
Open Access This file is licensed under a Creative Commons Attribution 4.0 

International License, which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to 

the original author(s) and the source, provide a link to the Creative Commons license, and indicate if 

changes were made. In the cases where the authors are anonymous, such as is the case for the reports of 

anonymous peer reviewers, author attribution should be to 'Anonymous Referee' followed by a clear 

attribution to the source work.  The images or other third party material in this file are included in the 

article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is 

not included in the article’s Creative Commons license and your intended use is not permitted by statutory 

regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright 

holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. 

Peer Review File

Local molecular and global connectomic contributions to

cross-disorder cortical abnormalities



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

“Molecular and connectomic vulnerability shape cross-disorder cortical abnormalities” by Hansen et al 
uses ENIGMA data to build a library of cortical thickness anomalies across 13 neurological and 

psychiatric disorders and compare these to molecular and connectivity fingerprints. The authors first 
ask whether each disorder, considered individually, aligns more closely to molecular gradients or 
regional connection topologies. They next build a transdiagnostic composite map and ask whether 

this has a stronger molecular or connectivity association. 

The paper provides a novel approach to understanding transdiagnostic neurobiological perturbations 
to cortical grey matter, and their relationship to genetic and connectomic features. It provides a 
platform for future work to integrate other disorders or address developmental or ageing processes. 

The paper is interesting, address a question of fundamental and clinical interest using advanced 

computational techniques. I think it would be of substantial interest to the readers of Nature 
Communications. I have mainly observations for consideration which the authors may choose to 
address with additional work, or through a deeper discussion of current limitations. 

1. Each of the disorders is associated with a phenotypic profile (symptoms + neurocognitive 

disturbances). The study is somewhat limited for not incorporating these. For example, are there 
common/overlapping neurocognitive disturbances that correspond to the overlapping neurobiological 

changes. I assume ENIGMA has this information per disorder, that could be incorporated alongside 
the cortical thickness. This would extend the paper more deeply into translational territory and would 
be stronger than the superficial “reverse inference” observations on the top of page 8, second column. 

Likewise, are there symptom- or cognitive features that associate more strongly with the “molecular-
correlated” disorders on Fig. 3 (ADHD, MDD – e.g. attention) versus those with a “connectivity” profile 

(SCZ – e.g. executive functioning). If this is to be deferred to future work, it should in the least be 
addressed in the Discussion. 

2. Most of the disorders – some more than others – are quite heterogenous over time (recent onset 
versus chronic), across age, and across patients (e.g. unipolar versus melancholic versus bipolar 

depression). Most of the patients in the clinical ENIGMA cohorts are quite stable and have been on 
pharmacological therapies, many of which have impacts on cortical thickness (e.g. anti-psychotics 
[1]). MDD, SCZ and ADHD in particular are not unitary entities across time or patients and their 

representation as singular entities in the various figures is a translational limitation. This approach is 
not at all unique to the present paper, but a widespread limitation so there is no line to be drawn in the 

sand here: Again, this could be addressed with some additional analyses (such as a break-out 
analysis of medication, age or time since illness onset analyses on at least one diagnostic category) 

or simply acknowledged in the Discussion 

3. A methodological limitation is that the core method essentially derives from “correlations of 

correlations”, limiting insights into deeper mechanistic causes. I think the existing “dig down” analyses 
are elucidating and largely overcome this weakness, but I would avoid statements like “regional 

molecular vulnerability and macroscale brain network architecture interact to drive the spatial 
patterning of cortical abnormalities in multiple disorders” which is something that could hardly have a 
counter-factual. 

4. The main marker of neurobiological perturbation is cortical thickness: While this is a good choice, it 

is arguably not that surprising to see molecular associations stronger than connectomic ones, given 
that the former impact directly on cortical activity, function and integrity. But does intra-cortical 
pathology hold a privileged position when considering the pathogenesis of brain disorders? Some 

might argue that many disorders arise primarily in white matter connections, and that these then 



propagate to cortical grey matter. This is a relatively minor point but might warrant a brief note in the 
paper. 

Minor: 

4. I thought it was only the analysis pipelines that were harmonized across ENIGMA not the image 
acquisition (p9) which were quite site specific (but I could be wrong!). 

