text in the Fig. 3 legend. 

“Note that the CDCUE and the CDTASK were not explicitly orthogonalized.” 
 
9. In the simultaneous imaging and perturbation of figure 4, even when activity remained 
perturbed, the 95% CI mostly don’t overlap for most of the short delay, in particular for AM (as 
the shortest short delay is 0.8 seconds). This may imply that one shouldn’t expect a behavioral 
effect. It is possible that the read out is more graded, but it is worth commenting on that. 

Interpreting the very onset of CDCUE activity during the delay may be tricky because boutons with 
progressively later onsets sum with the tails of the calcium transients of previously active boutons, 
leading to a slight illusory ‘ramping’ of population activity (deconvolution of the boutons’ calcium 
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signals was not possible due to a low signal-to-noise ratio). Nevertheless it is true that there is never a 
perfect separation of baseline activity and silencing activity, which may reflect only a partial elimination 
of CDCUE activity. An incomplete disruption of CDCUE activity may in turn be consistent with the 
behavioural effects also being graded in nature. We have added a sentence to address this in the Results 
section. 

“Although feedback CDCUE activity was not completely eliminated following target area 
inactivation, this may reflect the partial impact of optogenetic inactivation on WM-specific 
behavioural effects (Fig. 1i)”. 

In addition, how the CIs were calculated is not shown. 

The trial-averaged CDCUE activity projections of individual experiments were averaged for these plots, 
and the 95% CI are accordingly across experiments. We have added this information to the Fig. 4c, e, 
legends. 

 
10. I was confused by how cue rotation figured into the task block structure. If I understood 
correctly, the mice can switch task blocks quickly because the absence/presence of a vertical 
grating is informative of the task block (line 793-794). But if the vertical grating can now be 
rotated and appear in both tasks, do mice recognize the task because there is only one cue 
type?  

As all stimuli were rotated together during the rotation blocks (e.g. +15°), such that the 
Discrimination task vertical grating was still oriented at an angle equidistant between the two WM 
Cues (e.g. +15° when the Cues were -15° and +45°). Accordingly, the mice were still informed of the 
task switch by the abrupt presentation of a ‘near-vertical’ (±15°) stimulus that was oriented in 
between the Cues of the preceding WM task (i.e. the Discrimination task ‘vertical’ stimulus only 
matches Cues from opposing rotation blocks). 

I was also confused by the statement in line 808-809 that “in between two rotation blocks, the 
stimulus orientation angles were changed slowly…” Does that mean the angles of the grating 
changed continuously? It would help to clarify these issues. 

Yes, the angles were changed continuously.  

We have updated the Methods section with a more detailed procedure. 

“In between two rotation blocks, the stimulus orientation angles were changed slowly in a 
continuous fashion (averaging ~10 minutes for a full 30° rotation), such that the mouse 
performance was not disrupted. No previous training was required for the mice to perform these 
rotation blocks, and there was minimal interference with the mice’s’ ability to alternate task 
blocks as the sudden presence or absence of a stimulus in between the two Cues in the WM 
task remained an abrupt indicator of a task block switch.” 

 

 
11. In the section “Cortical feedback loops maintain distributed working memory 
representations”, it is suggested that the representation of working memory disrupted by distal 
inactivation might be recovered if the delay is long enough. It would be useful to generate a 
version of Fig. 1h in which trials are grouped according to delay length (as in Fig. 4m) and 
check for the effect there as well. 
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Thank you for suggesting this analysis. We have generated these plots as Rebuttal Fig. 3. These plots 
demonstrate that with a different measure of performance, [100% - Hit rate (%) - FA rate (%)], and 
restricting the analysis to the optogenetics and behaviour dataset, the differential robustness of AM 
and M2 silencing was maintained. We chose not to include this metric in the manuscript as (1) a large 
amount of variability is introduced by the relatively rare Hit trials (Fig. 4m measures this same effect 
as (%) of correct trials, which weighs all trials equally), and (2) it mixes the effects of inactivation on 
Cues, Probes, and Targets (Fig. 1i and Extended Data Fig. 6 show behaviour and optogenetics 
dataset statistics split by trial type). We would, however, be happy to include this figure into the 
manuscript if you think it would be useful for the reader. 

 

Rebuttal Fig. 3 | Reduction in performance by optogenetic inactivation depended on delay period duration. a, A 
schematic of the cortical areas targeted for optogenetic silencing (top), and the optogenetic silencing protocol (bottom). The 
optogenetic silencing light was flashed for 400 ms at 3 mW, followed by a linear ramp down to 0 mW over 200 ms, at either 
the onset of the delay or stimulus periods. b, An overview of the silencing effects on task performance in trials with delay 
periods less than 1.6 seconds in length (n = 143,764), split by silencing onset (delay onset, left, and stimulus onset, right), 
task (Discrimination task, top, and WM task, bottom), and area (shaded circles). Performance was defined as [100% - FA 
rate (%) - Miss rate (%)]. The shade of the circles is the differences in performance between control and silencing trials. c, 
As in b, for trials with delay periods greater or equal to 1.6 seconds in length (n = 97,984). 

 
Minor comments:  
1. Statistics for behavioral analysis and perturbations were not clear. 

We have updated the Methods section with further details of how the statistical analyses of behaviour 
and optogenetic inactivation effects were performed. The relevant statistics are included in Extended 
Data Fig. 6.  

