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Referees' comments: 

Referee #1 (Remarks to the Author): 

Erickson, Berglund et al present a study of the spatial distribution of genome-wide copy number 

variation in many regions from both benign and malignant tissue, in a total of ~120,000 spots. 

The main organ sampled is the prostate (n=2, ~88,000 spots), but regions from a lymph node, 

skin, medulloblastoma, adult glioblastoma and ductal breast cancer are also subjected to spatial 

transcriptomics. Based on inferred copy number variants from the transcriptomic data, regions 

with CNVs are then assigned to clones and ordered into phylogenies. In prostate and skin, these 

clones are focused on regions with histological abnormalities, but are also present in benign cells. 

Together, this data shows the presence of genetically abnormal clones that seem to act as 

precursors to full-blown cancer, or that arise in parallel. 

While I think the data and the observations made here are of interest and importance to the field, 

I believe the analysis of the data could be expanded to provide more biological insights. In 

addition, I have some methodological concerns with the correctness of the phylogenies derived 

from the CNV profiles. I have detailed my comments below. 

1. I believe the title of the paper promises more than is achieved in the paper. While CNVs are an 

important category of somatic mutations, they are far from the only one. Single nucleotide 

variants, insertions, deletions and structural variants each play crucial roles in somatic evolution. 

None of these have been (or can be adequately) derived from the transcriptomic data. Therefore, I 

would suggest rephrasing the “landscape of clonal somatic mutations” from the title to reflect this 

limitation. 

2. The observation that clones carrying CNVs are comprised of benign cells adds to the research 

emerging over the past few years that many “normal” cells carry genomic alterations that have 

been associated with cancers, such as driver mutations, sometimes even representing precursor 

lesions. Since these studies rely on DNA sequencing rather than transcriptomics, they cannot shed 

light on whether these premalignant cells exhibit a different behaviour compared to their 

unmutated counterparts. Rather than simply showing the existence of benign clones with CNVs, 

the transcriptomic data used here should allow for an assessment of functional differences 

between benign clones with and without CNVs, or between those belonging to different clones with 

different sets of CNVs. Do benign cells with CNVs already show expressional features of malignant 

cells? Presumably, given that some clones differ by only a few CNVs, would it be possible to 

directly assess the effect of those CNVs on the transcriptome (besides the obvious dosage effect 

on the genomic region affected by the CNV)? These are just a few ideas, but I believe there are 

interesting biological angles to the data that have remained unexplored. 

3. While it is clear to me that some GEFs are associated with certain clones, I currently find their 

biological relevance somewhat unclear and wonder whether a more in-depth look at these GEFs 

will reveal interesting biology (in a similar way as highlighted in the previous point). Is the 

difference in expression captured by the GEFs solely due to the CNVs that are carried by those 

clones? 



4. The observation that both benign and malignant cells can be part of the same clone is 

interesting but begs the question of why some of these cells remain benign with identical CNV 

landscapes. Can the authors speculate on this? 

5. I have some serious concerns regarding the construction of the phylogenies from the iCNV data. 

• Extended Data Fig. 1a: While the samples in the right-hand phylogeny (derived from DNA) line 

up in the same way as the groups in the left-hand side (derived from RNA), the tree topology from 

the DNA-based phylogeny allows many more configurations due to the large multifurcation in the 

centre. This suggests that the RNA-based iCNV method groups samples into clones that do not 

seem to be fully supported by the DNA, contrary to what is said in the text. Instead of the current 

x-axis (which is unclear to me as to what it represents), a phylogeny is conventionally displayed 

with the axis beginning at the root of the tree and branch lengths reflecting the number of genetic 

events, such as the number of inferred acquired CNVs. It would be pertinent to show this 

corroboration as it underpins the methodology. 

• Extended Data Fig. 1b/c: in a similar way to the previous point, the iCNV tree topologies in 

Extended Data Fig. 1b/c do not seem to mirror the ones from the published data correctly, but it is 

difficult to judge if the dendrogram is based on hierarchical clustering rather than a proper 

phylogeny. In b, one would expect the liver mets to coalesce with clone A before coalescing with 

clone I (etc.). Similar discrepancies are present in panel c. 

• The way in which the phylogenies in Figures 2 and 3 are constructed from the iCNV data is 

unclear to me and seems erroneous. For instance, all clones in Fig. 2 besides clone A share 

“6q_loss_2”, but this apparent shared event is completely absent from the tree topology. There 

are 

• The methods section does not list a specific algorithm for tree building, which leads me to believe 

they were constructed manually. To sort out the discrepancies, it would be imperative to 

algorithmically build trees. Given the assumptions of shared CNVs likely denoting shared ancestry 

and CNVs generally not being lost once acquired, a maximum parsimony framework seems 

appropriate. If the data supports more than one phylogeny, it would be good to provide alternative 

solutions. 

• Within the phylogenies, it would be good to annotate branches with the CNVs that occurred on 

them. 

6. To see CNVs observed in different clones are due to shared ancestry rather than multiple, 

independent acquisitions of the same CNV, could the authors assess whether it is the same allele 

that is amplified/lost across all clones with those CNVs from SNPs in the transcriptomic data? In 

case there is a CNV violating the topology of the phylogeny, this might be proof of an independent 

acquisition. 

7. In Fig. 4 c/d, there seem to be many CNVs in stromal cells, some of which seem to be share 

with the squamous cell cancer, such as loss of 8q (in clones A, B and D), gain of 1q (A and B) and 

loss of 19q (A, D, possibly B). Intuitively, given that all these cells seem to share some CNVs, it 

could indicate all derive from a single cell that carried those CNVs. However, this seems to suggest 

a rather large clonal expansion traversing cell types. Is it likely these represent artefactual calls? 

Some minor points: 

8. The introductory paragraph lacks references. 

9. I believe using subheadings would increase the readability of the manuscript. 

10. Fig. 2a: Why do the cells assigned to clone J appear to have a CN profile much less noisy than 

cells belonging to other clones? Is the denoising specific to each clone? This seems to be the case 

for clone C in Fig. 4c as well. 

11. On page 5, line 12: 16q is listed to be both gained and lost, which I think is an error. 

12. I cannot find any clinical information on the patients, such as the age of the men whose 

prostates where sampled. Are the large clones in prostate due to advanced age of the men, at 

which point such benign clonal expansions might be expected? 



Referee #2 (Remarks to the Author): 

The broad goals of this study is to elucidate the development of cancer from benign tissue, 

improving our understanding of disease progression and enabling earlier diagnosis of cancer. 

Specifically, the authors have used spatial transcriptomics to infer genome-wide copy-number 

variations (CNV) in situ. Using the 10X Genomics Visium system, the authors comprehensively 

analyzed a full width axial section of two prostate specimens in addition to several other tumor 

types. The authors convincingly demonstrate their ability to resolve in situ transcriptomic data that 

represents highly localized subclonal populations within the prostate. Using their spatially defined 

transcriptomic data, the authors infer somatic copy number alterations as others have done with 

single cell data. The authors then used these inferred CNAs (iCNAs) to construct detailed 

phylogenies of tumor development with profound spatial resolution. 

One of the key findings of the manuscript is the discovery of 'benign' subpopulations of prostate 

cancer cells that nonetheless carry deleterious oncogenic iCNAs. Figure 3 demonstrates this finding 

for MYC amplification and PTEN loss in both 'benign' and tumor tissues. Additional strengths of this 

manuscript include the robust computational validation of iCNAs comparing with WGS and FISH 

data, and the demonstration of the complementary roles of transcriptomics, histopathology and 

iCNAs in resolving unique aspects of tumor heterogeneity. The use of multiple tumor types to 

support utility of the iCNA method in detecting alterations in benign tissue is also noteworthy. The 

study is well done and represents an important advance, although previous studies have 

documented oncogenic mutations in benign tissue. (E.g. PNAS 1996 doi: 

10.1073/pnas.93.24.14025, Science 2015 doi: 10.1126/science.aaa6806, and Science 2019 doi: 

10.1126/science.aaw0726. 

There are a few questions that need the attention of the authors as follows: 

1. One of the most striking findings of this study is that copy number alterations are evident in 

“benign” tissue as defined by two pathologists. Utilization of clinical stage markers e.g. 

AMACR/HMW cytokeratin staining could be helpful in further validating the ‘benign’ nature of these 

regions. 

2. The authors’ speculation on page 7 line 21-23 that low-grade prostate cancer is fundamentally 

distinct from higher grade cancer, as opposed to being in an evolutionary continuum is overly 

strong considering that they present evidence from only two patients at a single point in time. 

Additionally, a more nuanced discussion of the translational relevance e.g. targeted treatment for 

subclones (p9 line 11-14), and contextualization in light of how this analysis might be 

implemented when most men undergo TURPs rather than open resection, are warranted. 

Referee #3 (Remarks to the Author): 

I have reviewed the manuscript presented by Erickson and colleagues in which they present the 

application of inferred CNV profiles at 55um spatial resolution in various normal, benign and 

tumorous tissues. The authors present results of an algorithm which infers the CNV profiles from 

ST/Visium data, which is demonstrated on a synthetic in silico dataset, demonstrate its application 

to decipher heterogeneity in nearly a full planar section of a resected prostate, followed by 

demonstrating it on a number of other tissues. 

The application of spatial resolved transcriptomics (SRT) to decipher spatial genomic copy numbers 

accurately is exciting and much needed in the field. The results presented in the manuscript 

suggest that the authors can indeed do this. 

However, I feel that the focus of the paper lacks clarity and this in turns questions the novelty of 



tis paper. On the one hand, the paper reads like a methods paper, but the details of the 

computational methods are lacking so it becomes difficult to compare their approach to e.g. 

Kueckelhaus et al 2020 (https://doi.org/10.1101/2020.10.20.346544) who have also inferred 

CNVs from SRT data. The authors also do not compare their tool to a similar published tool called 

STARCH (https://doi.org/10.1088/1478-3975/abbe99). On the other hand, they describe the 

clonal CNV heterogeneity in multiple tumour types (including an impressive full slice of prostate 

tissue), however do not go into details of the biology nor extensively validate their ST/Visium 

findings using non-spatial single cell sequencing nor provide extensive comparisons between the 

inferred CNV and transcriptional landscape. 

Never-the-less, the paper is a good start to what could be a very good piece of work. I hope that 

with the following points I can describe some of my specific concerns. 

# Major 

[1] Focus of the paper. Is this a methods paper, or a biology paper? The title and abstract point to 

the biology of the prostate cross section, but the start and end of the paper focus on the 

methodological aspect. Given that the concept of calling CNVs from ST/Visium data has already 

been described and demonstrated by others, I would recommend focusing more on the biological 

results. 

[2] Novelty of inferring CNVs. Inference of spatial CNV profiles has already been described by 

Kueckelhaus et al 2020 (https://doi.org/10.1101/2020.10.20.346544) where they used inferCNV 

to infer CNVs, Lu et al 2021 (https://doi.org/10.1186/s13058-021-01451-6) where they use LCM 

and bulk WGS+RNAseq. I believe that the only published computational tool that infers CNVs from 

ST/Visium data is STARCH, presented by Elyanow and colleagues (https://doi.org/10.1088/1478-

3975/abbe99) in 2021 with initial commits to their GitHub repo made in May 2020. Given the 

concept of applying scRNAseq CNV inferences tools to ST data has already been described and that 

a method for inferring CNVs from ST data exists, I believe that the authors should try to go to the 

same lengths as Elyanow and colleagues in demonstration and benchmarking of their 

computational approach. Elyanow also present pretty much the same 1D-to-2D synthetic in silico 

tissue benchmark. It would suggests that the comparison include performance of inferCNV as 

described by Kueckelhaus et al, similarly using CopyKat (Gao et al 

https://doi.org/10.1038/s41587-020-00795-2), and also perhaps considering also the simulated 

spatial data from scRNAseq as demonstrated in STARCH. 

[3] Validation of the inferred CNV profiles. While the authors do indeed validate the MYC and PTEN 

CNAs via FISH, and validate the CNV calling on matched scRNAseq+scDNAseq data, they do not 

extensively validate their results from spatial data. I believe that validation via single cell DNA 

sequencing of at least one heterogeneous section of the prostate tissue should be provided. If this 

is not possible, then the authors should try to source a similarly heterogeneous piece of tissue to 

profile using Visium and scDNAseq. 

[4] Integration of scRNAseq. 

[4.1] The authors seems to be missing in depth description of the consistency and differences of 

gene expression profiles with the inferred CNV patterns. One would assume that these should be 

similar, but the extent of this is not described. 

[4.2] The “normal” tissue for the CNV inferences should ideally be the cell type that is the cell of 

origin of the tumour, however this basic analysis is ignored. 

[4.3] The authors do not consider that spots could contain a mixture of tumour and normal cells, 

e.g. TILs. This is a concept that a number of co-authors should be familiar with. It would be nice to 

see if the authors can also consider the tumour cell content of spots in the their model using 

supervised decomposition methods (for samples with matched Visium and scRNAseq data) or de 

novo deconvolution methods (if such tools are accurate). Alternative, the authors could try to 

segment DAPI stained slides and perhaps use this to model the number of cells within a spot to 

assist with deconvolution. At the very least this should be demonstrated on one the heterogeneous 



prostate cancer slide H1_4. 

# Minor 

[5] The manuscript would benefit from subheadings that separate out results sub sections and the 

discussion 

[6] The use of the term “inferCNV” in the manuscript is inappropriate given that there is another 

method called inferCNV… even more so considering that the authors also refer specifically to this 

tool in their manuscript. 

[7] CNV as a term is synonymous with polymorphic variants, but the term CNA (CN-alteration or 

CN-aberration) is more common for cancer genomics. Alternatively, the authors can use the term 

“somatic CNVs”. 

[8] The choice of T for the GEF analysis was not rationalised. Was this an informed choice based 

on a factorisation metric such as silhouette or FN? Or was this based of other statistics such as 

AIC, BIC, or the “elbow method”? 

[9] Similar to point [8], the authors do not actually show that the GEF modelling is converging at 

5000 iterations. It is very likely that it is, but this should be stated. 

[10] The colour pallet for clusters is hard to follow at times. E.g. in figure 2 and 3, the authors use 

a large variety of red colours for the various CNV clusters – these are very difficult to see in 

subsequent panels, e.g. I cannot tell the different between the colour for clone E and F in Figure 

3d. 

[11] The results of the prostate tumour sample could implicate a poly-clonal seeding of tumors. 

Did the authors check to see if this patient carries a predisposition allele to prostate tumors or 

cancer? 

[12] The authors could provide more insights into application of their method to their own large 

datasets, e.g. https://doi.org/10.1038/s41551-020-0578-x. 

[13] Can authors say something about ERG on chr21 (seems amplified in clone C)? 

[14] The method for inferring CNVs doesn’t seem well described. Or am I mistaken and the 

authors only use the existing “inferCNV” tool to inferCNVs? 

[15] Github repo link doesn’t work. 

[16] GEF CNV profiles. In Ext Fig 3 the authors shows that the GEF harbour what looks like 

different CNV clones. However, I find this analysis lacking. It only compares the authors approach 

of GEFs and not more established methods such as clustering via Leiden/Louvain+SNN. Also, the 

authors could further look into sub-clustering of gene expression of e.g. GEF10 to see if these can 

indeed be separated at gene expression level. Likewise, the authors do not elaborate on how 

different GEF17 and GEF7 are w.r.t. transcriptional profile given their similarity at the CNV level. 

# Line specific issues [Page 1, Line 2 = P1L2] 

[P2L2] Page 2 Line 2 (P2L2). Should this rather be “polymorphisms” that are inherited rather that 

“alterations”? 

[P2L3] How sure are we that somatic mutations are only in a small fraction of cells? Wouldn’t a 

somatic mutation in the early stages of development be present in many cells? Uniparental 

disomy? Perhaps the wording should be re-evaluated by the authors. 

[P2L5] Somatic alterations can also happen in normal tissue. 

[P2L6] Perhaps add some references? 

[P2L11] Is spatial transcriptomics a “genome-wide” methodology? By extensions, I would find it 

hard to say that a gene-expression microarray is also “genome-wide” – genomes contain mainly 

more features than genes, including regulatory elements, repeats, centromeres, telomeres, etc. 

[P2L14] Missing space in between “infer” and “CNV” 

[P2L16] This is hard to follow. “inferCNV” is not actually introduced as a new method. Also see 

pints [P2L14] and [6]. 

[P2L18] The use of “successful” is questionable without statistical support. While the 

reconstructions seem OK, it is not perfect, e.g. Ext fig 1e has clone “E” in the wrong clade. Support 

with statistics such as RF score, Matching Split Distance, etc. The R package TreeDist 



(https://github.com/ms609/TreeDist/) implements a few useful metrics. This should also be 

compared to some of the other existing tools – see point [2]. 

[P3L5-6] The authors should mention that the samples was resected from a prostate tumour 

patient. 

[P3L11] Erroneous space in between 21 and 000. 

[P3L14] “GEFs” is not a well established term, so perhaps a citation would be useful. 

[P3L19-20] The authors refer to these interesting regions in 3 different ways in the text. On 

P3L19-20 they are regions with “increased iCNV activity”, on P4L3 they are “seven key regions”, 

and on P4L20 they are described as “regions of interest”. This should be consistent. 

[P3L21] I believed the authors want to say that “iCNVs could be used to distinguish this 

regions,…”. 

[P4L5] Erroneous space in between 30 and 000. 

[P4L7-8] Would it flow better if the authors describe the pathology annotation of spots when the 

Visium experiment is first described, e.g. at the end of P4L3. 

[P4L8] Perhaps “investigating clonal relationships” could be more precisely termed as clonal 

evolution patterns? 

[P4L19-20] Perhaps this could be better illustrated using a Sankey Flow plot of GEFs to CNV 

clusters. 

[P4L21] Do you mean a “phylogenetic tree”? Did the authors “construct” or “compute” this tree? 

[P6L8-9] Can the authors relate these CNVs to oncogenes and tumour suppressor genes that have 

been described (e.g. PTEN and MYC). 