5. The overall (anti-)correlations among the graph metrics are stronger than the molecular features 

(heatmap of Figure 1), which likely has an impact on how the relative and adjusted R^2 values are 
derived using the dominance analysis (as the effective degrees of freedom differ and there does not 

seem to be a step to partial out mutual correlations). 

6. p4: Why “embryonic” stage. Wiring abnormalities can arise across any neurodevelopmental stage. 

7. The MRI data used to reconstruct the normative functional and structural connectivity data is not 

particularly state of the art (long TR, 32 channel head coil, single-shell, deterministic tractography 
etc). I doubt this will impact on the bottom-line findings, but I am not sure why the authors did not 
choose a more advanced HCP-like data set to work with. 

8. The authors note the limitations of the 68-region DK cortical atlas – and the rationale for using it. 

But the regions in this atlas differ highly in extent and it would be worth checking that regions that 
dominate the cross-diagnostic findings are not simple larger in extent and therefore more likely to 
overlap by chance, and more likely to have higher SnR for all the analysis steps. 

9. A point perhaps for another occasion, but I am a bit sceptical about the now widely used spin test 

to represent nulls for spatial correlations between data sets: While it is crucial that spatial correlations 
be preserved in nulls, the process of conflated and then collapsing the cortical surface will introduce 

geometric distortions that over-estimate the true underlying null variance: spatial correlations from 
highly curved regions will be compressed onto the inflated representation which are then spun and 
mapped onto flatter regions. While it seems likely that spatial correlations will be preserved ‘on 

average’ the variance (the width of the null distribution) will be a composite of the true variance plus 
these geometric effects. A more accurate null could be obtained through whitening then resampling 

on the naïve cortical geometry. I do not think this is an issue for the present paper (because if 
anything a wider null means a more conservative test), but hope this limitation either be rebutted or 
acknowledged in the corresponding Methods section of the ms (p12). 

References: 

1. Voineskos, A. N., Mulsant, B. H., Dickie, E. W., Neufeld, N. H., Rothschild, A. J., Whyte, E. M., ... & 
Flint, A. J. (2020). Effects of antipsychotic medication on brain structure in patients with major 

depressive disorder and psychotic features: neuroimaging findings in the context of a randomized 
placebo-controlled clinical trial. JAMA psychiatry, 77(7), 674-683. 

Reviewer #2 (Remarks to the Author): 

This manuscript is a rigorous and methodologically sound study that addresses a key neuroscience 
question. The authors present a relevant set of results that will be of major interest to the research 

community. Evidently, one of the strongest aspects of the study is the data that has been exploited. 
Although this (ENIGMA) data has been extensively analysed before in previous studies (cited by the 
authors), the exhaustive coverage of a wide range of local (molecular) and global (connectivity) 

metrics using other public datasets demonstrates how integrative approaches can provide new 
insights on the molecular underpinnings of structural brain alterations associated to brain disease. 

First of all, I want to congratulate the authors for the important and valuable investment that they have 



made with the Code and Data repository. The null models and statistical procedures are appropriate 
(spin test, cross-validations, etc.). Guidelines are clear, the code is commented and there is an honest 

effort to facilitate the replicability of their findings. Despite the large number of results, they are all 
clearly explained and detailed. The schematics are very illustrative and the narrative is easy to follow. 

I have some comments that I hope can contribute to improving the manuscript: 

For some analyses, a considerable number of tests have been carried out (for example those 

depicted in Figure 2). I understand that correcting for multiple comparisons could be problematic here 
(metrics are not independent) but, if no correction procedure is used I think it should be at least 

acknowledged on the limitation section. 