 “Statistical analyses of optogenetic inactivation effects (Fig. 1i and Extended Data Fig. 6) were 
done by pooling all trials from 9 mice (n = 173,432 trials) and performing a Fisher’s exact test, 
separately for Cue, Probe, and Target trials, and split by task. Significance levels were 
accordingly adjusted for multiple comparisons. Bar plot values were the trial-averaged 
optogenetic silencing effects subtracted from the control trials (where no silencing occurred), 
and error bars represent the 95% CI of the silencing trials (i.e. binomial confidence intervals).” 

 

 
2. Line 166 states “… but were more diverse in their temporal profiles (Fig. 2c)”. It was not quite 
clear to me what is meant here. The two blocks in Fig. 2c look quite similar. 



   
 

22 
 

Sorry, we mistakenly referenced Fig. 2c instead of Fig. 2a-b, which may have led to some confusion. 
This sentence refers to differences between delay and stimulus responses, not between the two task 
blocks. We have updated the text to read: 

 “Single cells in both areas AM and M2 were as likely to be responsive during the inter-stimulus 
delay period as compared to during the presentation of the stimulus, but had more varied 
response onset times during the delay (Fig. 2a, b; Extended Data Fig. 8).” 

 
3. Line 171: “Surprisingly, however, working memory engagement did not alter the temporal 
profile of the trial-averaged activity of individual cells” I am not sure what is the precise claim. 
Do no neurons have a different response, even by chance? Perhaps the statement related to 
changes above some chance level? 

Yes, it is compared to chance, using a t-test between peak response times of all delay or stimulus 
responsive cells. The relevant statistics are described in the legend of Extended Data Fig. 8. The 
sentence now reads: 

“Surprisingly, however, working memory engagement did not alter the temporal profile of the 
trial-averaged activity of individual cells as compared to chance (Extended Data Fig. 8; n = 805 
cells, p = 0.43), nor the magnitude of cell-averaged delay period activity (Fig. 2d, f; n = 805 
cells, p = 0.67).” 

 
4. Line 225-7: “Furthermore, this analysis did not reveal any clear subpopulations of cells whose 
delay activity was selective to either task.”What exactly does this mean? 

We were commenting on the fact that in the scatter plots in Extended Data Fig. 10, there were no 
clusters of cells which were clearly Task or Cue selective (i.e. off-diagonal), implying that although 
the distribution of average firing rates was higher than chance, this was not due to strong tuning biases 
of a small number of cells. 

 
5. Line 313: “(Fig. 3e, h, k, n,)” unnecessary comma at the end. 

Fixed, thank you. 

 
6. Title EDF 7: “Stimulus rotations ensured identical sensoy inputs across the two tasks”, correct 
to sensory. 

Fixed, thank you. 

 
7. Lines 334-5: I believe a reference to Fig. 4b and Fig. 4h should be added. 

Added. 

 
8. in Fig. 1a the reward sign only appears in the WM task but not the Discrimination task, while 
this contingency is simpler, it is still worth having the reward sign. 

We’ve updated Fig. 1a with this change. 
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9. For Fig. 2g and 2i, I expected to see three different trajectories, one for each delay group, but 
it seems that in the initial part of the trajectories the different delays combine into one line. Is 
this a plotting effect and there are actually three lines there? Or were they combined 
artificially? It would be good to clarify in the legends. 

The initial component of each of the three delay trajectories is shared across all trials, as activity from 
trials which were at least as long as a given time point were plotted (i.e. all trials were at least 800 ms 
long and so were included in the initial points of all three trajectories). Accordingly, each of the three 
trial groups’ trajectories diverge only when they are no longer in the previous trial group’s delay 
range (e.g. the 2.4 – 3.2 second delay group shared the delay trajectory up to 2.4 seconds, and split off 
after that). We have updated the figure legend to clarify this. 

“Trials were split by task and into three groups of stimulus onset times (0.8-1.6 s, 1.6-2.4 s, and 
2.4-3.2 s), such that at each point in time, data from trials with delays which were at least as 
long as their respective stimulus onset time group were plotted (i.e. trajectories were shared 
among stimulus onset time groups until 1.6 or 2.4 seconds following delay onset).” 

 
10. Line 352: in “…following area AM inactivation (Fig. 4k; …)”. Should “Fig. 4k” be “Fig. 4e”? 

Yes, fixed, thank you. 

 
11. Line 976: the word “first” is in italics. This seems unnecessary. 

Agreed, changed. 

 
12. I found the vertical axes in Extended Data Fig. 10 g and h and their description confusing. 
Please clarify. 

There was a mistake in the labelling of these axes, sorry. These plots represent the proportion of total 
variance explained by the individual PCs of the population activity (i.e. the PCs which were used for 
decoding in the preceding panels). We have updated the axes labels. 



Reviewer Reports on the First Revision: 

Referees' comments: 

Referee #1 (Remarks to the Author): 

The authors have done an excellent job revising the manuscript, adding new analyses that clarify the 

nature of working memory representations and their relationship to behavior. All my comments are 

satisfactorily addressed. This study provides compelling evidence for distributed high-dimensional 

representation of working memory (WM) that is maintained across reciprocally coupled cortical 

regions in mice. The findings will have a substantial impact in the field. 

Typo: Fig 3b legend (line 261) “Extended Data Fig. 10” should be updated to EDF11. Same for 

Methods line 1064. 

Nuo Li 

Referee #2 (Remarks to the Author): 

The authors put together a serious and thorough response to the comments. The paper is 

acceptable for publication in my opinion.