[P7L14] Should “low grade cancer” rather be “benign tumour”, or “low grade tumour“? In some 

models, such as the Vogelstein CRC progression model, it is only a late loss of TP53 that is the 

“carcinogenic” transformation from the adenoma (which would already be harbouring a loss of 

chr18 with SMAD2/4). 

[P10L5] Is this consistent with P7L14? 

[P10L6-8] Haven’t there been studies of normal oesophageal tissue which show the same thing? 

# Figures 

[Fig1f] Is it worrying that the tumour associated GEFs are not distinct from the “normal” GEFs? 

[Fig2a etc] Scale is not consistent with “CNV state” in Extd Fig2. 

[Fig4g] missing prostate. 

[Ext Fig1a] the dendrogram can be flipped to align better between iCNV and WGS-Ginko. E.g. the 

green and blue parts of the dendogram for iCNV can be flipped with no change in interpretation. 

[Ext Fig2b] Why is the normal state set at “1” and not “2” for diploid? Does 0 indicate loss of 1 

copy or 2 copy? 

[Ext Fig2d,e] Perhaps using a seriation algorithm would make the 2 panels more comparable. 

[Fig 3e] Low resolution. Does the centromere control of chr8 duplicate in clone C, but get lost in 

clone G? Is this expected? Figure 3A doesn’t seem to imply that there should be centromere 

amplification in chr8.



Author Rebuttals to Initial Comments: 

Editor Comment (Michelle Trenkmann, Senior Editor; ) 

Michelle Trenkmann, Senior Editor, Biology, London
Education: Advanced degree in Biochemistry, University of Leipzig; PhD in Molecular Biology, University of Zurich; postdoctoral work, 
University College Dublin. 

Areas of responsibility include: genetics, genomics and molecular evolution. 

michelle.trenkmann#nature.com* 

Your manuscript entitled "The spatial landscape of clonal somatic mutations in benign and malignant tissue" has now been 

seen by 3 referees, whose comments are attached below. While they find your work of potential interest, as do we, they 

have raised important concerns that in our view need to be addressed before we can consider publication in Nature. 

We note that the referees have set quite a high bar for the revisions but we do agree with them that a rewrite and 

refocusing (as per reviewers #1 and #3) as well as validation of findings (all referees) and making better use of the data 

(that is, explore them better for more in-depth biological insight; referees #1 and #3) will be required for further 

consideration in Nature. 

Should further experimental data and or analyses allow you to address these criticisms, we would be happy to consider a 

revised manuscript (unless something similar has been accepted at Nature or appeared elsewhere in the meantime). 

However, please bear in mind that we will be reluctant to approach the referees again in the absence of major revisions. 

Thank you for these editorial comments. As above, we have addressed the reviewers comments by performing 

new experiments and undertaking additional data analysis and we are delighted to describe these major 

revisions in detail below.  

All references to page and lines are from the manuscript file containing tracked changes. 

Referee #1: somatic evolution 

Referee #2: prostate cancer genomics 

Referee #3: spatial transcriptomics 

Referee #1 (Remarks to the Author): 

Erickson, Berglund et al present a study of the spatial distribution of genome-wide copy number variation in many regions 

from both benign and malignant tissue, in a total of ~120,000 spots. The main organ sampled is the prostate (n=2, ~88,000 

spots), but regions from a lymph node, skin, medulloblastoma, adult glioblastoma and ductal breast cancer are also 

subjected to spatial transcriptomics. Based on inferred copy number variants from the transcriptomic data, regions with 

CNVs are then assigned to clones and ordered into phylogenies. In prostate and skin, these clones are focused on regions 

with histological abnormalities, but are also present in benign cells. Together, this data shows the presence of genetically 

abnormal clones that seem to act as precursors to full-blown cancer, or that arise in parallel.  



While I think the data and the observations made here are of interest and importance to the field, I believe the analysis of 

the data could be expanded to provide more biological insights. In addition, I have some methodological concerns with the 

correctness of the phylogenies derived from the CNV profiles. I have detailed my comments below. 

We thank the reviewer for their engagement with our manuscript and for providing such a detailed critique. 

We have endeavoured to respond to each comment in turn including additional analyses and changes to the 

text where indicated. Original reviewer comments are in black with our responses in blue. Where we mention 

pages & lines we are specifically referencing the tracked changes version of the manuscript. 

1. I believe the title of the paper promises more than is achieved in the paper. While CNVs are an important category of 

somatic mutations, they are far from the only one. Single nucleotide variants, insertions, deletions and structural variants 

each play crucial roles in somatic evolution. None of these have been (or can be adequately) derived from the 

transcriptomic data. Therefore, I would suggest rephrasing the “landscape of clonal somatic mutations” from the title to 

reflect this limitation. 

We acknowledge that the reference to “somatic mutations” was overly broad given the original focus on copy 

number variants. As prompted by the reviewer, we have actually now included a single nucleotide variant 

analysis of spatial transcriptomics data to complement the presented CNV data as prior studies have shown 

that it is possible to identify SNVs from single cell RNA sequencing data (Schnepp et al, 

doi.org/10.1093/hmg/ddz207; Liu et al, doi.org/10.1186/s13059-019-1863-4). Our SNV analysis is based on the 

work by Petti et al, doi.org/10.1038/s41467-019-11591-1 demonstrating the possibility to identify mutations in 

single cell RNAseq data (please see Reviewer 1, comment 6) . We have therefore left the title unchanged, with 

the inclusion of the new SNV analysis into the revised manuscript (please see page 7, lines 16-20), but would, 

of course, still be happy to amend the title if requested by the reviewer/editorial team.

2. The observation that clones carrying CNVs are comprised of benign cells adds to the research emerging over the past 

few years that many “normal” cells carry genomic alterations that have been associated with cancers, such as driver 

mutations, sometimes even representing precursor lesions. Since these studies rely on DNA sequencing rather than 

transcriptomics, they cannot shed light on whether these premalignant cells exhibit a different behaviour compared to 

their unmutated counterparts. Rather than simply showing the existence of benign clones with CNVs, the transcriptomic 

data used here should allow for an assessment of functional differences between benign clones with and without CNVs, or 

between those belonging to different clones with different sets of CNVs. Do benign cells with CNVs already show 

expressional features of malignant cells? Presumably, given that some clones differ by only a few CNVs, would it be 

possible to directly assess the effect of those CNVs on the transcriptome (besides the obvious dosage effect on the 

genomic region affected by the CNV)? These are just a few ideas, but I believe there are interesting biological angles to the 

data that have remained unexplored. 

As requested by the reviewer we have now undertaken an assessment of gene expression in order to assess 

the functional differences between benign (clone A), altered benign (clone C) and tumour clones (clones E, F 

and G). We performed differential gene expression of the clones presented in Figure 3, identifying 

differentially expressed genes (DEG) as outlined below. 

https://doi.org/10.1093/hmg/ddz207
https://doi.org/10.1186/s13059-019-1863-4


In particular, we observed that the gene expression profile of Clone C (benign but copy number altered cells) 

displays a broadly similar expression status when compared to the histological transformed clones E, F and G, 

including for example altered expression of genes normally thought to be specifically linked to malignant 

transformation (e.g. reduced expression of MSMB, increased expression of GDF15).  

We compared individually each of altered benign Clone C, and tumour clones E-G with normal benign clone A 

and observed that the top hallmark GSEA Gene Ontology was MYC signaling. 



We include some additional biological observations centred on similarities and differences in undertaking DEG 

analysis for ‘altered benign’ Clone C and ‘malignant’ Clones E-G compared to ‘normal’ diploid Clone A. We note 

that malignant-only genes point towards a settled phenotype that has overcome intrinsic and extrinsic 

stresses. By contrast, ‘altered benign’ only genes point towards a high energy, high protein folding phenotype 

that is trying to overcome intrinsic and extrinsic stresses. Altered benign display reduced AR signaling (using a 

published AR activity signature; Bluemn et al; doi: 10.1016/j.ccell.2017.09.003). We believe that Clone C may 

be a pre-cancerous state that, if it survives extrinsic and intrinsic stresses, may become cancerous. 

We have added a whole new subsection on the above in the results (page 7, lines 21-22 and page 8, lines 1-

13), a subsection in the methods (page 33, lines 10-20), as well as in the discussion (page 12, lines 8-11). We 

have added a new Extended Data Figure 7 and Supplementary Table 5 to the manuscript as well as the 

individual DEG analyses (including raw DEG lists and GO terms) to Mendeley for others to further analyze the 

data. 

In terms of assessing direct effects, we feel it is important to note that our ability to assess the effect of 

specific CNVs on the transcriptome is limited by the fact that the CNV calls have been generated from the 

same data. We are therefore keen to avoid a logical fallacy on this point. We have therefore limited our 

observations on this to CNV-associated DEGs, identifying potential ‘drivers’ of phenotype such as c-Myc and 

others (listed in supplementary material in Mendeley, example below). 



3. While it is clear to me that some GEFs are associated with certain clones, I currently find their biological relevance 

somewhat unclear and wonder whether a more in-depth look at these GEFs will reveal interesting biology (in a similar way 

as highlighted in the previous point). Is the difference in expression captured by the GEFs solely due to the CNVs that are 

carried by those clones? 

Thank you for highlighting this. GEFs represent transcriptional programs in a spot, or groups of spots, and are 

identified by a factorisation approach (as reported previously Berglund et al, doi: 10.1038/s41467-018-04724-

5). They are broadly linked to histological landmarks but the presence of multiple GEFs in tumor regions, 

represents expected prostate tumor heterogeneity. Interestingly the GEF analysis was a starting point for us in 

trying to delineate clonal boundaries. In the previous version of the manuscript we demonstrated the spatial 

relationship of GEFs to siCNVs (Ext Data Fig 3). This visualization highlights CNV heterogeneity within the GEFs 

(see particularly, the single GEF 10 with multiple inferred CNV clones Extended Data Figure 3e, reproduced 

here for the reviewer). To further outline the relationship between GEFs and tumor clones we have now 

included a Sankey Flow plot (Ext Data Fig 3f). This plot demonstrates that certain GEFs have a single 

relationship to an inferred clone while other GEFs represent multiple clones. In contrast, spatially inferred CNV 

(siCNV) delivered broadly homogenous groupings, and we therefore moved to siCNV as a preferred strategy to 

delineate clone structure. For this reason, as prompted by the reviewer, we have focussed our biological 

differential gene expression interrogation on these clonal groupings (please see the response to comment 2). 

Nonetheless, we undertook further DEG analyses of GEFs 7 and 17  and found approximately n = 1800 DEGs, 

despite the similarity in iCNV profiles, and the DEG lists have been added to Mendeley (please also see 

response to reviewer 3, comment 16).  



4. The observation that both benign and malignant cells can be part of the same clone is interesting but begs the question 

of why some of these cells remain benign with identical CNV landscapes. Can the authors speculate on this?  

We certainly agree that this is interesting. Clonal status alone, and the mutational events that give 

rise to heritable clonal lineages at cell division do seem to be insufficient to deliver immediate 

phenotypic transformation. We believe our work generates interesting hypotheses regarding the 

environmental effect with, for example, the stromal niche or cross-talk between neighbouring 

clones, or indeed regarding the timing of events and how long is needed for morphological 

transformation to occur. Additionally, there could be other somatic events that we have not 

captured with ST, as mentioned by the reviewer in their first comment. 



In recognition of the biological significance of this finding, we have expanded the discussion to 

include a brief commentary on this page 12, lines 2-11. 

“It seems that clonal status alone, and the somatic events described here retained in heritable clonal 

lineages at cell division, are insufficient to deliver immediate phenotypic transformation. We believe 

our work generates interesting hypotheses regarding epigenetic determinism28 and the 

environmental effect with, for example, the stromal niche or cross-talk between neighbouring 

clones. Furthermore, questions remain about the timing of events and how long is needed for 

morphological transformation to occur. Expression analysis of these altered benign clones revealed 

changes consistent with enhanced phenotypic versatility suggesting that these cells may represent 

an intermediate state between benign and malignant cells - metabolically active as they try to 

survive the mutational burden they have acquired, prior to phenotypic transformation.” 

5. I have some serious concerns regarding the construction of the phylogenies from the iCNV data.  

• Extended Data Fig. 1a: While the samples in the right-hand phylogeny (derived from DNA) line up in the same way as the 

groups in the left-hand side (derived from RNA), the tree topology from the DNA-based phylogeny allows many more 

configurations due to the large multifurcation in the centre. This suggests that the RNA-based iCNV method groups 

samples into clones that do not seem to be fully supported by the DNA, contrary to what is said in the text. Instead of the 

current x-axis (which is unclear to me as to what it represents), a phylogeny is conventionally displayed with the axis 

beginning at the root of the tree and branch lengths reflecting the number of genetic events, such as the number of 

inferred acquired CNVs. It would be pertinent to show this corroboration as it underpins the methodology. 

We apologize to the reviewer that this was unclear; we used the results in Extended Fig 1 to test 

automatically obtaining clone calls from inferCNV outputs. We identified, as the reviewer has noted, 

that clone calling from “raw” inferCNV, while similar, does have discrepancies from the published 

results. This is why we developed our own tree building approach (used in Figures 2 and 3) with 

inferCNV pre-processing to identify clusters. Although performed manually, we consider this 

approach to be algorithmic as we follow a set of pre-defined criteria when constructing the trees to 

ensure consistency and reproducibility. We describe these in detail in the methods but have made 

this much clearer by noting the discrepancies between automated clone calling and published 

phylogenies on page 3, lines 1-2, and specifying a new method subheader “Manual, Algorithmic 

Tree Building from Pre-Processed inferCNV Data”, and numbering chronologically the relevant 

methods subsections (1. Clone Tree consensus siCNV event calling, 2. Clone Trees – Branch 

Lengths, and 3. Clone Trees – Clone Diameters), resulting in further changes on pages 29 and 30. 

Further, we have made access to the GitHub repository available (please see details in response to 

reviewer 3, comment 14) so that the reviewer may also view how the clustering is performed. In 

addition, we have made improvements to the Extended Data Fig 1 as also noted by reviewer 3, in 

comment “Ext Fig1a”.  

https://paperpile.com/c/Y2LcVo/NmWd


• Extended Data Fig. 1b/c: in a similar way to the previous point, the iCNV tree topologies in Extended Data Fig. 1b/c do not 

seem to mirror the ones from the published data correctly, but it is difficult to judge if the dendrogram is based on 

hierarchical clustering rather than a proper phylogeny. In b, one would expect the liver mets to coalesce with clone A 

before coalescing with clone I (etc.). Similar discrepancies are present in panel c. 

The reviewer's observation highlights where the trees suggested by the inferCNV package fail to capture 

relationships identified in DNA-based tree-construction. The dendrogram presented is based on 

hierarchical clustering performed by inferCNV. Hierarchical clustering in itself captures similarity between 

clusters through a distance metric, and does not reflect the sequential gain of genetic alterations that 

characterise cancer evolution. Therefore it is not surprising that the unprocessed inferCNV output 

performed sub-optimally. This motivated the development of our new approach detailed in response to 

the point above.

• The way in which the phylogenies in Figures 2 and 3 are constructed from the iCNV data is unclear to me and seems 

erroneous. For instance, all clones in Fig. 2 besides clone A share “6q_loss_2”, but this apparent shared event is completely 

absent from the tree topology. There are [sic] 

Thank you for the chance to elabourate on this. We followed examples in Gundem et al. 

(https://doi.org/10.1038/nature14347), and Woodcock et al. (https://doi.org/10.1038/s41467-020-

18843-5), where we selected a handful of informative copy-number changes to annotate the pattern 

detected in the clones. As mentioned above, we hope that our manual, algorithmic approach is 

made much clearer by changes in the manuscript on lines page 29, lines 7, 8, and 16 as well as page 

30, line 1. As mentioned in subsection “1. Clone Tree consensus siCNV event calling”, “Both HMM 

siCNVs, and manual interpretation of denoised outputs were used to identify putative subclonal 

CNVs. These were then merged in a final consensus set for building clone trees.” Regarding the 

specific CNVs underpinning the trees, we had previously included this information with 

accompanying detail in Supplementary Table 1 and 2. On prompting by this reviewer we have 

revised the tables to detail the events within Figures 2 and 3, within the clones, and including 

unobserved common ancestors, and in the branches. 

Here is a representative screenshot of the revised Supplementary Table 1. 



Regarding the specific example offered by the reviewer (“6q_loss_2”) we agree there are a small 

number of prolific changes that are present across a broad range of clones, the most striking of 

which is actually 16q_loss_1. Interestingly this is present in all tumour clones with the exception of 

the “low grade” ISUP Grade Group 1 clones in H1_2 (Ext Data Fig 5d). We wish to emphasise again 

that spatial proximity is an important component of our clonal selection algorithm. It is for this 

reason that the clone tree in Figure 2b has dotted lines separating the components of the clone tree 

that are overtly spatially disparate: H1_4, H1_5, H2_5 separate from H2_1 and from  H1_2). Though 

unlikely where multiple common features exist, it seems possible for one or two mutational events 

to occur sporadically in different parts of the prostate. We are not sufficiently confident, at this 

stage, to advocate intra-prostatic seeding/metastases. We do believe, however, that this is an 

exciting future avenue of research.  

• The methods section does not list a specific algorithm for tree building, which leads me to believe they were constructed 

manually. To sort out the discrepancies, it would be imperative to algorithmically build trees. Given the assumptions of 

shared CNVs likely denoting shared ancestry and CNVs generally not being lost once acquired, a maximum parsimony 

framework seems appropriate. If the data supports more than one phylogeny, it would be good to provide alternative 

solutions.  

We apologize for the lack of clarity. Although performed manually, this approach is algorithmic in 

the sense that we follow a set of pre-defined criteria (please see methods subsections; Manual, 

Algorithmic Tree Building from Pre-Processed inferCNV Data) when constructing the trees to ensure 

consistency and reproducibility, as described in the above response. We have made further edits to 

make this much more clear. 

Additionally, using the R package phangorn (https://github.com/KlausVigo/phangorn), we have 

performed an computational phylogenetic analysis of the clones in Figure 3, using inferCNV Hidden 

Markov Model clone-level inferences (n = 3324 genes) as the input to computationally generate a 



tree from iCNV gene level data. We present the following Maximum Parsimony Reconstruction as 

requested by the reviewer.  