Is the epicentre likelihood related to Euclidean distance? I found intriguing that the highest epicentre 
likelihood is located at motor (and parietal) cortex. I would have expected that association regions and 
hubs will constitute these epicentres. As authors point out “In particular, regions that are highly 

connected and potentially important for communication tend to be disproportionately affected by 
disease [26, 114].”. I wonder whether I am misinterpreting the metric or whether there the distance 

effect on the connectivity matrix influences the epicentre likelihood. Interestingly, authors discuss this 
finding in the discussion but arguments are focused on previous evidence showing that sensory-motor 
cortex is a plausible epicentre. Could you please discuss whether this is specific to primary cortex? or 

rather there is also evidence of the opposite (epicentres predominantly in associations cortices). Note: 
Looking at Figure S7, I think that one possibility is that this is driven by the epilepsy (which is 

duplicated). Given that these maps show considerable differences in regional distribution across 
conditions, is the average a meaningful metric? 
The disorder similarity matrix showed in Figure 5a looks very similar to a Structural Covariance 

Network. Given that it is computed as “pairwaise correlation of regional cortical thickness” (according 
to figure 5a legend) I wonder whether the associations described later are structural-Covariance-

related (e.g. as described in Romero-Garcia et al. 2018, Neuroimage) rather than disorder-related. 
Would it make sense to compute the disorder similarity as the correlation between “cortical thinning 

(for example, the difference with controls or the T-scores)” rather than using raw cortical thickness? 
Note: The Disorder similarity methods section states that “we correlated the abnormality vectors” so 
authors may already have gone down this route. If that’s the case, it will be just a matter of rephrasing 

this part of Figure 5a legend) and no discussion or analysis would be required. 
Is there a reason why results depicted in Figure 5c,d,e,f are not tested using the spin null model? By 

doing that it will not be necessary to regress out distance (which as opposed to the spin approach it 
assumes a linear relationship) 

Minor 

Explicitly mention that the Lausanne dataset has been used elsewhere (e.g. Bazinet et al. 2021, 
Neuroimage). 

Could authors briefly mention why deterministic rather than probabilistic tractography was used? 
I am afraid I do not understand the binning process of the DSI-based connectomes (“last paragraph of 

the Structural Network Reconstruction). Could authors rephrase this section? What is the objective of 
this preprocessing step? Is there any reference that readers can check? 
The quantification of myelin content using MRI is still under debate. For example, to my knowledge, 

there are no articles correlating myelin histology with T1w/T2w ratio. For other approaches such as 
Magnetization Transfers, R2 ranges between 0.4 and 0.7 approximately. I understand that this is not 

within the scope of this manuscript (it doesn’t even show a significant association) but I recommend to 
the authors that they add a one or two lines outlining this limitation of MRI-based myelin markers (see 

Van der Weijden et al. 2021, Neuroimage, 
https://www.sciencedirect.com/science/article/pii/S1053811920310466?via=ihub, for an interesting 
discussion.). 

I am intrigued that Schizophrenia and Schizotypy have such a differentiated influence of molecular vs. 
connectivity predictors. It is mentioned on the results but it would be interesting to mention on the 

discussion 



Given that gene PC1 is likely to mainly reflect differences in cell type distribution, do authors consider 
that the association between gene PC1 and the thickness differences are driving by this factor? 

I am happy to be approached by the authors if that could help with the revision. 

Rafael Romero-Garcia (rromerog-ibis@us.es) 
Reviewer #3 (Remarks to the Author): 

In the manuscript "Molecular and connectomic vulnerability shape cross-disorder cortical 
abnormalities" the authors present an analysis of brain disorders. They consider data from the 

ENIGMA meta-consortium (N = 21,000 cases, N = 26,000 controls collected from over 50 studies in 
40 countries; Thompson et al. 2020). They look at local phenotypes (such as gene expression, 

mylenation) and global phenotypes (such as graph theoretical parameters such as centrality of the 
brain network). They find that local phenotypes are the best predictors of disease. They also find 
some interaction between local and global phenotypes (hence "molecular and connectomic" in the 

title). For example, they say "We consistently find that disorder-specific cortical abnormality is shaped 
more by the local molecular fingerprints of brain regions than network embedding." The conclusion 

that local effects are more important can also be seen clearly in Figure 3: most diseases (notably not 
schizophrenia) show the trend. 

Their methodology is good, and this is some of the best evidence I have seen for the local hypothesis. 
They note that "How local attributes and global connectivity shape cross-disorder pathology remains 

an open question." This work provides evidence for the importance of local phenotypes over global 
phenotypes. 