The tree agrees with our manual-algorithmic approach (as observed in Figure 3, notably confirming 

that altered benign clone C is more similar to tumor clones E, F and G than benign clone A).

• Within the phylogenies, it would be good to annotate branches with the CNVs that occurred on them.   

We thank the reviewer for their suggestion. In early iterations of these panels, we did actually 

include this information, displayed in the clones, branches and common ancestors (please see the 

images below).  

However, after seeking advice, we realized that this made the trees hard to 

interpret. We opted for the simplified versions currently in the figures, 

however on prompting by this reviewer we now include revised clone specific 

tables as Supplementary Tables 1 and 2. 

In summary, we recognise the reviewers overarching concerns in this comment and hope that we 

have addressed each of the details of these concerns in turn. Specifically, with the novel emphasis, 

made possible by our approach, on spatial identification of clones as related groups of cells (as 

opposed to clones being simply related mutations, an approach commonly taken in bulk-sequenced 

studies) we believe the systematic manual approach we describe delivers the most informative 

presentation of clonal lineage.  



6. To see CNVs observed in different clones are due to shared ancestry rather than multiple, independent acquisitions of 

the same CNV, could the authors assess whether it is the same allele that is amplified/lost across all clones with those CNVs 

from SNPs in the transcriptomic data? In case there is a CNV violating the topology of the phylogeny, this might be proof of 

an independent acquisition.   

Thank you for this interesting question. We have now undertaken an allele-specific SNV analysis and 

are pleased to report that this does add granular detail as hypothesised by the reviewer.  

We have made the assumption that spots bearing the same collection of CNVs are more likely to be 

clonally or ancestrally related than to have acquired the same combination of CNVs by chance. But 

we acknowledge that single common CNVs could have arisen sporadically. We have therefore 

conducted additional single-nucleotide variant (SNV) analyses as recommended by the reviewer. It is 

important to note that the Visium RNAseq read lengths are limited to approximately 150-200bp at 

the 3’ end of each gene and we are therefore limited to identification of SNVs in a region of RNA 

corresponding to a short length DNA. 

We analyzed the Visium library for the clones in section H2_1, using cb_sniffer 

(https://github.com/sridnona/cb_sniffer) as published by Petti et al., 2019 (doi.org/10.1038/s41467-

019-11591-1). Cb_sniffer was designed for use with 10x Genomics Chromium single-cell RNA 

sequencing on 3’ libraries, sequenced at a depth of 200,000 reads per cell. As we’ve noted, Visium 

spots comprise 5-15 cells, and the libraries in section H2_1 were sequenced at a depth of 50,000 

reads/spot. 

We identified all variants, within any gene with an inferCNV Hidden-Markov Model-predicted 

alteration (5.4 million Variants, from n = 3,324 genes, with an iCNV in any clone), and called these 

variants using cb_sniffer. This output a total of n = 13,447,918 reads mapping the SNV loci, which 

corresponded to n = 573,781 unique candidate snv loci detected in any spot. Of these, n = 51,945 

SNVs had ”complete data” (at least 1 read in 1 clone spot for each clone, and we calculated clonal 

variant allele fractions (clonal VAF) for each variant, within each clone. We focused on genes altered 

in Chromosome 8, given that we could identify a clone with no predicted iCNV alteration (A), and 

shared CNVs in the other clones (8q amp). Filtering for candidate variants with at least 10 reads per 

clone, resulted in a dataset of n = 10,529 SNVs. Further filtering for candidate SNV loci in Chr8 

resulted in n = 925 candidates. Of these 96.2% (n = 890) had no differences in clonalVAF values 

between clones A and B (eg, all detected reads were both ref or alt allele for all clones). Given the 

sparse data, it is difficult to globally characterize, however, we highlight two examples that are 

relevant to the reviewer’s question: chr8 (143580183 and 99892049). 

We identified a candidate SNV locus from the gene EEF1D (Chr8: 143580183) with high quality data 

(reads covering the SNV loci were detected in >90% of spots). Gene EEF1D was predicted to be 

http://doi.org/10.1038/s41467-019-11591-1
http://doi.org/10.1038/s41467-019-11591-1


diploid by iCNV in benign clone A, whereas clones B-G were all detected to have an amplification. 

Clone A had a clonal VAF of 0.52, suggesting an even distribution of transcripts expressing both the 

alt and ref alleles. Clones B-G also had >90% spots having a detection of the candidate SNV locus, but 

had clonal VAF values of 0.27-0.36. This suggests at least single copy amplification in EEF1D that had 

the ref allele, resulting in a 2(ref):1(alt) ratio of transcripts. We include here a table summarizing the 

data  for the reviewers: 

We also identified another candidate SNV locus found in COX6C (chr8: 99892049) which diploid in 

clone A, but with predicted amplifications in clones B-G. In contrast to the previous example, the 

clonal VAF values increased to 0.63-0.72, suggesting at least a single copy gain of the gene 

containing the alt allele. 



We additionally performed a principal component analysis of the clonalVAF values for all clones A-G: 

clones B and D segregated separately, from clones A, C, E, F and G. Next, when subsetting the clonal 

VAF data for clones A, E, F and G alone, resulted in Clone A grouping separately from Clones C, E, F 

and G. 

We have added the following additional sentences on page 7, lines 16-20, as well as additional text 

in the methods (page 32, lines 21-23 and page 33, lines 1-9) regarding these SNV analyses. 

“In recognition that other somatic mutations could add value in discriminating clonal groupings, we 

undertook an analysis of transcribed (exonic) single-nucleotide variants (SNV) using cb_sniffer21. 

Analyses of the ratios of clonal variant allele fractions of both specific events with high coverage 

SNVs (exemplified by chr8:143580183 & 99892049) [Extended Data Fig. 7] support shared ancestry 

[Figure 3b].” 

In conclusion, while SNVs derived from spatial transcriptomics data are inherently sparse, the results 

support our phylogenetic clone trees. 

7. In Fig. 4 c/d, there seem to be many CNVs in stromal cells, some of which seem to be share with the squamous cell 

cancer, such as loss of 8q (in clones A, B and D), gain of 1q (A and B) and loss of 19q (A, D, possibly B). Intuitively, given that 

https://paperpile.com/c/Y2LcVo/EmZE


all these cells seem to share some CNVs, it could indicate all derive from a single cell that carried those CNVs. However, this 

seems to suggest a rather large clonal expansion traversing cell types. Is it likely these represent artefactual calls?  

We agree with this interesting observation in skin and have undertaken further FISH analysis to 

exclude the possibility of artefactual calls. 

We obtained gene-level, inferred CNV profiles as obtained by Hidden-Markov Models from inferCNV, 

for each clone A, B, C and D from the SCC sample in Figures 4 c/d. From these data, we identified a 

predicted deletion in EHD2 (Chr 19q) in all 4 clones, a predicted deletion in MYC (chromosome 8q) in 

clones A, B, and D, and a predicted amplification in CKS1B (chr 1q) in clones A, B, and C. These have 

been added as full panels to Extended Data Figure 12 (EHD2), and the other two have been added to 

Mendeley. 

We performed DNA FISH against these genes. We identified that iCNV correctly predicted ground 

truth CNV status in 91% (n = 11/12) regions. FISH results table as follows: 



In conclusion, we do not believe these to be due to artefactual calls in the iCNV data. However, we 

recognize that there may be some uncertainty in clones B and D (labeled as stroma). The histology in 

this specimen was annotated at multi-spot level: with the majority tissue histology being assigned to 

the clone label. The FISH results indicate that while the specific iCNVs are being detected in these 

clones, not all cells within the regions of interest are altered, and that admixed clonal lineages may 

be detected by our spot level analysis.  

We have added the following sentences regarding the FISH validation to the main manuscript on 

page 10, lines 2-5, and added accompanying methods text regarding the details of the two new FISH 

probes. 

“Additional validation of siCNV signals were confirmed by DNA FISH against 3 probes: chr1q gain 

(CKS1B), chr8q loss (MYC), and chr19q loss (EHD2) from consecutive sections of the SCC sample. We 



identified that siCNV correctly predicted CNV status in 91% (n = 11/12) spatial clonal regions (Fig 4d, 

Extended Data Fig. 12, Mendeley)” 

Some minor points: 

8. The introductory paragraph lacks references. 

We apologise for omitting these and have now included the following citations in support of our 

assertion in the second sentence of the introduction: Milholland et al 

https://www.nature.com/articles/ncomms15183; and for the third sentence of the introduction: 

Grossman et al (https://doi.org/10.1016/j.stem.2021.02.005), 

Chen et al (Cancer Res. 2002 Nov 15;62(22):6470-4) and 

Alvarado et al (DOI: 10.1158/0008-5472.CAN-05-0399). 

9. I believe using subheadings would increase the readability of the manuscript. 

Thank you for this suggestion (also highlighted by reviewer 3 in comment 5). We agree with both 

reviewers and have therefore added appropriate headings through the manuscript. 

10. Fig. 2a: Why do the cells assigned to clone J appear to have a CN profile much less noisy than cells belonging to other 

clones? Is the denoising specific to each clone? This seems to be the case for clone C in Fig. 4c as well 

Denoising is not specific to each clone, we have run inferCNV with default noise parameters as 

should be clarified by our shared GitHub repo (please see details in response to reviewer 3, 

comment 14), and from the original inferCNV documentation 

(https://github.com/broadinstitute/inferCNV/wiki/De-noising-Filters). We ran Seurat metrics to 

visualize the normalized counts and unique features for each clone. These results indicate that clone 

J has a much higher number of reads and unique features as compared to the other clones, 

indicating that increased read depth results in decreased noise in iCNV outputs. We would also like 

to note that Clone J is primarily located in one specific section (H2_5), a high grade cancer area on 

the lower right of the prostate. Due to higher cell density of high grade cancer we commonly see 

higher UMI counts with Visium in these areas. This specific section performed very well 

experimentally resulting in decreased noise after normalization. 

https://www.nature.com/articles/ncomms15183
https://doi.org/10.1016/j.stem.2021.02.005
https://github.com/broadinstitute/inferCNV/wiki/De-noising-Filters


11. On page 5, line 12: 16q is listed to be both gained and lost, which I think is an error.  

We thank the reviewer. The lines read as follows: “Using this approach, we observed a common 

ancestral clone (clone H, Fig. 2b) containing truncal events including CN loss on chr 6q and 16q, and 

CN gain on 12q and 16q”. We have reproduced below an image from Fig. 2b, with annotations 

highlighting the events in question in Clone H. Thus, we do observe a gain and loss on two separate 

16q regions and can confirm that this is not an error. 



12. I cannot find any clinical information on the patients, such as the age of the men whose prostates where sampled. Are 

the large clones in prostate due to advanced age of the men, at which point such benign clonal expansions might be 

expected?  

Prostate patient 1 was 82 years old, and prostate patient 2 was 63 years old. Both had reported 

Gleason Scores of 4+3 (ISUP Grade Group 3) at initial biopsy, and the prostatectomy pathology is as 

indicated in the paper (patient 1 = ISUP Grade Group 4; patient 2 = ISUP Grade Group 3). We have 

added these details to the manuscript materials and methods (page 21, lines 3-6). 

Regarding uncontrolled clonal expansion in older men, we are not aware of this eventuating in 

prostate cancer; indeed in our experience, the appearances of both prostates are consistent with the 

multifocal heterogeneity typically seen in men undergoing this surgery.  

Thank you very much for your engagement with our manuscript and extremely constructive 

comments. 

Referee #2 (Remarks to the Author): 

The broad goals of this study is to elucidate the development of cancer from benign tissue, improving our understanding of 

disease progression and enabling earlier diagnosis of cancer. Specifically, the authors have used spatial transcriptomics to 



infer genome-wide copy-number variations (CNV) in situ. Using the 10X Genomics Visium system, the authors 

comprehensively analyzed a full width axial section of two prostate specimens in addition to several other tumor types. 

The authors convincingly demonstrate their ability to resolve in situ transcriptomic data that represents highly localized 

subclonal populations within the prostate. Using their spatially defined transcriptomic data, the authors infer somatic copy 

number alterations as others have done with single cell data. The authors then used these inferred CNAs (iCNAs) to 

construct detailed phylogenies of tumor development with profound spatial resolution.  

One of the key findings of the manuscript is the discovery of 'benign' subpopulations of prostate cancer cells that 

nonetheless carry deleterious oncogenic iCNAs. Figure 3 demonstrates this finding for MYC amplification and PTEN loss in 

both 'benign' and tumor tissues. Additional strengths of this manuscript include the robust computational validation of 

iCNAs comparing with WGS and FISH data, and the demonstration of the complementary roles of transcriptomics, 

histopathology and iCNAs in resolving unique aspects of tumor heterogeneity. The use of multiple tumor types to support 

utility of the iCNA method in detecting alterations in benign tissue is also noteworthy. The study is well done and 

represents an important advance, although previous studies have documented oncogenic mutations in benign tissue. (E.g. 

PNAS 1996 doi: 10.1073/pnas.93.24.14025, Science 2015 doi: 10.1126/science.aaa6806, and Science 2019 doi: 

10.1126/science.aaw0726.  

Thank you to this reviewer for highlighting so effectively the key findings in our manuscript. We 

agree that the finding of “benign” clones with siCNVs normally presumed to be oncogenic is a key 

finding and, given this unexpected observation, our robust validation with both WGS and FISH is 

important. We would like to highlight for the reviewer that we have further validated these findings 

with additional FISH analysis of the skin samples (Figure 4 c/d) (please also see response to reviewer 

1, comment 7), as well as attempted targeted scDNAseq from one of our prostate specimens. We 

acknowledge the reviewer’s assistance in pointing out previous studies documenting mutations in 

benign tissue. We have now cited these in the paper (page 5, line 2) and note that these former 

studies, mainly based on bulk-sequencing of skin, point to the need for higher resolution studies able 

to interrogate the clonal relationship between these benign regions and cancer, a need specifically 

flagged in Yizhak et al’s commentary (10.1126/science.aaw0726). We feel that our siCNV method 

has delivered on this need.  

There are a few questions that need the attention of the authors as follows: 

1. One of the most striking findings of this study is that copy number alterations are evident in “benign” tissue as defined 

by two pathologists. Utilization of clinical stage markers e.g. AMACR/HMW cytokeratin staining could be helpful in further 

validating the ‘benign’ nature of these regions. 

We agree that it is critically important to validate the ‘benign’ nature of these regions. Indeed p63 

and AMACR stains were used in this process and we have now included these images in the 

Mendeley data attached to our paper. We have also highlighted this by adding a sentence in our 

methods, section “Pathologist Workflow – Spot-level annotation for prostate patient 1”. While every 

effort to determine the malignant potential of all tissue spots was made, including examining close 



sections with basal markers, spots which the pathologists could not confidently call or agree upon 

were excluded from the analysis.  

2. The authors’ speculation on page 7 line 21-23 that low-grade prostate cancer is fundamentally distinct from higher grade 

cancer, as opposed to being in an evolutionary continuum is overly strong considering that they present evidence from 

only two patients at a single point in time. Additionally, a more nuanced discussion of the translational relevance e.g. 

targeted treatment for subclones (p9 line 11-14), and contextualization in light of how this analysis might be implemented 

when most men undergo TURPs rather than open resection, are warranted. 

The finding that low grade cancer in our study lacks most of the siCNV events is very revealing but 

we accept that the global application of these findings will need further validation in greater 

numbers. We also accept that the speculation that this explains the lack of progression of low grade 

cancer compared to higher grade disease would be strengthened by future studies sampling clones 

repeatedly over time. Nonetheless, we do believe there is precedent for drawing chronological 

implications from snapshot studies  (e.g. DOI: 10.1038/nature14347; 

http://doi.org/10.1038/ng.3221; DOI: 10.1038/ncomms7605 ) but accept the linear sampling and 

long-term clinical outcomes are needed to provide definitive proof on this.  

In terms of the translational relevance of these findings, we have nuanced our discussion as 

requested by the reviewer including the following statement on page 11, lines 4-6: “Such targeted 

approaches could include a more intelligent rationale for focal therapy or, for systemic therapy, 

could be particularly valuable if such clones could be identified by ‘liquid biopsy’”. We have also 

made a small adjustment to our concluding comment. Most men who are treated surgically for 

prostate cancer undergo radical prostatectomy, although, as the reviewer points out, TURP, HoLEP 

or one of the other bladder outflow modalities are more commonly used to treat benign 

enlargement of the prostate. These operations are often useful sources of benign material but can 

be less reliable in sampling malignant tissue. We feel that our findings do have profound implications 

for any partial gland treatment (e.g. HIFU, VTP, electroporation) as we have demonstrated that 

treating the histologically transformed ‘high grade’ lesion alone could miss areas of ‘genotypic 

transformation’ in histological ‘benign’ areas of the prostate.  

Thank you to the reviewer for prompting these important additions.  

Referee #3 (Remarks to the Author): 

I have reviewed the manuscript presented by Erickson and colleagues in which they present the application of inferred CNV 

profiles at 55um spatial resolution in various normal, benign and tumorous tissues. The authors present results of an 

algorithm which infers the CNV profiles from ST/Visium data, which is demonstrated on a synthetic in silico dataset, 

https://doi.org/10.1038/nature14347
https://doi.org/10.1038/nature14347
http://doi.org/10.1038/ng.3221
https://doi.org/10.1038/ncomms7605


demonstrate its application to decipher heterogeneity in nearly a full planar section of a resected prostate, followed by 

demonstrating it on a number of other tissues. 

The application of spatial resolved transcriptomics (SRT) to decipher spatial genomic copy numbers accurately is exciting 

and much needed in the field. The results presented in the manuscript suggest that the authors can indeed do this. 

However, I feel that the focus of the paper lacks clarity and this in turns questions the novelty of tis paper. On the one 

hand, the paper reads like a methods paper, but the details of the computational methods are lacking so it becomes 

difficult to compare their approach to e.g. Kueckelhaus et al 2020 (https://doi.org/10.1101/2020.10.20.346544) who have 

also inferred CNVs from SRT data. The authors also do not compare their tool to a similar published tool called STARCH 

(https://doi.org/10.1088/1478-3975/abbe99). On the other hand, they describe the clonal CNV heterogeneity in multiple 

tumour types (including an impressive full slice of prostate tissue), however do not go into details of the biology nor 

extensively validate their ST/Visium findings using non-spatial single cell sequencing nor provide extensive comparisons 

between the inferred CNV and transcriptional landscape.  

Never-the-less, the paper is a good start to what could be a very good piece of work. I hope that with the following points I 

can describe some of my specific concerns. 

Thank you for positive comments and helpful critique of our paper. We have undertaken a number 

of further analyses to develop the paper as suggested here and hope that the reviewer agrees with 

us that these additions build on the ‘good start’ described above. We also want to apologise to this 

reviewer for not ensuring access to the computational methods of our manuscript. These were 

included in a GitHub page (please see details in response to comment 14) as well as a linked 

Mendeley resource which we provided in our cover letter alongside our submission but we believe 

that it was not possible for this reviewer to access these resources. Please accept our apologies for 

this. 

Original reviewer comments are in black with our responses in blue. Where we mention pages & 

lines we are specifically referencing the tracked changes version of the manuscript. 

# Major 

[1] Focus of the paper. Is this a methods paper, or a biology paper? The title and abstract point to the biology of the 

prostate cross section, but the start and end of the paper focus on the methodological aspect. Given that the concept of 

calling CNVs from ST/Visium data has already been described and demonstrated by others, I would recommend focusing 

more on the biological results. 

Thank you to the reviewer for highlighting the biologically interesting aspects of our paper and for 

this critical feedback regarding the presentation of the manuscript in terms of the balance between 

biology and methodology. Although we have left the title unchanged, we have made substantial 

additions to the manuscript in both results (page 7, lines 21-22, and page 8, lines 1 - 13) and 

discussion (page 12, lines 3-12) to further emphasize the biological results as suggested by the 

https://doi.org/10.1101/2020.10.20.346544
https://doi.org/10.1088/1478-3975/abbe99


referee. This was also highlighted by Reviewer 1 and we have undertaken further biological analyses 

as outlined in response to Reviewer 1 (Comments 2, 4, 6, 7) and below (comment 4.1 & 16).  

[2] Novelty of inferring CNVs. Inference of spatial CNV profiles has already been described by Kueckelhaus et al 2020 

(https://doi.org/10.1101/2020.10.20.346544) where they used inferCNV to infer CNVs, Lu et al 2021 

(https://doi.org/10.1186/s13058-021-01451-6) where they use LCM and bulk WGS+RNAseq. I believe that the only 

published computational tool that infers CNVs from ST/Visium data is STARCH, presented by Elyanow and colleagues 

(https://doi.org/10.1088/1478-3975/abbe99) in 2021 with initial commits to their GitHub repo made in May 2020. Given 

the concept of applying scRNAseq CNV inferences tools to ST data has already been described and that a method for 

inferring CNVs from ST data exists, I believe that the authors should try to go to the same lengths as Elyanow and 

colleagues in demonstration and benchmarking of their computational approach. Elyanow also present pretty much the 

same 1D-to-2D synthetic in silico tissue benchmark. It would suggests that the comparison include performance of 

inferCNV as described by Kueckelhaus et al, similarly using CopyKat (Gao et al https://doi.org/10.1038/s41587-020-00795-

2), and also perhaps considering also the simulated spatial data from scRNAseq as demonstrated in STARCH. 

Thank you for flagging these relevant papers. We agree that the in silico / synthetic approach used 

by Elyanow et al (Phys Biol, 2021) is a helpful way of validating spatial inferred CNVs and comparing 

approaches. Our Extended Data Figure 2 includes a similar validation of our siCNV approach acting as 

an in silico sanity check or ‘benchmark’ as the reviewer suggests. We want to emphasise that, similar 

to the preprinted work from Kueckelhaus et al, we have taken the single-cell inferCNV tool (Patel et 

al) and applied it to spatial data to derive our siCNV approach (see Extended Data fig 2, page 7, line 

29 through page 8, line 4); and response to comment 14 below). In summary, while we have 

developed a novel algorithm to cluster inferCNV outputs and permit spatial visualisation of the 

resultant clones, we have not developed a new CNV inference method. Given that this is the case, 

we did not consider it necessary to re-benchmark inferCNV. However, in our selection of this tool we 

did look at other methods, including STARCH (Elyanow et al) and CopyKate (Gao et al) before 

selection of inferCNV. This included running STARCH alongside inferCNV during our in-silico work-up, 

but not CopyKat which requires human gene names/ENSMBLID- annotated matrices for input while 

our synthetic data approach uses an artificial genome. 

https://doi.org/10.1101/2020.10.20.346544
https://doi.org/10.1186/s13058-021-01451-6
https://doi.org/10.1088/1478-3975/abbe99
https://doi.org/10.1038/s41587-020-00795-2
https://doi.org/10.1038/s41587-020-00795-2


As shown, STARCH was only able to identify one of the two synthesised clones. By contrast, inferCNV 

faithfully recapitulated both ‘ground truth’ clones (Extended Data Fig. 2b,d,e).  

We also ran CopyKat and STARCH on section H2_1 (from Figure 3) and the results broadly 

corroborate our siCNV findings: 

Having selected inferCNV, we have gone to quite some length to validate the siCNV findings, 

benchmarking against in situ visualisation of copy number (FISH) as well as DNA sequencing (WGS), 

and with the further approaches recommended by the reviewer in their next point. 

[3] Validation of the inferred CNV profiles. While the authors do indeed validate the MYC and PTEN CNAs via FISH, and 

validate the CNV calling on matched scRNAseq+scDNAseq data, they do not extensively validate their results from spatial 

data. I believe that validation via single cell DNA sequencing of at least one heterogeneous section of the prostate tissue 

should be provided. If this is not possible, then the authors should try to source a similarly heterogeneous piece of tissue to 

profile using Visium and scDNAseq.  

We identified two commercially available single cell DNAseq technologies: 10x Chromium Genome 

and Exome from 10x Genomics and Tapestri from MissionBio. 10x Genomics, however, have 

discontinued selling the 10x Chromium Genome and Exome reagents as of June 2020 

(https://www.10xgenomics.com/products/linked-reads). We identified two samples with publicly 

available data, and enquired if 10x Genomics would have the specimens retained for spatial 

transcriptomics experiments: however, while the fresh frozen samples were retained, the QC of the 

specimens indicated that they were not suitable for Visium due to degraded RNA 

(https://pages.10xgenomics.com/rs/446-PBO-

704/images/10x_AN026_SCCNV_Assessing_Tumor%20Heterogeneity_digital.pdf, Figure 3) and poor 

morphology. 

https://pages.10xgenomics.com/rs/446-PBO-704/images/10x_AN026_SCCNV_Assessing_Tumor%20Heterogeneity_digital.pdf
https://pages.10xgenomics.com/rs/446-PBO-704/images/10x_AN026_SCCNV_Assessing_Tumor%20Heterogeneity_digital.pdf


We then turned to the single cell/nuclei Tapestri platform from MissionBio 

(https://missionbio.com/products/platform/). Given that most studies applying this technology have 

analyzed dissociated cells (specifically from hematological malignancies) we explored multiple ways 

to extract nuclei from frozen tissue sections. We first tried to work with neighbouring sections from 

prostate patient 1, section H2_1 (featured in Figure 3) however, unfortunately, these were cut-

through to the point where no relevant clonal heterogeneity remained. As suggested by the 

reviewer, we therefore selected another suitable heterogenous section from prostate patient 1: 

section H1_4, featured in Figure 2. We assayed this using the MissionBio Tumor Hotspot Panel (THP) 

using extracted nuclei, which harbors 234 amplicons, ranging in size from approx 175-275 bp, 

covering 59 tumor genes. After running the default Tapestri Pipeline on the resultant FASTQ files, 

13.07% of DNA read pairs were assigned to cells, resulting in a data set of n= 5,436 cells. Next, we 

performed quality control on the amplicons: after quality controlling for low performing amplicons, 

amplicons with low uniformity, amplicons with > 2* standard deviation Gini score, and amplicons 

with a median count less than 0, a total of n = 144 amplicons , remained from n = 39 genes (after 

filtering, range: 1-12 amplicons per gene: MissionBio recommends a minimum 15 genes per amplicon to 

robustly call CNV regions).  

Tapestri has documentation for calling ploidy to identify copy number variation, but requires a set of 

known diploid cells to be set as a diploid reference. In consultation with MissionBio technical 

personnel, we were unable to identify any SNVs that could be used to distinguish a diploid 

population. We thus applied unsupervised learning techniques (method='graph-community', k=10) 

to the normalized count data from all cells, resulting in n = 69 clusters. These are broadly grouped 

into 2 large groups when visualized by UMAP (pictured below). 

Upon visual inspection of the normalized count data for the groups, we were able to further merge 

these into n = 8 groups harboring similar normalized count profiles. Under the assumption that 

diploid cells would have the most genotypic homogeneity, we identified one large group, comprising 

n = 4,096 cells, to be a possible diploid population. As assessed visually by heatmap, two other 

groups harbored nearly identical normalized count profiles as the possible wild type group, but these 

groups had elevated counts in the THP_v2_EGFR_55221702 amplicon (n = 297 cells) and 



THP_v2_ERBB3_56478798 amplicon (n = 223 cells) respectively, and were thus filtered as outliers 

based on elevated counts. Lastly, an outlier group of < 0.8% cells (n = 11) were filtered. This resulted 

in a final data set for analysis of 4 groups with a total of n = 809 cells.  

Of the amplicon data, none of the genes of interest within Tumor Hotspot Panel (THP) met the 15 

amplicon per gene criteria to robustly call CNVs. Nonetheless, we identified that PTEN (n = 5 

amplicons) was called as diploid in all groups 1 - 4, which is consistent with our iCNV findings for this 

section H1_4 (Fig 2, Clones E-K), as well as PTEN FISH results (previously unreported) from section 

H1_4, which we now include below: 

[Legend: Representative images taken from different regions of section H1_4 (red probe = PTEN; green probe = Chr10 

centromere control). PTEN was diploid, across the different histologies from section H1_4] 

In order to further address the reviewer's request to spatially validate our findings at DNA level, we 

also performed further DNA FISH experiments against additional targets in the squamous cell 

carcinoma specimen (Figure 4; please also see response to Reviewer 1, comment 7). We reproduce 

the summary table here: 

We now include additional text in the results (page 10, lines 2-5) as follows: “Additional validation of 

siCNV signals were confirmed by DNA FISH against 3 probes: chr1 gain (CKS1B), chr8 loss (MYC), and 

chr19 loss (EHD2) from consecutive sections of the SCC sample. We identified that siCNV correctly 

predicted CNV status in 91% (n = 11/12) spatial clonal regions (Fig 4d, Extended Data Fig. 12, 

Mendeley)” 



In summary, we believe these several additional validations have been useful and have provided 

helpful additions to our manuscript. However, our work to address the reviewer's comment have 

further highlighted the shortcomings in applying the latest available single cell technologies, which 

inherently lose spatial tissue context through dissociation, to address questions of histological and 

genomic heterogeneity.  

[4] Integration of scRNAseq.  

[4.1] The authors seems to be missing in depth description of the consistency and differences of gene expression profiles 

with the inferred CNV patterns. One would assume that these should be similar, but the extent of this is not described.

Thank you for highlighting this and we agree that differential gene expression analyses between 

siCNV clones are missing. We have therefore undertaken a DEG analysis of CNV derived clones from 

section H2_1 (please see response to reviewer 1, comments 2 and 3). We have included a new figure 

on this (Extended Data Figure 8) and provided additional comment in the manuscript results (page 7, 

line 21-22 and page 8, line 1-13) and discussion (page 12, line 8-11). 

Having established the clonal sub-groups in this heterogeneous section of prostate tissue, we used 

differential expression analysis to investigate potential functional alterations unique to these cellular 

groups. Focussing on Clone C, altered benign cells, we observed an upregulation of Myc activity 

(Extended Data Fig. 8, panel c) as well as pathways responsible for phenotypic versatility22 (Extended 

Data Fig 8, panel b) when compared to diploid benign cells (Clone A). Furthermore, there was a 

down-regulation of conventional androgen receptor (AR) target genes (e.g. KLK2, KLK3, FKBP5, 

NKX3-1) raising the hypothesis of a reduced (or altered) dependence on AR regulation in these 

cells23. We also investigated the distinction between Clone C and clones containing histological 

transformed cells (Clones E-G). We saw reduced MSMB and increased GDF15 expression in both 

groups (Extended Data Fig 8, panel a, d), which are normally thought to be pathognomonic of 

malignant transformed cells20,24. When analysing differentially expressed genes only found in altered 

benign cells, we observed an enrichment for genes associated with oxidative phosphorylation and 

mitochondrial energy metabolism as well as protein stabilisation (Supplementary table 5), consistent 

with cells trying to cope with extrinsic and intrinsic stress.” 

[4.2] The “normal” tissue for the CNV inferences should ideally be the cell type that is the cell of origin of the tumour, 

however this basic analysis is ignored. 

Thank you for this comment. We think the reviewer is specifically referring to Figures 2 and Figure 3. 

We used the consensus pathology defined, histologically benign spots, composed of copy-number 

neutral populations, as the reference sets for these analyses. We want to emphasise that the 

selection of benign references focuses exclusively on epithelial cells, to ensure cell type consistency. 

To make this clear, in line with the reviewer’s comment, we have edited the methods subsection 

“Selection of Benign References”, on page 27, line 15, to add the words “luminal epithelial” as 

follows: “We first performed 15 an unsupervised analysis of only the benign luminal epithelial 

https://paperpile.com/c/Y2LcVo/Djzb
https://paperpile.com/c/Y2LcVo/Guxj
https://paperpile.com/c/Y2LcVo/C4EN+xEAl


reference cells”. For the SCC sample in Figure 4, we used patient matched, scRNAseq data from 

normal skin, as detailed in the first two sentences of section “SpatialInferCNV Parameters (Fig. 4)” on 

(page 30, lines 6-8). 

[4.3] The authors do not consider that spots could contain a mixture of tumour and normal cells, e.g. TILs. This is a concept 

that a number of co-authors should be familiar with. It would be nice to see if the authors can also consider the tumour cell 

content of spots in the their model using supervised decomposition methods (for samples with matched Visium and 

scRNAseq data) or de novo deconvolution methods (if such tools are accurate). Alternative, the authors could try to 

segment DAPI stained slides and perhaps use this to model the number of cells within a spot to assist with deconvolution. 

At the very least this should be demonstrated on one the heterogeneous prostate cancer slide H1_4. 

We do not have access to, and are not aware of, any ground truth scRNAseq dataset with single cells 

annotated for tumor or benign from primary prostate cancer. The definition of tumor, in primary 

prostate cancer, is spatially defined based on morphology 

(https://www.nature.com/articles/3800054; https://pubmed.ncbi.nlm.nih.gov/5948714/), and the 

presence or absence of basal cells within glands (absence = tumor). 

Karthaus et al. [Science, 2020; doi: 10.1126/science.aay0267] generated scRNAseq data from 

patients with primary prostate cancers. In their work, they attempted to distinguish benign cells 

from tumor, and were unable to do so using scRNAseq alone, and used inferCNV instead [Fig S16-

18]. These results suggest that it is extremely hard to distinguish malignant primary prostate cells 

from non-malignant cells using expression from scRNAseq alone. These results are also highlighted 

in the Sankey Flow plots of GEF to Clone, and SeuratClusters to Clone, added in our response to 

reviewer 1, comment 3 and below to comment 16. We are not aware of any ground truth datasets 

which accurately distinguish tumor from benign, in primary prostate cancer, using supervised 

decomposition methods.  

Nonetheless, we have found datasets [Henry et al; doi: 10.1016/j.celrep.2018.11.086], where the 

authors manually sorted cells within non-tumorous primary prostates for scRNAseq. The authors 

were able to successfully sort basal cells, luminal cells, and stromal cells. We therefore applied 

Stereoscope [Andersson et al; doi.org/10.1038/s42003-020-01247-y.], a supervised decomposition 

method, using the input data from Henry et al., to section H1_4 (image below). We would like to 

note that approximately 80% of UMIs from Henry et al. mapped to annotations, and we have 

therefore refined the set to only those with a confirmed annotation. Here are the Stereoscope 

results, which we have also included in Mendeley. 

https://www.nature.com/articles/3800054
https://pubmed.ncbi.nlm.nih.gov/5948714/
https://doi.org/10.1038/s42003-020-01247-y




Luminal epithelial cell expression is primarily elevated in spots annotated by pathologists as Benign, 

GG2, and GG4 (all of which are luminal epithelial cell populations). Fibroblast and smooth muscle 

expression is primarily elevated in spots annotated as Stroma. Interestingly, neuroendocrine (NE) 

expression is elevated primarily in the GG4 regions, potentially suggesting potential neuro-endocrine 

differentiation. Basal cell expression is sparse/diffuse: basal cells line luminal epithelial glands, and 

loss of this layer is a key distinguishing factor in whether a prostate gland is benign or tumor: we do 

not observe significant basal cell expression. This is not entirely unexpected, given that as noted by 

the reviewer, Visium spots comprise a mixed population of cells, and basal cells are proportionately 

less present than luminal epithelial cells. Endothelial cells are typically observed in prostate histology 

as part of blood vessels, and there were no annotations of distinct blood vessels in our data. 

Leukocyte expression was detected across the tissue, whereas only n = 8 spots of “chronic 

inflammation” were detected. Finally, Hillock and Club cell expression was primarily detected in 

regions of benign and GG2, with some expression being detected in GG4. 

# Minor 

[5] The manuscript would benefit from subheadings that separate out results sub sections and the discussion 

Thank you for this suggestion, which was also identified by reviewer 1 in comment 9. We agree with 

both reviewers that subheadings would make it easier for the reader. We have therefore added 

appropriate headings through the manuscript.  