This work has the potential to influence priorities in neurology and molecular psychiatry (although, the 
authors can correct me if I'm wrong but I don't see anything immediately clinically relevant in this 

work). 

Major points: 
- Genetic sex has an impact on brain development. Should sex-stratified analysis be done? This may 
improve power by deconfounding, or lead to some further insight. 

- The extent to which the global hypothesis is refuted by this work depends much on the quality of the 
global phenotypes. For example, if the noise level is higher in the global phenotypes, then they will be 

found to be less of a contributer to cortical abnormality even if a "noise free" version of the global 
phenotypes is actually more predictive. Can the authors somehow assess the noise level in the local -
vs- global phenotypes (maybe with a simulation?) Or possibly repeat the construction of the global 

attributes using a different preprocessing pipeline? 

What I mean is that 20 years from now, we'll have better technology for assessing graph properties of 
brains. How confident are the authors that their global evidence will still hold in 20 years, and is there 
anything more we can do now to gain confidence? 

- This might be a good validation of the methodology: can the authors look at pairwise genetic 

correlation between the pathologies and conditions they study, and see if the pathologies and 
conditions that share genetic architecture significantly are also close together in the Figure 3 axis? 

This seems like a good control (towards gaining the sort of confidence I asked for in the previous 
point) and if the global attributes are robust they should emerge correlated in traits that have similar 
genetic etiology. 

Minor points: 

- Some short forms such as pd for Parkinson's and 22q for 22q11.2 deletion are inconsistently used 
(i.e., sometimes the short form is used othertimes not, which could be confusing). 
- If it's possible, the title could be changed so that it's more clear that "shape" is a verb, for example 

"Cross-disorder cortical abnormalities are shaped by ..." I know that's longer, maybe there's another 
way. As it is, it is a bit hard to parse. 

- On page 3, there is a typo "cortical abnormalitiy" should be "cortical abnormality" 



- For Figure 5: x-axis should be on same scale across all except panel a. Pearson's r in some panels 
looks like < -1, is that because of jitter? panel b: The authors claim this is a normal distribution, can 

they provide a ks test? panel g: the top 2 and bottom 2 should likely be switched to match caption. 
Finally, significant correlation is not a contrast to low correlation. None of these are highly correlated 

(but, they are indeed all positively correlated). 
- Typo in caption of Figure 1: "inihibitory". 

Reviewer #4 (co-reviewed with reviewer 3 - no separate comments)



Dear Reviewers, 

Thank you for the constructive feedback on our first submission, and for the opportunity to revise the 
manuscript. Following your comments and suggestions, we have thoroughly revised the manuscript. In 
this letter, we respond to each of the reviewers’ comments in detail. Reviewer comments are in bold font 
and our responses are in regular font. 

Major changes include: (a) repeating analyses using structural and functional connectomes from the 
Human Connectome Project (N=326), (b) outwardly addressing disease heterogeneity which includes a
new analysis on age and disease severity, and (c) expanding on genetic and cognitive/behavioural 
perspectives on disease. 

Reviewer #1 (Remarks to the Author): 

“Molecular and connectomic vulnerability shape cross-disorder cortical abnormalities” by Hansen 
et al uses ENIGMA data to build a library of cortical thickness anomalies across 13 neurological
and psychiatric disorders and compare these to molecular and connectivity fingerprints. The 
authors first ask whether each disorder, considered individually, aligns more closely to molecular
gradients or regional connection topologies. They next build a transdiagnostic composite map 
and ask whether this has a stronger molecular or connectivity association. 

The paper provides a novel approach to understanding transdiagnostic neurobiological 
perturbations to cortical grey matter, and their relationship to genetic and connectomic features. It
provides a platform for future work to integrate other disorders or address developmental or 
ageing processes. 

The paper is interesting, addresses a question of fundamental and clinical interest using 
advanced computational techniques. I think it would be of substantial interest to the readers of 
Nature Communications. I have mainly observations for consideration which the authors may 
choose to address with additional work, or through a deeper discussion of current limitations. 