[6] The use of the term “inferCNV” in the manuscript is inappropriate given that there is another method called inferCNV… 

even more so considering that the authors also refer specifically to this tool in their manuscript. 

We apologise for our lack of clarity on this. As stated in our methods and main text (page 29, line 7 

through page 30, line 4) we have taken the inferCNV code designed for scRNAseq and adapted this 

to the spatial context. We have a GitHub repository outlining the use of inferCNV as a key 

dependency (Patel et al.), but apologize that access was not ensured for the reviewer, and now have 

made the repository available (please see details in response to comment 14).  We now call this 

siCNV (spatially-inferred CNV). To help make this as clear as possible we have now ensured that 

whenever “inferCNV” is stated the citation is included.  

[7] CNV as a term is synonymous with polymorphic variants, but the term CNA (CN-alteration or CN-aberration) is more 

common for cancer genomics. Alternatively, the authors can use the term “somatic CNVs”. 

This is interesting and we certainly see where the reviewer is coming from. We do agree that it is 

important to differentiate, where possible, between population polymorphisms and individual 



somatic mutations. And that, therefore, the distinction between SNV/CNV and SNA/CNA can be 

helpful. We also note that this distinction is often ignored in the field. We are happy to take 

guidance on this from the reviewer / editorial team. We have left “inferCNV” unchanged in order not 

to confuse given that this is a published algorithm by that name.  

[8] The choice of T for the GEF analysis was not rationalised. Was this an informed choice based on a factorisation metric 

such as silhouette or FN? Or was this based of other statistics such as AIC, BIC, or the “elbow method”? 

The factor analysis uses Bayesian shrinkage to avoid overfitting the expression factors. Notably, 

when extraneous factors are included, their inferred baseline expression levels will be very low. 

Thus, extraneous factors do not worsen model fit but may make results less interpretable by, for 

example, introducing noise in visualizations. To accommodate for this fact, we initially overspecified 

the number of expression factors and then reran the analysis with the number of factors appropriate 

for our data. This approach avoids underfitting while maximizing the expressiveness and 

interpretability of the final model.

[9] Similar to point [8], the authors do not actually show that the GEF modelling is converging at 5000 iterations. It is very 

likely that it is, but this should be stated. 

Convergence was assessed by tracking the loss (negative unnormalized log-posterior). Optimization 

was stopped when the loss had plateaued. This is exemplified by the loss and root mean square 

error (RMSE) plots below: 



We have revised the manuscript methods accordingly (Page 23, Line 16-17). 

[10] The colour pallet for clusters is hard to follow at times. E.g. in figure 2 and 3, the authors use a large variety of red 

colours for the various CNV clusters – these are very difficult to see in subsequent panels, e.g. I cannot tell the different 

between the colour for clone E and F in Figure 3d. 

Thank you for flagging this. We have already wrestled with this in our first iterations and are keen to 

make the figures as accessible as possible. There is a tension here between our desire to use 

biologically meaningful colours (reds for cancer / severely altered clones, blue/greens for benign / 

indolent clones) versus the need to make colours easily distinguishable. To help with this we have 

now used a design-ready colour pallet from the cartography/mapping industry 

(www.colorbrewer2.org) and completely revised figures 2 and 3. We additionally have revised the 

colors in Extended Data Figure 5 to match the changes in revised Figure 2. We hope that the 

reviewer now finds the clones (and histology) more distinguishable. This was extremely helpful 

feedback.  

http://www.colorbrewer2.org/


[11] The results of the prostate tumour sample could implicate a poly-clonal seeding of tumors. Did the authors check to 

see if this patient carries a predisposition allele to prostate tumors or cancer? 

Thank you for this suggestion. We have undertaken a bulk WGS of the two histologically benign 

sections each, from both prostate patients 1 and 2 in our manuscript to interrogate for germline 

predisposition. We sequenced the samples on an Illumina (NovaSeq) to a depth of 43X and 32X 

coverage respectively. The resultant FASTQ files were then processed using the Sarek pipeline 

[Garcia et al.; doi:10.12688/f1000research.16665.2]. The SNPs and small indels were called using 

GATK HaplotypeCaller with the GATK bundle for GRCh38 and annotated using snpEff. This resulted in 

identification of n = 4,915,432 variants in patient 1, and n = 4,897,897 variants in patient 2. We then 

compared the SNPs to lists of known prostate cancer predisposition alleles [Aly et al.; doi: 

10.1016/j.eururo.2011.01.017, Sipkeky et al; doi:10.1038/s41598-020-74172-z]. We noted that some 

of these risk variants are the reference variant and when we performed variant calling on WGS these 

were not called. Out of the called variants we identified 10 and 19 of the 36 Stockholm-1 risk alleles 

in patient 1 and patient 2, respectively with at least one copy of the risk allele. Using the list from 

Sipeky et al. where they selected SNPs that were associated with prostate cancer at a genome-wide 

significance level (p < 5 × 10–8) and had the effect size of OR > 1.1 for risk SNPs and OR < 0.9 for 

protective SNPs. Out of the 41 risk and 14 protective variants we found 11 risk variants and 6 

protection variants in patient 1 out of which 3 risk and 1 protective variant were present on both 



alleles. The corresponding numbers for patient 2 were 11 risk and 4 protective variants out of which 

3 risk and 1 protective variant were present on both alleles. 

We have added this as text to Mendeley, and those interested can be provided variant details upon 

a materials transfer agreement and request from the authors following GDPR guidelines. 

[12] The authors could provide more insights into application of their method to their own large datasets, e.g. 

https://doi.org/10.1038/s41551-020-0578-x. 

As mentioned in previous comments, we have not developed a new CNV inference method, but a 

novel approach to derive spatial cell groups from inferCNV outputs. We also would like to note that 

the spatial transcriptomics data for the reference highlighted by the reviewer, was generated by the 

previous “1k spot array” ST technology (He et al;doi.org/10.1038/s41551-020-0578-x). We used data from 

this technology to globally profile CNVs, at organ scale, in Figure 1 to highlight spatial distribution of 

CNVs. But, as highlighted in the manuscript (page 4, lines 11-12), and the Extended Data figure 2 d/e, 

we noted a significant difference of the 1k array’s ability to spatially resolve clonal events and thus 

moved to using Visium ST for the bulk of our analysis. 

However, at the reviewer’s suggestion, we have analyzed three specimens from one patient from 

this study, patient BC23209, and provide both the iCNV and global CNV events. 

[13] Can authors say something about ERG on chr21 (seems amplified in clone C)? 

We have checked the inferCNV gene level Hidden-Markov Model (HMM) predictions 

(17_HMM_predHMMi6.hmm_mode-samples.pred_cnv_genes.dat) as requested. There were reads 

covering ERG detected in Clone C. While the HMM for Clone C predicted an amplification spanning 

https://doi.org/10.1038/s41551-020-0578-x.
https://doi.org/10.1038/s41551-020-0578-x.


large parts of Chr 21, as it was absent in the HMM table output, ERG itself was specifically not 

inferred to be amplified by HMM. We have produced a table showing a modified version of the 

relevant region for Clone C, from the table, the genomic information from ERG inserted in between 

the nearest Genes with HMM predicted amplifications on Chromosome 21. 

Read counts from ERG were detected and included in the count matrices input into inferCNV. 

[14] The method for inferring CNVs doesn’t seem well described. Or am I mistaken and the authors only use the existing 

“inferCNV” tool to inferCNVs? 

Our sincere apologies for not making the GitHub repository for our siCNV method more readily 

accessible. The reviewer is indeed correct in that we used the inferCNV tool to inferCNVs. We 

included a private link and password in our cover letter to the editor but appreciate this must not 

have been working for this reviewer. We invite the reviewer to visit: 

https://github.com/aerickso/SpatialInferCNV and ask them use the following details:  

Username: forericksonetalsubmission1  

Password: 14MloggingIntoGithub 

As GitHub requires two-factor authentication, we provide the related gmail account information.  

gmail: foericksonetalsubmission1@gmail.com

password: 14MloggingIntoGithub 

[15] Github repo link doesn’t work. 

Please see above. Apologies again.  

https://github.com/aerickso/SpatialInferCNV


[16] GEF CNV profiles. In Ext Fig 3 the authors shows that the GEF harbour what looks like different CNV clones. However, I 

find this analysis lacking. It only compares the authors approach of GEFs and not more established methods such as 

clustering via Leiden/Louvain+SNN. Also, the authors could further look into sub-clustering of gene expression of e.g. 

GEF10 to see if these can indeed be separated at gene expression level. Likewise, the authors do not elaborate on how 

different GEF17 and GEF7 are w.r.t. transcriptional profile given their similarity at the CNV level. 

We understand the reviewers desire for us to consider other approaches to gene expression 

clustering and have therefore performed clustering via Louvain+SNN using Seurat and STUtility on 

Visium data from prostate patient 1. After normalisation, dimensionality reduction was performed 

using principal component analysis and the expression-based clustering was performed with 

resolution parameter set to 0.8. A two-dimensional UMAP embedding was then constructed from 

the previously established top principal components. Using a Sankey Flow diagram we also highlight 

that it is not feasible to separate malignant prostate cells from non-malignant cells by solely 

analyzing gene expression levels. 



Spatial transcriptome decomposition (STD) into gene expression factors (GEFs) is in principle similar 

to commonly used non-negative matrix factorization (NMF). Much like NMF, the output after 

decomposing the gene expression data is two matrices (gene x GEF and spot x GEF). GEFs serve as a 

lower-dimensional representation of the data but a single GEF will thus never fully represent a single 

spot. Since spots contain a mixture of cells, as previously highlighted by the reviewer, it becomes 

inherently difficult to properly assign an identity through clustering of gene expression, and 

identifying transcriptomic patterns better describes the underlying biological phenomena. In order 

to assess GEF to clone concordance each spot was assigned the GEF with the highest proportion. 

We do wish to note that we intentionally moved away from STD as well as more established 

clustering via Leiden/Louvain+SNN to clone calling due to the lack of spatial conformation (as well as 

CNV clone differences). We reasoned that clonal ‘clusters’ needed to both display genomic 

homogeneity AND be situated nearby spatially. It was only when we moved to a CNV-based 

approach that we were able to achieve this. 

Nonetheless, we have also now performed a sub-clustering using the dimensionally reduced factors 

data generated by spatial transcriptome decomposition. The clustering was performed with 

conventional Louvain+SNN, using only the spots previously annotated as GEF10. The resolution was 

set to 0.3 which generated 3 clusters, these along with corresponding sections are visualized below 

using umap. As seen in the Sankey Flow diagram below, despite sub-clustering of GEF10 improving 

GEF to clone concordance, GEF to clone heterogeneity remained. We have added a description of 

this result to Supplemental Figure 3 legend. 



We additionally perform DEG analysis on GEFs 7 and 17. We identified n = XXX genes, that were 

differentially expressed despite similarity in CNV profiles as noted by the reviewer. The DEG lists 

have been provided in Mendeley. 

# Line specific issues [Page 1, Line 2 = P1L2] 

[P2L2] Page 2 Line 2 (P2L2). Should this rather be “polymorphisms” that are inherited rather that “alterations”? 

Thank you. This has been changed as suggested.  

[P2L3] How sure are we that somatic mutations are only in a small fraction of cells? Wouldn’t a somatic mutation in the 

early stages of development be present in many cells? Uniparental disomy? Perhaps the wording should be re-evaluated by 

the authors. 

Thank you for this helpful challenge. This is a fair point. We have reworded it to say instead: “...while 

post-developmental somatic mutations are usually only present in a small fraction of cells” 

[P2L5] Somatic alterations can also happen in normal tissue. 



We readily acknowledge this, indeed it’s an essential finding of our study. This sentence currently 

reads: “In order to obtain spatial information of these rarer non-heritable genetic events occurring in 

cancer…”. Our intention is not to suggest that these can only occur in cancer but that they have been 

commonly looked for in cancer using LCM and sc analyses. However, we recognise that the mention 

of cancer at this stage is probably redundant and have therefore removed it from this sentence.  

[P2L6] Perhaps add some references? 

We have added some representative examples of studies employing this approach.  

[P2L11] Is spatial transcriptomics a “genome-wide” methodology? By extensions, I would find it hard to say that a gene-

expression microarray is also “genome-wide” – genomes contain mainly more features than genes, including regulatory 

elements, repeats, centromeres, telomeres, etc. 

We acknowledge that greater precision could be helpful here and have changed to “Genome-wide 

analysis of gene expression”. 

[P2L14] Missing space in between “infer” and “CNV” 

Thank you. We have corrected this. 

[P2L16] This is hard to follow. “inferCNV” is not actually introduced as a new method. Also see pints [P2L14] and [6]. 

As above we apologise for not making this clearer. We have reworded this sentence here as: “we 

sought corroboration that inferred CNV data (using inferCNV6)  could mirror DNA-based 

phylogenies” to make this clear. We have a GitHub repository outlining the use of inferCNV as a key 

dependency (Patel et al.), but apologize that access was not ensured for the reviewer, and now have 

made the repository available (please see details in response to your comment 14). 

[P2L18] The use of “successful” is questionable without statistical support. While the reconstructions seem OK, it is not 

perfect, e.g. Ext fig 1e has clone “E” in the wrong clade. Support with statistics such as RF score, Matching Split Distance, 

etc. The R package TreeDist (https://github.com/ms609/TreeDist/) implements a few useful metrics. This should also be 

compared to some of the other existing tools – see point [2]. 

We thank the reviewer for this comment. Please see our response Reviewer 1, Comment 5. We used 

the results in Extended Fig 1 to test automatically obtaining clone calls from iCNV outputs. We 

https://github.com/ms609/TreeDist/


identified, as this reviewer has noted, that clone calling from “raw” inferCNV has discrepancies from 

the published results. This is why we developed our own tree building approach (used in Figures 2 

and 3) with inferCNV pre-processing to identify clusters. In accordance with this reviewer's 

comment, and in line with our response to Reviewer 1, Comment 5, we have revised “successfully 

recapitulate” to “attempted to recapitulate…”.  

As noted in the Extended Fig 1 legend, we calculated entanglement for dendrograms in Ext Figure 

1a, and found the entanglement to be 0.11. At the prompting of the reviewer we converted these 

dendrograms into phylogram objects using the dendextend R package, and used the TreeDist R 

package and calculated RF score (25.4), and the Matching Split Distance (70). We cannot run these 

metrics for Ext Fig 1 b/c, as the published trees were manually constructed, and we thus do not have 

access to digital phylogenetic tree structures/dendrograms to run the TreeDist functions.  

[P3L5-6] The authors should mention that the samples was resected from a prostate tumour patient. 

This information is available in the next sentence: “The specimen was obtained by open radical 

prostatectomy and an axial section was taken from the mid-gland”. We have added “...from a 

patient with prostate cancer…” 

[P3L11] Erroneous space in between 21 and 000. 

Thank you. Corrected.  

[P3L14] “GEFs” is not a well established term, so perhaps a citation would be useful. 

Thank you. We have added this (Berglund et al, DOI: 10.1038/s41467-018-04724-5).  

[P3L19-20] The authors refer to these interesting regions in 3 different ways in the text. On P3L19-20 they are regions with 

“increased iCNV activity”, on P4L3 they are “seven key regions”, and on P4L20 they are described as “regions of interest”. 

This should be consistent. 

Thank you. We have added “...of siCNV activity” to the two subsequent places in the text, flagged by 

the reviewer. 

[P3L21] I believed the authors want to say that “iCNVs could be used to distinguish this regions,…”. 

https://doi.org/10.1038/s41467-018-04724-5
https://doi.org/10.1038/s41467-018-04724-5


Thank you. We have added “...of siCNV activity” as stated above to ensure that the reader is clear 

that the sections / regions of interest are those highlighted in the previous sentence. In the sentence 

mentioned here, we are trying to make a concluding point at the end of the paragraph and so the 

words “...at organ scale…” are intended to set the context. 

[P4L5] Erroneous space in between 30 and 000. 

Thank you. Corrected.  

[P4L7-8] Would it flow better if the authors describe the pathology annotation of spots when the Visium experiment is first 

described, e.g. at the end of P4L3. 

Thank you for this suggestion. We have moved this sentence earlier as indicated.  

[P4L8] Perhaps “investigating clonal relationships” could be more precisely termed as clonal evolution patterns? 

Thank you. This now reads: “We then investigated clonal evolution patterns across the investigated 

tissue using iCNVs” 

[P4L19-20] Perhaps this could be better illustrated using a Sankey Flow plot of GEFs to CNV clusters. 

This is a good idea and we have now included this in Extended Data Fig. 3 and reproduce it here for 

the reviewer.  



[P4L21] Do you mean a “phylogenetic tree”? Did the authors “construct” or “compute” this tree? 

Thanks for querying this. We want to emphasise that this was a manual construction using our 

algorithm described in our methods as is often employed in these approaches (Cooper et al doi: 

10.1038/ng.3221.; Wedge et al, doi: 10.1038/s41588-018-0086-z; Woodcock et al, 10.1038/s41467-

020-18843-5). We have amended the sentence as suggested “We constructed a phylogenetic tree to 

describe sequential clonal events…” Please also see response to Reviewer 1, Comment 5. 

[P6L8-9] Can the authors relate these CNVs to oncogenes and tumour suppressor genes that have been described (e.g. 

PTEN and MYC). 

Thanks for requesting clarity on this. We can confirm that the 8q24 region that is amplified in Clone 

C does indeed include Myc, and the 10p loss covers PTEN as well. This was the reason for selecting 

these two targets for validatory FISH analysis as outlined in the following paragraph of the main text. 

To make this clearer we have added at the point highlighted by the reviewer: “most notably in chr 8 

and 10, which has been well-described in aggressive prostate cancer including oncogene MYC and 

tumour suppressor gene PTEN”12–14” 

[P7L14] Should “low grade cancer” rather be “benign tumour”, or “low grade tumour“? In some models, such as the 

Vogelstein CRC progression model, it is only a late loss of TP53 that is the “carcinogenic” transformation from the adenoma 

(which would already be harbouring a loss of chr18 with SMAD2/4).  

This is interesting. In prostate cancer we observe a spectrum of localised cancer from Gleason Grade 

Group (or ISUP group) 1 to 5 where we consider Grade Group 1 to be “low-risk” or “low-grade”, 

https://doi.org/10.1038/s41467-020-18843-5
https://doi.org/10.1038/s41467-020-18843-5


Grade Group 2 and 3 to be “intermediate” and Grade Group 4 or 5 to be “high grade” or “high risk” 

(see EAU, AUA & NCCN guidelines; e.g. https://uroweb.org/guideline/prostate-cancer/). We were 

intrigued to note that the “Low grade” cancer here displayed a markedly different siCNV profile than 

the higher grade cancer. The mention of colorectal cancer in this setting is also interesting. Of 

course, CRC has traditionally been considered the archetypal two hit model of cancer progression. 

But then prostate cancer does seem far more complex than this and, indeed, this model has 

required many further more nuanced iterations even in prostate cancer 

(https://www.nature.com/articles/s10038-021-00930-0; DOI: 10.1016/j.cell.2017.01.018 ).  

[P10L5] Is this consistent with P7L14? 

We feel it is really important to make the distinction between low grade cancer (Grade Group 1) 

which we interrogate in P7L14 and the ‘altered benign’ clonal group which is clonally related to and 

a precursor to more aggressive disease (Figure 3). Please note that low grade prostate cancer is an 

end-state in itself and does not progress to more aggressive disease (e.g.  Ross et al, doi: 

10.107/PAS.0b013e3182556dcd; also added to main text page 9, line 7). It is now increasingly 

considered almost to be a different disease. For perhaps the first time we are able to suggest why.  

[P10L6-8] Haven’t there been studies of normal oesophageal tissue which show the same thing?  

Yes, the reviewer is correct, a recent paper from Phil Jones’ group at the Sanger has shown this (doi: 

10.1126/science.aau3879). We have cited this in our manuscript (page 5 line 2).  

We wish to highlight for the reviewer that in the sentence concluding “....truly early events, 

occurring in tissue regions currently unknown to and therefore ignored by pathologists…” (previous 

P10L6-8) the word “unknown” refers to the fact that these regions are “unknown to…pathologists” 

because such regions are not captured by histology. We hope therefore that the reviewer is content 

to let this sentence stand.  

# Figures 

[Fig1f] Is it worrying that the tumour associated GEFs are not distinct from the “normal” GEFs? 

As outlined above (and Rev 1.3), we believe that our siCNV approach generates a more discrete 

partition of clonal groupings. We also agree that the lack of clear distinction of ‘tumour-associated’ 

GEFs from ‘normal’ GEFs is noteworthy and were initially puzzled by this. However, with our 

https://www.nature.com/articles/s10038-021-00930-0
https://doi.org/10.1016/j.cell.2017.01.018
https://doi.org/10.1016/j.cell.2017.01.018


subsequent findings that certain benign clonal groupings contained many of the CN features of 

cancer clones this is, perhaps, less surprising.  

[Fig2a etc] Scale is not consistent with “CNV state” in Extd Fig2. 

We thank for the author for their comment. We have revised Figures 2, 3, 4, and Extended Data 

Figures 3, 4, 5, 10 and 11 to include a box displaying “siCNV diploid”. 

[Fig4g] missing prostate. 

We agree that it would be useful to add prostate into this panel and have therefore included an 

additional “Venn” circle corresponding to Prostate Patient 1. An embedded picture of revised Figure 

4 is also included in response to Reviewer 1, comment 7. 

[Ext Fig1a] the dendrogram can be flipped to align better between iCNV and WGS-Ginko. E.g. the green and blue parts of 

the dendogram for iCNV can be flipped with no change in interpretation. 

We appreciate the reviewer’s comment. We plotted a tanglegram using the dendextend R package 

(https://cran.r-project.org/web/packages/dendextend/vignettes/dendextend.html#tanglegram). At 

the reviewer’s suggestion, we have modified the visual layout of the dendrograms, as follows and 

revised Extended Data Figure 1a, and have reproduced the revised subpanel as follows. 

https://cran.r-project.org/web/packages/dendextend/vignettes/dendextend.html#tanglegram


[Ext Fig2b] Why is the normal state set at “1” and not “2” for diploid? Does 0 indicate loss of 1 copy or 2 copy? 

We appreciate the reviewer’s comment. The current model is not diploid in character but rather just 

has a single strand of genes with different lengths and expressivity. Thus, the "CNV state" rather 

indicates how many copies of a gene that a cell/spot has or is presumed to have (when inferred). 

Here, 1 is the normal state (since 1 copy means the profile of said gene is unaltered), 0 means that 

there's a loss of the gene (you can only lose something once, hence why there are no lower states), 

and 2 and above means there's been a duplication of the gene with the value representing the total 

number of copies in the genome. 

Regarding inferCNV, we would like to refer the reviewer to the documentation: 

https://github.com/broadinstitute/inferCNV/wiki/inferCNV-HMM-based-CNV-Prediction-Methods. 

In short, inferCNV’s Hidden-Markov Model functions can either predict “3 states” (gain/loss/diploid), 

or “6 states”. We also would like to note that STARCH also predicts a similar 3 state model 

(gain/loss/diploid). We interpreted any degree of amplification from inferCNV outputs to be a gain, 

or any degree of loss to be a loss. Further work, beyond the scope of this study, would need to be 

done to fully validate the ground truth degree of copy-number variation (LOH vs full deletions, or 1 

copy vs 2+ copy gains) against the algorithm's predictive accuracy, which to our knowledge, has not 

been reported.

[Ext Fig2d,e] Perhaps using a seriation algorithm would make the 2 panels more comparable. 

We appreciate the reviewer’s comment. Given that inferCNV does not have native functionality to 

alter plots, we imported the denoised inferCNV matrix, processed them according to the following 

(https://github.com/broadinstitute/infercnv/issues/206#issuecomment-823084179), and plotted 

the following in the ComplexHeatmap package.  We have included and compared the two 

approaches as suggested by the reviewer, and we are inclined to state that the seriation algorithm 

does not make the two panels appear to be more comparable. Nevertheless, we are open to change 

the panels if requested.  

https://github.com/broadinstitute/inferCNV/wiki/inferCNV-HMM-based-CNV-Prediction-Methods
https://github.com/broadinstitute/infercnv/issues/206#issuecomment-823084179


[Fig 3e] Low resolution. Does the centromere control of chr8 duplicate in clone C, but get lost in clone G? Is this expected? 

Figure 3A doesn’t seem to imply that there should be centromere amplification in chr8. 

We thank the reviewer for their attention to detail. Figure 3e, from Clone C, contains two cells, for 

which the cell boundaries have now been annotated. We also have added arrows to clone G, 

denoting the locations of the centromere controls: they are not lost in clone G. We reproduce the 

revised panels here, and have edited Figure 3 (and legends) accordingly.



Thank you to this reviewer for their extremely helpful comments and amazing attention to detail. 

Addressing these comments has enabled us to substantially improve our manuscript, both in the 

main text/figures and in the array of extended data and supplementary material that we can now 

make available. Thank you. 



Reviewer Reports on the First Revision: 

Referees' comments: 

Referee #1 (Remarks to the Author): 

I thank the authors for the revision, in particular for the added biological analyses and 

interpretation on expression differences and the further confirmation of CNVs in skin using FISH. 

However, they have not adequately addressed some of my concerns. 

1. I thank the authors for their considerations and further analysis. While it is possible to identify 

SNVs in RNA data (often relying on having identified the somatic SNVs previously in DNA), somatic 

SNVs in the extremely limited regions covered by 10X sequencing cannot be adequately referred 

to as a ‘landscape’. Furthermore, the novel SNV analysis performed here likely identified germline 

and not somatic SNVs (see response to point 6). Therefore, the data in the paper still far from 

warrants the use of ‘landscape of clonal somatic mutations’ in the title and I still request changing 

it to ‘landscape of clonal copy number alterations’ or equivalent. Of course, events involving copy-

number neutral loss of heterozygosity also constitute important genomic events in the evolution of 

cancer but are not detectable using the inferCNV method. While this is a minor criticism and by no 

means needs to be incorporated in the title, it is important to note this limitation. 

2. Thank you very much for this extended analysis. The added biological detail is good and adds to 

the narrative. 

3. Thank you for the additional explanation. 

4. I think the added elements in the discussion section are a good and thoughtful addition. In line 

with my response to points 1 and 6, I would be careful with using “somatic events described here” 

(l.3 p.12) and suggest changing it to more explicitly convey that these are exclusively copy 

number alterations. 

5. The current manual approach for the construction of phylogenetic trees still lacks the necessary 

rigor and reproducibility. While I do not doubt the central biological observation of a benign clone 

carrying CNVs also found in the tumor, but the phylogenies require precision and robustness to be 

publishable. 

Only a heading and some numberings were added to the Methods section, not any additional detail 

pertaining to the building of the phylogenies themselves. This is not sufficient to reproduce the 

trees. 

- For example, the authors state in their response that ‘spatial proximity is an important 

component of our clonal selection algorithm’ leading to a dotted line in their phylogeny. This is 

vital for reproducibility, but this is not stated at all in the methods. Does this means every spatial 

area gets their own phylogeny without the possibility of a connection between them? 

- Far from the ‘one or two mutational events to occur sporadically’, clones C/D seem to share 8 

CNVs with clones H/I/J/K at least according to Supplementary Table 1 (10q_Loss, 12q_Gain_2, 

15p_Loss, 2q_Loss, 3p_Loss, 6q_loss_2, 8p_Loss, 8q_Gain), yet they are portrayed as completely 

independent. Likewise in Supplementary Table 2, it is difficult to reconcile clone D being 

completely unrelated to clone F, while they share 9 CNVs. 

- The column naming in Supplementary Tables 1 and 2 is confusing. What is the difference 

between ‘Second_Unobserved_Ancestor_to_Clone_K’ and clone K itself? 

Given the concordance the authors present in their response, a maximum parsimony approach 

from an algorithm that is actually reproducible, such as phangorn, should be used throughout the 

paper. 



Another point coming from reviewing the phylogenies and images concerns clonal mixing. Given 

that a Visium spot contains multiple cells, can you be sure some of these smaller clones (such as H 

in Fig. 2 and B and D in Fig. 3) are not in actuality clusters of spots with cells from multiple 

different genomic clones? In essence, whether spots belonging to clone B simply contain a mixture 

of cells coming from e.g. A and C. I have read the response to reviewer 3 on mixed cell 

populations, but that only deals with transcriptomic heterogeneity, not with mixing of different 

genomic subclones. This should be addressed. 

6. I commend the authors on the efforts of calling single nucleotide variants in their data and am 

pleased to note their two example base substitutions back up the inferred CNVs. However, one 

fatal flaw is that these SNVs are portrayed to be somatic, while they are most likely inherited. 

There are a few reasons for this: 

- The method section does not detail an approach to filter out germline variants, so I suspect they 

are retained. In fact, it seems the method section states explicitly that only variant sites reported 

in the 1000Genomes project were used as a basis for this analysis, so these are likely SNP sites. 

- The VAF of both these mutations approximates 0.5 in the diploid normal clones. It is very 

unlikely that clone A represents a true single clonal outgrowth. Whole-genome sequencing of 

laser-capture microdissections of prostate (200-500 cells) revealed that these small populations do 

contain clones but are not fully monoclonal (median VAFs between 0.15 and 0.3) [1]. Hence, it is 

much more likely that clone A represents a polyclonal population of diploid cells, which I think 

aligns with the authors’ view on clone A. 

- Both SNVs are situated at known common SNP sites (SNP ID rs1062391 for chr8:143580183 and 

rs1130474 for chr8:99892049), further signaling it is likely these SNVs were inherited rather than 

acquired post-zygotically. 

These VAF of these substitutions confirms the CNVs at these loci, but there is no set of SNV 

lineage markers that serves as an orthogonal validation of the CNV phylogeny (e.g., a substitution 

present in clones C-G but absent in the others). I suggest retaining this analysis as it confirms the 

inferCNV calls and rewriting the section dealing in the text to reflect that these are not somatic 

mutations. 

[1] Grossmann, S., Hooks, Y., Wilson, L., Moore, L., O’Neill, L., Martincorena, I., ... & Campbell, P. 

J. (2021). Development, maturation, and maintenance of human prostate inferred from somatic 

mutations. Cell Stem Cell, 28(7), 1262-1274. 

Referee #2 (Remarks to the Author): 

The authors have adequately addressed my concerns and have updated the manuscript 

accordingly. 

Referee #3 (Remarks to the Author): 

I have reviewed the revised manuscript by Erickson and colleagues. 

My major comments we well met with good responses. While the paper itself is much improved 

and exciting, I would like to draw the authors to their GitHub page, which I was not able to review 

in the initial submission. I would now expect that top-tier analysis papers to come with very good 

GitHub repos that describe how to reproduce all analyses and figures, however, there are a 

number of issues with the quality of the current documentation that should be addressed. There 

are also a small number of minor issues that should be addressed. 

----------- 



Major points on the GitHub repo: 

1) General organisation and expectations for a software repository 

1a) The GitHub page should ideally be technically oriented around the software, e.g. 

https://github.com/aerickso/cvat. Right now, the page emphasises the analysis of some sample 

data, which would be ideally part of a Jupyter notebook or ReadTheDocs site. 

1b) An in-depth user guide could be provided via ReadTheDocs. 

1c) Reanalysis of data should be provided through some literate programming document (Jupyter 

notebook, knitr, etc). 

1d) By now I would expect that it is common practice to provide a notebook or scripts which shows 

how all figures were generated in the paper. This could be distinct from the software repo. 

1e) The siCNV framework used in the study should probably be a tagged release cited in the 

manuscript (e.g. https://docs.github.com/en/repositories/archiving-a-github-

repository/referencing-and-citing-content). 

2) Some specific issues about the repository as a home for data analysis script that can be used to 

reproduce the results of the study. This might be 

2a) The scripts should describe how all major results can be reproduced, and not just the siCNV 

part 

2b) In the current README.md of the GitHub repo, some sections have no descriptive text. All 

sections should be accompanied by at least 1-2 sentences of text. Also, some figures are shown 

without context or captions (e.g. the first 4 images) 

2c) There is no description of how to access the data from this study (or appropriate test data, 

should the authors want this to be a general user guide for their siCNV framework). 

2d) There is no obvious way of finding out how the “purest benigns” or “Benign|GG2|PIN|GG4” 

were identified. 

2e) There is no description or code block for the “clone tree building” section. 

2g) The analysis scripts/notebooks used to reproduce results presented in the study should 

probably be a tagged release cited in the manuscript if they are hosted via another GitHub 

repository (e.g. https://docs.github.com/en/repositories/archiving-a-github-

repository/referencing-and-citing-content). 

----------- 

Minor comments: 

3) The author's response to my minor point 12 suggests that the siCNV clustering approach has 

limitations. The figure in the author's response to my previous point 12 shows the clustering of the 

siCNV identified 3 clones. On closer inspection I feel that there is something not quite right with 

the clustering, e.g. the CNV profile of the top part of the first cluster looks remarkably similar to 

the bottom half of the first – yet there two parts are in clearly separate clades. Compared to the 

siCNV clustering presenting the manuscript (which looks convincing), that reviewer only figure is 

worrying. Can the authors comment on why this happened? 

4) A brand new paper describes how the slide-RNA-seq approach can be adapted to slide-DNA-seq 

(https://www.nature.com/articles/s41586-021-04217-4). The authors could consider citing this 

paper in their discussion. 

Line specific comments from the tracked version of the resubmitted manuscript 

(406046_1_related_ms_3807532_r4km0w.pdf). Please note that some points are questions. 

5) P1L6: there are still occurrences of using a white space as a thousand separator (e.g. P1L6 “120 

000”). Please also check the rest of the manuscript. 



6) P2L12: subheading should be bold. 

7) P2L16: remove “_” in “infer_CNVs”. 

8) P2L18: add a comma between “modality generating”? 

9) P3L2: “robustly could” or “could robustly”? 

10) P4L3: should “iCNV” be “siCNV” or “CNV”? 

11) P7L21: “clonal sub-groups” or “sub-clonal groups”? 

12) P22L16: “Data processing” should be more specific. Perhaps “Spatial transcriptomics data 

processing”? 

13) P24L16: link to GATK toolkit is incomplete – it should be 

https://github.com/broadinstitute/gatk, and not https://github.com/broadinstitute. 

14) P26L18: change “InferCNV – Data Pre-processing” to “Data pre-processing for inferring spatial 

CNVs” (to avoid the InferCNV confusion). 

15) P29LL5: I cannot easily interpret what is meant by “if a clone in a given section had ≤ 10 1k 

or Visium spots”. Did you mean “< 1k [UMIs/genes] and <10 Visium Spots”? 

----------- 

Figures 

16) Figure 1 panel a – still refers to iCNVs. 

17) Figure 2 legend has “sCNV” instead of “siCNV”.



Author Rebuttals to First Revision: 

Editor comments: 

Your manuscript entitled "The spatial landscape of clonal somatic mutations in benign and 

malignant tissue" has now been seen again by 3 referees. You will see from their comments 

below that while they find your work strengthened, some important points are still raised. We 

are interested in the possibility of publishing your study in Nature, but would like to consider 

your response to these concerns in the form of a revised manuscript before we make a final 

decision on publication. 

We therefore invite you to revise and resubmit your manuscript, taking into account the 

points raised by the reviewers. Please highlight all changes in the manuscript text file. We 

would specifically point out the importance of a well-organised code repository, as per 

Reviewer #3 (ultimately, at publication, we would also ask you to put the code into a 

permanent repository and provide a doi in the manuscript, but Github is fine for now). We 

also ask that you re-think the title of the paper; not just with regards to the points made by 

reviewer #1, but also in terms of the over-used word 'landscape'. A starting point could be 

"Spatially resolved clonal copy number alterations in benign and malignant tissue", but do 

feel free to propose something else. 

We hope to receive your revised paper within four weeks. If you cannot send it within 

this time, we will still be happy to reconsider your paper at a later date as long as 

nothing similar has been accepted for publication at Nature or published elsewhere in 

the meantime. 