1. Each of the disorders is associated with a phenotypic profile (symptoms + neurocognitive 
disturbances). The study is somewhat limited for not incorporating these. For example, are there
common/overlapping neurocognitive disturbances that correspond to the overlapping 
neurobiological changes. I assume ENIGMA has this information per disorder, that could be 
incorporated alongside the cortical thickness. This would extend the paper more deeply into 
translational territory and would be stronger than the superficial “reverse inference” observations
on the top of page 8, second column. Likewise, are there symptom- or cognitive features that 
associate more strongly with the “molecular-correlated” disorders on Fig. 3 (ADHD, MDD – e.g. 
attention) versus those with a “connectivity” profile (SCZ – e.g. executive functioning). If this is to
be deferred to future work, it should in the least be addressed in the Discussion. 

We agree with the Reviewer that the phenotypic perspective of disease is missing. Unfortunately, the 
ENIGMA dataset does not include quantitative behavioural or cognitive tests. We are therefore unable to
make statistical conclusions about how phenotypic profiles relate to molecular and connectomic 
contributions to disease, although we agree that this is an exciting future direction of this work. 
Nonetheless, we like the Reviewer’s suggestion that molecular vs connectomic predictors may be related
to a cognitive axis underlying disorder profiles (anchored by executive functioning and attention). We 



have expanded on this point in the text (see also our response to Reviewer #3 Comment #3 who has a
similar point about genetics).

(“Discussion” section, Paragraph #7):

“This work considers multimodal molecular and connectomic contributions to disorders
but does not make conclusions about two important features of disease: cognitive
phenotypes and genetics. An exciting future direction is to explore whether molecular and
connectomic contributions to disease can be related to phenotypic or genetic similarity.
Lee et al., 2019 compare single-nucleotide polymorphism data across eight psychiatric
disorders and find that schizophrenia and bipolar disorder show greatest genetic
similarity. This complements our finding that schizophrenia and bipolar disorder have
consistent connectomic profiles. Lee et al., 2019 also find a clique among the disorders
that we find are best predicted by molecular features: ADHD, autism, and major
depressive disorder. On the other hand, a comprehensive battery of cognitive and
behavioural tests was not uniformly applied to all the disease groups in the ENIGMA
datasets. As a result, robust cross-disorder phenotypic profiles are less well established.
Our findings potentially suggest an executive function (anchored by schizophrenia)
versus attention (anchored by ADHD and ASD) cognitive axis that separates
connectomic versus molecularly informed disorder profiles, but more work is needed to
standardize cognitive testing and assess how cognitive/behavioural phenotypes may be
related to brain structure. Altogether, future work is necessary to explore how overlapping
genetic and neurocognitive disturbances correspond to molecular and connectomic
contributions to disease.”

2. Most of the disorders – some more than others – are quite heterogenous over time (recent
onset versus chronic), across age, and across patients (e.g. unipolar versus melancholic versus
bipolar depression). Most of the patients in the clinical ENIGMA cohorts are quite stable and have
been on pharmacological therapies, many of which have impacts on cortical thickness (e.g.
anti-psychotics [1]). MDD, SCZ and ADHD in particular are not unitary entities across time or
patients and their representation as singular entities in the various figures is a translational
limitation. This approach is not at all unique to the present paper, but a widespread limitation so
there is no line to be drawn in the sand here: Again, this could be addressed with some additional
analyses (such as a break-out analysis of medication, age or time since illness onset analyses on
at least one diagnostic category) or simply acknowledged in the Discussion

We thank the Reviewer for bringing up this point and agree that the heterogeneity of disorders deserves
both additional analyses and discussion in the manuscript. We have included two new supplementary
analyses that seek to track how well molecular/connectomic predictors map onto disease profiles across
age and across disease severity. For a subset of four disorders (ADHD, bipolar disorder, depression,
OCD), ENIGMA cortical abnormality maps exist for more age groups than only adults (specifically,
pediatric and adolescent). We find that for ADHD, bipolar disorder, and depression, both molecular and
connectomic predictions improve with age, whereas for OCD, predictions worsen with age (new figure
after the next paragraph).

Next, we compare predictions (adjusted R2) of Parkinson’s cortical abnormality profiles across patients at
different stages of the disease. Here we find that molecular and connectomic predictors have mirroring
effects across disease severity. Molecular predictors perform worse with disease severity, and



connectomic predictors perform better. This is exciting because it is in line with previous work showing
how misfolded proteins in Parkinson’s patients spread along the structural network.

We have added this analysis to the Results (“Results” section, “Local and global contributions to
disorder-specific cortical morphology” subsection, Paragraph #4):

“One important consideration with this analysis is that disorder-specific pathology and
symptom presentation are heterogeneous over time. The analysis in Figure 2 is limited to
adults and encompasses multiple stages of disease progression. We therefore sought to
investigate changes across different ages (pediatric, adolescent, and adult) and different
disease severities. First, we tracked the model fit (adjusted R2) of regression models that
fit molecular/connectomic features to pediatric, adolescent, and adult cortical abnormality
profiles for the four available disorders with this data (ADHD, bipolar disorder,
depression, and OCD; Figure S4a). We find that model fit is greatest in adulthood, except
for OCD which shows little change for connectomic predictors and a lower model fit in
adulthood for molecular predictors. Next, focusing on disease severity, we show how
model fit changes across four levels of Parkinson’s disease severity (Hoehn and Yahr
(HY) stages (Hoehn & Yahr, 1967); Figure S4b). Interestingly, we find that molecular
predictors perform worse with disease severity whereas connectomic predictors perform
better, supporting the notion that Parkinson’s pathology is influenced by the spread of
misfolded proteins on the structural connectome (Luk et al., 2012, Henderson et al. 2019,
Zheng et al., 2019). Altogether, these analyses provide a more nuanced and
transdiagnostic representation of molecular and connectomic contributions to cortical
disorder vulnerability.”

“Figure S4. Molecular and connectomic contributions to cortical abnormality change with
age and disease severity | (a) Age stratified cortical abnormality patterns are available for
ADHD, bipolar disorder, depression, and OCD. We fit molecular (darker line) and
connectomic (fainter line) predictors to disorder profiles across different life stages. Note
that the exact age range for each category differs slightly across the four disorders. (b)
Cortical abnormality patterns were available for four stages of disease severity in
Parkinson’s disease, according to the Hoehn and Yahr (HY) stages (Hoehn & Yahr,
1967). We fit molecular (darker line) and connectomic (fainter line) predictors to cortical
Parkinson’s profiles at different stages of disease severity.”



(“Discussion” section, Paragraph #6; see also our response to Reviewer #2 Comment #9 and Reviewer
#3 Comment #1):

“One strength of the ENIGMA consortium is that the datasets are pooled over thousands
of individuals. However, such large-scale analyses obscure the important inter-subject
variability that exists within all disorders. We conduct supplementary analyses in which
cortical disorder profiles are stratified by age and disease severity (Figure S4) and find
that molecular and connectomic contributions vary. For example, we find that molecular
and connectomic influences on Parkinson’s disease differ with disease severity:
molecular predictors become less powerful predictors and connectomic predictors
become more powerful predictors as the disease progresses. This complements previous
work that suggests that atrophy in Parkinson’s is the result of network-mediated spread of
alpha-synuclein (Zheng et al., 2019). Furthermore, we find a similar trend of increased
connectomic influence for severity of psychotic symptoms: namely, schizotypy and
schizophrenia. Although schizotypy is not an earlier stage of schizophrenia (indeed,
schizotypy is not a disorder per se but rather a multidimensional continuum of traits
related to psychosis), individuals with schizotypy exhibit similar, albeit attenuated,
characteristics as schizophrenia patients (Kirschner et al., 2021). We find that the
connectomic influence is considerably greater in schizophrenia compared to schizotypy,
which may suggest that the structural network gradually becomes more implicated in
disease progression. One key factor that we were not able to study in more depth is that
of biological sex. Since ENIGMA datasets are all sex-corrected, we are unable to make
conclusions about how molecular and connectomic contributions may differ between the
sexes. Multiple disorders show well-established sex-differences, including schizophrenia
(Abel et al., 2010), autism (Werling & Geschwind, 2013), and depression (Altemus et al.,
2014). Designing effective clinical interventions will require more nuanced studies that
consider the many heterogeneities that exist within each disease.”