Thank you for this further feedback and the additional reviewers comments. As requested, 

we have particularly focussed on a substantially re-worked GitHub repository and have now 

provided step-by-step scripts for the construction of the novel analyses in the main figures as 

requested by Reviewer 3. We have also amended the title of the paper in line with your 

comments above (and also Reviewer 1) to: “Spatial atlas of clonal copy number alterations 

in co-existing benign and malignant tissue”. We believe that because, alongside the biology, 

we are also providing a spot-by-spot map of several tissues that “atlas” is a more appropriate 

term than “landscape”. We also wish to make the point that the analyses address 

neighbouring regions of benign and malignant tissue - hence “co-existing”. An additional 

important piece of work requested by reviewer 1 is a further justification for our manual 

phylogenetic tree construction and a fuller explanation in the methods section to enable 



reproducibility. The top line is that, in our experience, manual approaches are the norm in 

this area and we have provided many citations to support this. However, we accept that 

automated approaches do also bring value here and have extended our use of maximum 

parsimony networks/phangorn as requested by Reviewer 1 and have added an additional 

Extended Data Figure 14. Encouragingly the automated networks are supportive of our tree 

construction. Thank you again for considering our paper.   



All references to page and lines are from the manuscript file containing tracked changes. 

Referees' comments: 

Referee #1 (Remarks to the Author): 

I thank the authors for the revision, in particular for the added biological analyses and 

interpretation on expression differences and the further confirmation of CNVs in skin using 

FISH. However, they have not adequately addressed some of my concerns. 

Thank you for your further comments which we have addressed in turn.  

1. I thank the authors for their considerations and further analysis. While it is possible to 

identify SNVs in RNA data (often relying on having identified the somatic SNVs previously 

in DNA), somatic SNVs in the extremely limited regions covered by 10X sequencing cannot 

be adequately referred to as a ‘landscape’. Furthermore, the novel SNV analysis performed 

here likely identified germline and not somatic SNVs (see response to point 6). Therefore, 

the data in the paper still far from warrants the use of ‘landscape of clonal somatic mutations’ 

in the title and I still request changing it to ‘landscape of clonal copy number alterations’ or 

equivalent. Of course, events involving copy-number neutral loss of heterozygosity also 

constitute important genomic events in the evolution of cancer but are not detectable using 

the inferCNV method. While this is a minor criticism and by no means needs to be 

incorporated in the title, it is important to note this limitation. 

We again thank the reviewer. We have revised the title to Spatial atlas of clonal copy number 

alterations in co-existing benign and malignant tissue. As outlined in our comments to the 

editor above, we accept that landscape is perhaps an overstatement and have modified this to 

“atlas” and then replaced “clonal somatic mutations” to “clonal copy number alterations” as 

per your helpful suggestion. We also note your point about copy-neutral LOH and have 

acknowledged this limitation with changes on (page 7, line 15) as requested. Nonetheless we 

have gone some way to address this in our allele-specific SNV analysis of the data in Figure 

3 (Extended Data 7) and wish to note that while we have not applied this approach to every 

siCNV event we have provided a strategy for interrogating allele specificity if required. 

2. Thank you very much for this extended analysis. The added biological detail is good and 

adds to the narrative. 



Thank you. 

3. Thank you for the additional explanation. 

Thank you.

4. I think the added elements in the discussion section are a good and thoughtful addition. In 

line with my response to points 1 and 6, I would be careful with using “somatic events 

described here” (l.3 p.12) and suggest changing it to more explicitly convey that these are 

exclusively copy number alterations. 

We thank the reviewer for their suggestion. We have revised the use of this term in the title as 

requested and also in the text of the manuscript at the point indicated above and also in the 

legend for Figure 2.  

5. The current manual approach for the construction of phylogenetic trees still lacks the 

necessary rigor and reproducibility. While I do not doubt the central biological observation 

of a benign clone carrying CNVs also found in the tumor, but the phylogenies require 

precision and robustness to be publishable. 

Only a heading and some numberings were added to the Methods section, not any additional 

detail pertaining to the building of the phylogenies themselves. This is not sufficient to 

reproduce the trees. 

We apologise for putting so much of our explanation to this point in the “response to 

reviewers” document last time but not implementing sufficient changes to the manuscript 

methods section itself. We have revised the manuscript methods to ensure that the trees are 

fully reproducible.  

We have included the revised section here for clarity, and have included these changes in the 

manuscript on page 29, lines 7-20. 

Clone Tree consensus siCNV event calling: 



Both HMM siCNVs (from files: infercnv.17_HMM_predHMMi6.hmm_mode-samples.png 

and 17_HMM_predHMMi6.hmm_mode-samples.pred_cnv_regions.dat), and manual 

interpretation of denoised outputs (from the file: infercnv.21_denoised.png) were used to 

identify putative subclonal CNVs. These were then merged in a final consensus set, where 

events were listed for each clone for building clone trees (Supplementary Table 1, 2). Briefly, 

trees were constructed by identifying where CNVs were shared across clusters identified 

above as, under the assumption that a CNV cannot be reversed once it occurs, this indicates 

the cells in those clusters share a common ancestry. We therefore used this logic to identify 

ancestral relationships between clusters and build the clone trees. As our clone trees identify 

clones as related groups of cells (as opposed to clones being simply related mutations, an 

approach commonly taken in bulk-sequenced studies), where clones were present in subtrees 

that were not spatially proximate, we marked this uncertainty with dotted lines between 

common ancestors. 



- For example, the authors state in their response that ‘spatial proximity is an important 

component of our clonal selection algorithm’ leading to a dotted line in their phylogeny. This 

is vital for reproducibility, but this is not stated at all in the methods. Does this means every 

spatial area gets their own phylogeny without the possibility of a connection between them? 

We have provided further clarity on this point in our methods page 29, lines 7-20. We wish 

to emphasise an important overarching principle here which is that we do not believe that we 

have sufficient evidence to advocate intra-prostatic seeding / intra-organ metastases in this 

study. Of course, this would be a very exciting phenomenon if present. We certainly 

considered this possibility when we observed many common events shared between the two 

main tumour sites on opposite sides of the prostate in Figure 2. However, the alternative 

explanation, which is probably more generally acceptable, is that this represents convergent 

evolution1–3 with similar events (such as well known prostate cancer alterations in 

chromosome 8), arising sporadically in different places due to common selective pressures. 

We therefore chose to take the more cautious / conservative approach in our tree building. 

This means that we require spatial proximity, in line with our understanding of three-

dimensional branching morphogenesis (Extended Data Figure 9) to call clonal lineage.  

We believe that the trees reported are consistent with spatial clones visualised either on the 

ST 2D map or in an unobserved third dimension (tissue levels above/below the observed 

sections) with branching glandular structures giving rise to ancestral progeny through the 

branching, morphogenetic development of the prostate cancer glands4. In the absence of 

spatial proximity, placing all clones on the same phylogenetic tree, would imply direct 

seeding. While we recognize the high degree of interest there might be in any evidence for 

intraprostatic seeding and/or intra-organ metastasis, we do not believe we have sufficient 

evidence to draw such conclusions. 

- Far from the ‘one or two mutational events to occur sporadically’, clones C/D seem to share 

8 CNVs with clones H/I/J/K at least according to Supplementary Table 1 (10q_Loss, 

12q_Gain_2, 15p_Loss, 2q_Loss, 3p_Loss, 6q_loss_2, 8p_Loss, 8q_Gain), yet they are 

portrayed as completely independent. Likewise in Supplementary Table 2, it is difficult to 

reconcile clone D being completely unrelated to clone F, while they share 9 CNVs. 

For Figure 2, and distant clone relatedness, please see our response to the comment above. 

For Supplementary Table 2 and maximum parsimony please see our comment below.  

https://paperpile.com/c/XhuTbD/P8GP+YmgE+n8W7
https://paperpile.com/c/XhuTbD/Ls4R


- The column naming in Supplementary Tables 1 and 2 is confusing. What is the difference 

between ‘Second_Unobserved_Ancestor_to_Clone_K’ and clone K itself? 

We apologise for the inconsistency in our naming convention which arose when converting 

the previous tables from the initial submission to the revisions. While the clone-specific 

columns were correct, our previous reporting of the changes occuring in each branch 

generated duplicates. We have now revised Supplementary Tables 1 and 2 to report only 

clone-specific, and unobserved common ancestor data. The common ancestors have now 

been renamed with the following convention: (Fig 2): 

Common_Ancestor_1_Ancestor_to_A_B, Common_Ancestor_2_Ancestor_to_C_D, etc. 

Given the concordance the authors present in their response, a maximum parsimony 

approach from an algorithm that is actually reproducible, such as phangorn, should be used 

throughout the paper. 

We recognise this reviewers preference for automated algorithms. As requested we have run 

a further Maximum Parsimony Reconstruction using phangorn on Figure 2, using gene level 

Hidden Markov Model outputs from clones F/G/H/I/J/K alone and the results (; included 

below alongside Figure 2 and our new Extended Data Figure 14) do seem to recapitulate the 

tree topology for these clones from our manual annotation approach. We wish to highlight 

that, for the reasons outlined above, we have focussed on the large tumour focus on the right 

side of the prostate. We did also run a separate maximum parsimony reconstruction including 

C and D and these clones did associate with the I/J/K group.The most likely explanation for 

this are the CN losses in Chr 6 and 16 and the gain/loss in Chr 8. As explained above, this 

does not take into account the possibility that these mutations have arisen by convergent 

evolution1–3, rather than a common ancestral lineage. We would like to note that the analysis 

implemented here through phangorn was not originally designed for tumor evolution but to 

resolve speciation discrimination5. 

Manual reconstruction methods are not new for reporting cancer clonal phylogenies, indeed 

they are probably the most common approach in this setting and have been extensively used 

in the field6–10. We therefore suggest to stay with our original manual algorithm for tree 

construction as we believe it to be the most faithful and conservative method for representing 

the data.  

Note, we also have included a new Extended Data Figure 14, which includes an additional 

validation of the manual clone trees by maximum parsimony reconstructions (from phangorn) 

as requested and have made changes to the manuscript with a new subheading titled 

“Maximum Parsimony Clone Trees” on page 30, lines 11-18. 

https://paperpile.com/c/XhuTbD/P8GP+YmgE+n8W7
https://paperpile.com/c/XhuTbD/HPs8
https://paperpile.com/c/XhuTbD/a7tt+0g2E+dvT7+VQ1L+Fo0y


Another point coming from reviewing the phylogenies and images concerns clonal mixing. 

Given that a Visium spot contains multiple cells, can you be sure some of these smaller 

clones (such as H in Fig. 2 and B and D in Fig. 3) are not in actuality clusters of spots with 

cells from multiple different genomic clones? In essence, whether spots belonging to clone B 

simply contain a mixture of cells coming from e.g. A and C. I have read the response to 

reviewer 3 on mixed cell populations, but that only deals with transcriptomic heterogeneity, 

not with mixing of different genomic subclones. This should be addressed. 

The reviewer is correct in that there could be mixed clonal populations. We are reporting 

CNVs within the limit of the resolution that we are able to resolve. We recognize this 

limitation and have added a statement in the subsection “Organ-wide clonal landscape in 

prostate cancer” on page 5, lines 15-17. As the reviewer notes we have already discussed the 

question of mixed cell populations and outlined our strategy for minimising transcriptomic 

heterogeneity. We await with interest the upcoming “subcellular” spatial transcriptomic 



platforms (such as from 10x Genomics) which will deliver a further order of magnitude of 

resolution and provide intriguing answers to the question raised by the reviewer.  

6. I commend the authors on the efforts of calling single nucleotide variants in their data and 

am pleased to note their two example base substitutions back up the inferred CNVs. 

However, one fatal flaw is that these SNVs are portrayed to be somatic, while they are most 

likely inherited. There are a few reasons for this: 

We thank the reviewer for their commendation regarding SNV corroboration and for raising 

this point regarding germline variants. We have provided some more detail on this below and 

made some further changes to the manuscript in the light of this criticism.  

- The method section does not detail an approach to filter out germline variants, so I suspect 

they are retained. In fact, it seems the method section states explicitly that only variant sites 

reported in the 1000Genomes project were used as a basis for this analysis, so these are likely 

SNP sites. 

The reviewer is correct that the variant sites in the 1000 genomes project were used. We do 

not have access to matched bloods to perform true germline SNP profiling. We accept the 

criticism regarding a lack of clarity on somatic versus inherited SNVs and have removed the 

word “somatic” from relevant parts of the manuscript, particularly on page 7, line 15 and 

from title. 

- The VAF of both these mutations approximates 0.5 in the diploid normal clones. It is very 

unlikely that clone A represents a true single clonal outgrowth. Whole-genome sequencing of 

laser-capture microdissections of prostate (200-500 cells) revealed that these small 

populations do contain clones but are not fully monoclonal (median VAFs between 0.15 and 

0.3) [1]. Hence, it is much more likely that clone A represents a polyclonal population of 

diploid cells, which I think aligns with the authors’ view on clone A. 

We agree with the reviewer that clone A likely represents a polyclonal population of diploid 

cells as would be expected during the branching morphogenesis responsible for glandular 

epithelial outgrowth. In order to reflect this supposition more clearly we have made changes 

to the legend of Figure 3. 



- Both SNVs are situated at known common SNP sites (SNP ID rs1062391 for 

chr8:143580183 and rs1130474 for chr8:99892049), further signaling it is likely these SNVs 

were inherited rather than acquired post-zygotically. 

These VAF of these substitutions confirms the CNVs at these loci, but there is no set of SNV 

lineage markers that serves as an orthogonal validation of the CNV phylogeny (e.g., a 

substitution present in clones C-G but absent in the others). I suggest retaining this analysis 

as it confirms the inferCNV calls and rewriting the section dealing in the text to reflect that 

these are not somatic mutations. 

[1] Grossmann, S., Hooks, Y., Wilson, L., Moore, L., O’Neill, L., Martincorena, I., ... & 

Campbell, P. J. (2021). Development, maturation, and maintenance of human prostate 

inferred from somatic mutations. Cell Stem Cell, 28(7), 1262-1274. 

We agree with the reviewer’s suggestion to retain the analysis, and have edited the section to 

remove the word “somatic”, on page 7, line 15 as well as having removed it from the title. 



Referee #2 (Remarks to the Author): 

The authors have adequately addressed my concerns and have updated the manuscript 

accordingly. 

Thank you.

Referee #3 (Remarks to the Author): 

I have reviewed the revised manuscript by Erickson and colleagues. 

My major comments we well met with good responses. While the paper itself is much 

improved and exciting, I would like to draw the authors to their GitHub page, which I was 

not able to review in the initial submission. I would now expect that top-tier analysis papers 

to come with very good GitHub repos that describe how to reproduce all analyses and 

figures, however, there are a number of issues with the quality of the current documentation 

that should be addressed. There are also a small number of minor issues that should be 

addressed. 

We thank the reviewer for their comments and the opportunity to improve the reproducibility 

and documentation of our siCNV framework. Please see the following responses below. 

- We have changed the github landing page to document installation and general 

documentation regarding the package functions 

- We have added knitr/rmarkdown scripts, which detail how to reproduce all main 

figures (major results) 

- We have updated the Mendeley with the count matrices and input files for the main 

figure scripts 

We invite the reviewer to visit: https://github.com/aerickso/SpatialInferCNV and ask them 
use the following details:

Username: forericksonetalsubmission1
Password: 14MloggingIntoGithub

https://github.com/aerickso/SpatialInferCNV


As GitHub requires two-factor authentication, we provide the related gmail account 
information.

gmail: foericksonetalsubmission1@gmail.com
password: 14MloggingIntoGithub

----------- 

Major points on the GitHub repo: 

1) General organisation and expectations for a software repository 

1a) The GitHub page should ideally be technically oriented around the software, e.g. 

https://github.com/aerickso/cvat. Right now, the page emphasises the analysis of some 

sample data, which would be ideally part of a Jupyter notebook or ReadTheDocs site. 

At the reviewer’s suggestion, the landing page for the GitHub page now includes 

documentation for installation and sources for data to reproduce the analyses in the 

manuscript. As the package is written in R, we have added rmarkdown notebooks to 

reproduce all of the novel analyses in the main figures and results. We wish to note, that the 

documentation for the GEF analyses (Figure 1c/1f) , and Seurat clustering (Figure 4b) have 

already been published previously and can be found at 

https://www.nature.com/articles/s41467-018-04724-5 and 

https://satijalab.org/seurat/articles/spatial_vignette.html. We have undertaken internal review 

(unit testing) on the package functions, and figure scripts from a colleague who had never 

used the package before and have incorporated their edits into the GitHub repository. Taken 

together, 10 completely new rmarkdown scripts for figures were added, as well as revisions 

to two previous markdown scripts, the completion of documentation for 11 package 

functions, a complete revision of the landing page to the GitHub, and a significant 

restructuring in terms of data (removed from GitHub and added to Mendeley) were 

performed in the process of this revision. 

1b) An in-depth user guide could be provided via ReadTheDocs. 

We have added rmarkdown notebooks to the GitHub page to reproduce all of the novel 

analyses in the main figures and results from start to finish. 

mailto:foericksonetalsubmission1@gmail.com
https://github.com/aerickso/cvat.
https://www.nature.com/articles/s41467-018-04724-5
https://satijalab.org/seurat/articles/spatial_vignette.html


1c) Reanalysis of data should be provided through some literate programming document 

(Jupyter notebook, knitr, etc). 

We have added rmarkdown notebooks to the GitHub page to reproduce all of the novel 

analyses in the main figures and results from start to finish. 

1d) By now I would expect that it is common practice to provide a notebook or scripts which 

shows how all figures were generated in the paper. This could be distinct from the software 

repo. 

We have added rmarkdown notebooks to the GitHub page to reproduce all of the novel 

analyses in the main figures and results from start to finish. 

1e) The siCNV framework used in the study should probably be a tagged release cited in the 

manuscript (e.g. https://docs.github.com/en/repositories/archiving-a-github-

repository/referencing-and-citing-content). 

We thank the reviewer for their suggestion. We fully agree with the reviewer and editor: at 

the editor’s suggestion, at publication we will provide a tagged release (and put the code into 

a permanent repository and provide a doi in the manuscript).

2) Some specific issues about the repository as a home for data analysis script that can be 

used to reproduce the results of the study. This might be 

2a) The scripts should describe how all major results can be reproduced, and not just the 

siCNV part 

We have added rmarkdown notebooks to the GitHub page to reproduce all of the novel 

analyses in the  main figures and results from start to finish. We wish to note, that the 

documentation for the GEF analyses (Figure 1c/1f) , and Seurat clustering (Figure 4b) have 

already been published previously and can be found at 

https://www.nature.com/articles/s41467-018-04724-5 and 

https://satijalab.org/seurat/articles/spatial_vignette.html. 

https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-and-citing-content
https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-and-citing-content
https://www.nature.com/articles/s41467-018-04724-5
https://satijalab.org/seurat/articles/spatial_vignette.html


2b) In the current README.md of the GitHub repo, some sections have no descriptive text. 

All sections should be accompanied by at least 1-2 sentences of text. Also, some figures are 

shown without context or captions (e.g. the first 4 images) 

We have revised the GitHub significantly, and have included figure-specific scripts to 

reproduce the main figure content on the GitHub page. We have improved the documentation 

by adding text to each section.

2c) There is no description of how to access the data from this study (or appropriate test data, 

should the authors want this to be a general user guide for their siCNV framework). 

We have added all annotation files, input files, and count files to the GitHub page.

2d) There is no obvious way of finding out how the “purest benigns” or 

“Benign|GG2|PIN|GG4” were identified. 

Regarding “Benign|GG2|PIN|GG4”, these are manual annotations, by expert pathologists, 

then “harmonized” through consensus, of individual Visium spots, as performed by the 

LoupeBrowser. This is described, in detail, in the methods section “Pathologist Workflow – 

Spot-level annotation for prostate patient 1.” Regarding “purest benigns”, we provide 

documentation how to identify the “purest benigns” used in Figures 2 and 3 at the following 

script 

https://github.com/aerickso/SpatialInferCNV/blob/main/FigureScripts/BenignRefs_ForFigs2

and3/BenignRefs.md. We provide the annotations, and the purest benigns in .csv files in the 

Mendeley repository.  

2e) There is no description or code block for the “clone tree building” section. 

We have revised the GitHub, and please see our response above to reviewer 1, comment 5. 

The clone trees are manually constructed, and provide methods text for clone tree building in 

the manuscript on pages 29/30, lines 7-20/1-10. 

https://github.com/aerickso/SpatialInferCNV/blob/main/FigureScripts/BenignRefs_ForFigs2and3/BenignRefs.md
https://github.com/aerickso/SpatialInferCNV/blob/main/FigureScripts/BenignRefs_ForFigs2and3/BenignRefs.md


2g) The analysis scripts/notebooks used to reproduce results presented in the study should 

probably be a tagged release cited in the manuscript if they are hosted via another GitHub 

repository (e.g. https://docs.github.com/en/repositories/archiving-a-github-

repository/referencing-and-citing-content). 

We fully agree with the reviewer and editor: at the editor’s suggestion, at publication we will 

provide a tagged release (and put the code into a permanent repository and provide a doi in 

the manuscript).

----------- 

Minor comments: 

3) The author's response to my minor point 12 suggests that the siCNV clustering approach 

has limitations. The figure in the author's response to my previous point 12 shows the 

clustering of the siCNV identified 3 clones. On closer inspection I feel that there is 

something not quite right with the clustering, e.g. the CNV profile of the top part of the first 

cluster looks remarkably similar to the bottom half of the first – yet there two parts are in 

clearly separate clades. Compared to the siCNV clustering presenting the manuscript (which 

looks convincing), that reviewer only figure is worrying. Can the authors comment on why 

this happened? 

We thank the reviewer for their comment. For clarity we first reproduce here a portion of the 

previous response:  

“Previous response: 

https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-and-citing-content
https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-and-citing-content


At the reviewer’s suggestion, we have analyzed three specimens from one patient from this 

study, patient BC23209, and provide both the iCNV and global CNV events.” 

We apologize for the lack of clarity: siCNV data provided in this response come from three 

specimens (C1, D1; D2), from this patient. Please note that C2 and D1 are consecutive 

sections of the same specimen. We unhelpfully cropped the following label from the 

previous siCNV image. 

The colors correspond to the respective sections: and we wish to emphasize that this was a 

forced/supervised analysis per section (not, an unsupervised analysis).  

To provide further clarity, we provide here an unsupervised analysis of all three sections. 



The regions highlighted by the reviewer do now cluster under the same clade as expected. 

These regions represented putative common cancer clone traversing the boundaries of the 

histological sections.  We hope the clarification showing both unsupervised (individually) 

and supervised (combined) analysis provided strengthen the reviewer’s confidence in siCNV 

clustering.

4) A brand new paper describes how the slide-RNA-seq approach can be adapted to slide-

DNA-seq (https://www.nature.com/articles/s41586-021-04217-4). The authors could 

consider citing this paper in their discussion. 

We thank the reviewer for highlighting this paper. We agree it is interesting and 

complements our work. We actually included this paper as a citation (#28). 

Line specific comments from the tracked version of the resubmitted manuscript 

(406046_1_related_ms_3807532_r4km0w.pdf). Please note that some points are questions. 

5) P1L6: there are still occurrences of using a white space as a thousand separator (e.g. P1L6 

“120 000”). Please also check the rest of the manuscript. 

https://www.nature.com/articles/s41586-021-04217-4


Thank you for flagging this. We have revised accordingly on page 1, line 5, as well as the rest 

of the manuscript.

6) P2L12: subheading should be bold. 

Thank you. We have revised this (page 2, line 11).

7) P2L16: remove “_” in “infer_CNVs”. 

Thank you. We have revised this (page 2, Line 15).

8) P2L18: add a comma between “modality generating”? 

This has been added on page 2, line 16.

9) P3L2: “robustly could” or “could robustly”? 

We have changed the order as per the reviewers’ suggestion on page 2, line 22 - page 3, line 

1.

10) P4L3: should “iCNV” be “siCNV” or “CNV”? 

We have changed the iCNV to CNV on page 4, line 1.

11) P7L21: “clonal sub-groups” or “sub-clonal groups”? 

We have kept this as “clonal sub-groups” as we are referring to sub-groups of epithelial cells 

based on clonality.



12) P22L16: “Data processing” should be more specific. Perhaps “Spatial transcriptomics 

data processing”? 

We have revised this (page 22, line 16).

13) P24L16: link to GATK toolkit is incomplete – it should be 

https://github.com/broadinstitute/gatk, and not https://github.com/broadinstitute. 

We have revised this (page 24, line 16).

14) P26L18: change “InferCNV – Data Pre-processing” to “Data pre-processing for inferring 

spatial CNVs” (to avoid the InferCNV confusion). 

We have revised this (page 26, line 18).

15) P29LL5: I cannot easily interpret what is meant by “if a clone in a given section had ≤ 10 

1k or Visium spots”. Did you mean “< 1k [UMIs/genes] and <10 Visium Spots”? 

We thank the reviewer for their question. 1k was used here as a reference to the Spatial 

transcriptomic 1k array or ST version 1 which has a total 1000 spots11. We have edited page 

29, line 5-6 for clarity.

----------- 

Figures 

16) Figure 1 panel a – still refers to iCNVs. 

We have revised the figure 1 panel a and also corrected iCNVs present on page 7, line 10 as 

well as page 10 line 8.

https://github.com/broadinstitute/gatk
https://github.com/broadinstitute.
https://paperpile.com/c/XhuTbD/rRY5


17) Figure 2 legend has “sCNV” instead of “siCNV”. 

We have revised the Figure 2 legend.
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Reviewer Reports on the Second Revision: 

Referees' comments: 

Referee #1 (Remarks to the Author): 

I thank the authors for their revisions. Just to explain my point of view in the previous round of 

comments, I want to remark that as a scientific community, we should always strive for absolute 

reproducibility of our analyses and conclusions. Rather than a preference of mine, it is essential to 

be crystal clear about the way in which the data has generated a result, such as a phylogeny. This 

is especially true when the single cell RNA data has several layers of noise, which are absent from 

conventional (whole-genome) DNA sequencing data. In this respect, it is irrelevant what previous 

publications have done – if I cannot reproduce the analyses from the data, I cannot support the 

results. 

With the addition of the maximum parsimony trees and a much clearer supplementary table listing 

the copy number events, the reproducibility has been much improved and my concerns have been 

assuaged. 

A few textual remarks: 

- The authors state they have noted the limitation of copy-neutral LOH on page 7, line 15, but I 

cannot find the stated limitation. This should be fixed. 

- Page 7, line 16: please change “single nucleotide variants (SNV)” to “single nucleotide 

polymorphisms (SNP)” just to make abundantly clear what is meant here. 

I congratulate the authors on their manuscript and thank them for the fruitful rounds of discussion. 

Referee #3 (Remarks to the Author): 

Dear Authors, 

The revised work addresses my concerns with regards to the GitHub software repository - I was 

able to install the package using the instructions for conda. I am excited to see this work closer to 

publication, however, some minor concerns remain: 

1) The conda recipe for siCNV states the packages, but the versions of the tools are not defined. 

The authors should revise the YML file to define the version for all tools (e.g. "r-base=4.0.1"). This 

is absolutely required to ensure reproducibility (e.g. results from Seurat v3 may different from 

Seurat v4). 

2) Reviewer 1 correctly pointed out that two exemplary SNVs reported in the study (Page7-Line15) 

are indeed polymorphisms and not somatic. I appreciate that the authors have omitted the word 

somatic on Page7-Line15, but there are still some elements that could be improved. Specifically: 

2a) P7-L18. Since it is clear that the 2 exemplary positions on chr8 are germline, the authors 

should refer to them as "SNPs" or "polymorphisms" instead of "SNVs" to avoid confusion. 

2b) P7-L19. Since it is clear that the 2 exemplary positions on chr8 are germline, the conclusion 

that they "support shared ancestry" is no longer appropriate in this context. Analysis of germline 

mutations in this context can only support that the clones originated from the same patient (which 

is a trivial conclusion). The authors would need to find a somatic mutation to illustrate that the 

clones originated from the same primary tumor clone, which might not be easily possible. The 

authors should either find a somatic mutation that supports their original conclusion, or revise 



their conclusion (to e.g. "supports the accuracy of the copy number calling by inferCNV, which 

does not explicitly model allelic imbalance in calculating copy number states."). 

If my points are well addressed and that reviewer 1 has no further concerns on point 2, then I 

would be fine with the editor making a final decision without another round of review from me. In 

that case, thank you for entertaining my criticisms and well done. 



Author Rebuttals to Second Revision: 

Dear Michelle, 

We have revised the manuscript as requested by the reviewers (see below) as well as the 
editorial comments both in the manuscript. We also have addressed all of the comments and 
requested changes in the editorial summary. 

Thank you again for the opportunity to publish our work with you. 

Sincerely 

Joakim Lundeberg and Alastair Lamb (on behalf of all authors) 

Referees' comments: 

Referee #1 (Remarks to the Author): 

I thank the authors for their revisions. Just to explain my point of view in the previous round 
of comments, I want to remark that as a scientific community, we should always strive for 
absolute reproducibility of our analyses and conclusions. Rather than a preference of mine, it 
is essential to be crystal clear about the way in which the data has generated a result, such as 
a phylogeny. This is especially true when the single cell RNA data has several layers of 
noise, which are absent from conventional (whole-genome) DNA sequencing data. In this 
respect, it is irrelevant what previous publications have done – if I cannot reproduce the 
analyses from the data, I cannot support the results.  

We thank the reviewer for this explanation and fully agree. 

With the addition of the maximum parsimony trees and a much clearer supplementary table 
listing the copy number events, the reproducibility has been much improved and my concerns 
have been assuaged.  

A few textual remarks:  

- The authors state they have noted the limitation of copy-neutral LOH on page 7, line 15, but 
I cannot find the stated limitation. This should be fixed. 

Additional lines that clarify these limitations have been added to the beginning of the 
paragraph. It now reads “We recognize that a limitation of using siCNV is that this approach 
does not capture mutations such as single-nucleotide variants (SNV) or other copy neutral 
events, which could add value in discriminating clonal groupings. We therefore undertook an 
analysis of transcribed (exonic) single-nucleotide polymorphism (SNP) using...” 

- Page 7, line 16: please change “single nucleotide variants (SNV)” to “single nucleotide 
polymorphisms (SNP)” just to make abundantly clear what is meant here.  

Thanks for pointing this out. We have revised this accordingly. 

I congratulate the authors on their manuscript and thank them for the fruitful rounds of 
discussion. 



Referee #3 (Remarks to the Author): 

Dear Authors, 

The revised work addresses my concerns with regards to the GitHub software repository - I 
was able to install the package using the instructions for conda. I am excited to see this work 
closer to publication, however, some minor concerns remain: 

1) The conda recipe for siCNV states the packages, but the versions of the tools are not 
defined. The authors should revise the YML file to define the version for all tools (e.g. "r-
base=4.0.1"). This is absolutely required to ensure reproducibility (e.g. results from Seurat v3 
may different from Seurat v4). 

The YML file has been updated and now includes version numbers for all tools. 

2) Reviewer 1 correctly pointed out that two exemplary SNVs reported in the study (Page7-
Line15) are indeed polymorphisms and not somatic. I appreciate that the authors have 
omitted the word somatic on Page7-Line15, but there are still some elements that could be 
improved. Specifically: 

2a) P7-L18. Since it is clear that the 2 exemplary positions on chr8 are germline, the authors 
should refer to them as "SNPs" or "polymorphisms" instead of "SNVs" to avoid confusion.  

We agree and these are now referred to as SNPs instead of SNVs. 

2b) P7-L19. Since it is clear that the 2 exemplary positions on chr8 are germline, the 
conclusion that they "support shared ancestry" is no longer appropriate in this context. 
Analysis of germline mutations in this context can only support that the clones originated 
from the same patient (which is a trivial conclusion). The authors would need to find a 
somatic mutation to illustrate that the clones originated from the same primary tumor clone, 
which might not be easily possible. The authors should either find a somatic mutation that 
supports their original conclusion, or revise their conclusion (to e.g. "supports the accuracy of 
the copy number calling by inferCNV, which does not explicitly model allelic imbalance in 
calculating copy number states."). 

We thank the reviewer for pointing this out. While the reviewer is correct in that they no 
longer “support shared ancestry”, they still support copy number events on the same allele 
which in turn is consistent with shared ancestry. The conclusion has been revised to convey 
this and now reads “Analyses of the ratios of clonal variant allele fractions of both specific 
events with high coverage SNPs (exemplified by chr8:143580183 & 99892049) [Extended 
Data Fig. 7] support copy number events on the same allele, consistent with shared ancestry 
[Figure 3b].” 

If my points are well addressed and that reviewer 1 has no further concerns on point 2, then I 
would be fine with the editor making a final decision without another round of review from 
me. In that case, thank you for entertaining my criticisms and well done. 



Editor comments: 

1. Please reduce the article title to 75 characters (with spaces) or less. We suggest the 
following alternative title: "Spatially resolved clonal copy number alterations in benign and 
malignant tissue" (this is still slightly too long, but fits our template and will work) 

We have revised the title to the suggested alternative title. 

2. Please provide the manuscript file as a word document. 

Both the track-changes version and edited version have been uploaded as word documents. 

3. Please add references to the abstract/summary paragraph. 

We have added two references to the abstract. 

4. Please ensure that the text size in all figures is at least 5 pt Arial. 

We have checked and edited the text of all figures to be at least 5 pt DINCon. We have used 
DINCon throughout all the figures and also provided the fonts in the form of .otf files. 

5. Please separate the main the methods reference into two continuously numbered, but 
separate lists, following directly the discussion and the methods section, respectively. 

The reference list has been separated as requested. 

6. Please remove the main figures from the article file and re-supply them individually in an 
acceptable format such as EPS, AI, PS, PDF, PPT, CDR, PSD or XLS (for graphs). 

The main figures have been removed from the article file and re-submitted as AI files. 

7. Please remove the Extended data figures from the article file and re-supply in EPS, JPEG 
or TIF format. 

The Extended data figures have been removed from the extended data file and re-supplied as 
TIF files. 

8. Figure 1 and 4 are too tall in height when resized to 18 cm width, please reduce to 17 cm 
or less 

All main figures have been supplied as AI files inside artboards that are 18 cm in width and 
17 cm in height. 

9. Please reduce subheadings to 40 characters (with spaces) or less 

All main subheadings have been reduced to 40 characters or less. 

10. Please provide an SI Guide. 

A SI Guide with titles and text summary for each file has been submitted. 

11. Can the Supplementary Note “Processing and visualization of non-prostate samples” be 
included in the Methods section? 

This has now been included in the Processing and visualization of non-prostate samples 
section. 



12. Are any permissions required for the human silhouette and illustrations in Figure 1? 

No permissions required. 

13. Please split data and code availability statement into two separate sections. 

These have been split and complemented with additional availability statements. 

14. For the deposited data in EGA, please clarify which access restrictions apply. 

The specific access restrictions that apply have been added. 

15. For the github link, please make sure to now include the updated link. Please also (in 
addition to the github repo) archive the code in a permanent repository and provide a doi 
here. 

The github repository has now been made public 
(https://github.com/aerickso/SpatialInferCNV). A permanent repository is available using the 
following doi: https://doi.org/10.6084/m9.figshare.19666317.v1 

16. We notice that part of your data have been deposited on Mendeley for which registration 
is required. Is it possible to deposit these data somewhere where such a registration step can 
be avoided? 

The data deposited on Mendeley was previously a draft and required registration. It has now 
been published with its own doi and can be accessed without registration using the following 
doi: https://doi.org/10.17632/svw96g68dv.1 

17. Please move the Ethics Declaration section to the beginning of the Methods section. 

The Ethics Declaration section has been moved to the beginning of the Methods section. 

https://github.com/aerickso/SpatialInferCNV
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