Finally, we expand on the limitation that ENIGMA cohorts include medicated patients, including
interventions that may have an effect on cortical thickness (“Discussion”, Paragraph #8):

“The present work should be considered along with some important methodological
considerations. First, although the ENIGMA consortium standardizes preprocessing
pipelines and provides large N datasets, allowing for robust results and meaningful
comparison between disorder-specific cortical abnormality maps, working with ENIGMA
data also has caveats: (1) the measures of cortical abnormality are effect sizes between
patients and controls and do not represent tissue volume loss/gain, (2) some of the
patient populations included have co-morbidities and patients may be undergoing
treatment, including treatment that may have an effect on cortical thickness (Voineskos et
al., 2020), and (3) all analyses were conducted at the level of 68 cortical brain areas,
limiting regional specificity and precluding analyses of the subcortex and cerebellum.”

3. A methodological limitation is that the core method essentially derives from “correlations of
correlations”, limiting insights into deeper mechanistic causes. I think the existing “dig down”
analyses are elucidating and largely overcome this weakness, but I would avoid statements like
“regional molecular vulnerability and macroscale brain network architecture interact to drive the
spatial patterning of cortical abnormalities in multiple disorders” which is something that could
hardly have a counter-factual.



We have revised the manuscript to more clearly state the findings of the paper:

(“Abstract” section):

Old:
“We find that regional molecular vulnerability and macroscale brain network architecture
interact to drive the spatial patterning of cortical abnormalities in multiple disorders”

New:
“We find a relationship between molecular vulnerability and white matter architecture that
drives cortical disorder profiles.”

(“Introduction” section, Paragraph #4):

Old:
“Interestingly, for disorders that are better predicted by molecular attributes, we find that
the spatial patterning of cortical abnormalities reflects the underlying network
architecture, suggesting that the local molecular and global connectomic contributions to
disorder effects may interact.”

New:
“Interestingly, for disorders that are better predicted by molecular attributes, we find that
the spatial patterning of cortical abnormalities reflects the underlying network
architecture, suggesting that the joint contribution of local molecular and global
connectomic mechanisms is greater than their individual contribution.”

(“Results” section, “Interactions between local and global vulnerability” subsection, Paragraph #3):

Old:
“This finding is significant because it shows that connectome architecture interacts with
local vulnerability.”

New:
“This finding is significant because it suggests that the combined effect of local
vulnerability and connectome architecture is greater than their individual contribution.”

4. The main marker of neurobiological perturbation is cortical thickness: While this is a good
choice, it is arguably not that surprising to see molecular associations stronger than connectomic
ones, given that the former impact directly on cortical activity, function and integrity. But does
intra-cortical pathology hold a privileged position when considering the pathogenesis of brain
disorders? Some might argue that many disorders arise primarily in white matter connections,
and that these then propagate to cortical grey matter. This is a relatively minor point but might
warrant a brief note in the paper.

We agree with the Reviewer that white matter architecture likely plays an important role in disease
progression. In fact, one of our key findings (Figure 3) is that disorders that are well predicted by
molecular predictors (i.e. have large R2

adj) also show the “network spreading” phenomenon whereby
cortical abnormality profiles are organized such that regions with high abnormality are connected with one
another. This suggests that the connecome may play a role in “projecting” local abnormalities (i.e.



aberrant gene expression, misfolded proteins, etc.) to connected brain regions. These local abnormalities
may originate in the cell bodies but may also originate from the axons between neurons.

We have modified the text to expand on this point (“Discussion” section, Paragraph #4):

“We generally find that cortical abnormality is better predicted by local vulnerability
compared to global connectomic vulnerability. One possible reason for the relatively
poorer performance of connectivity predictors is that they are generic measures of a
region's embedding in a network (number of connections, centrality, connection diversion)
but do not consider how this embedding exposes regions to pathology elsewhere in the
network. Indeed, we find that disorders whose cortical morphology is better reflected by
local vulnerability, the abnormality pattern is organized such that areas with greater
abnormality are disproportionately more likely to be structurally- and
functionally-connected with each other (e.g. ASD, ADHD, 22q11.2 deletion syndrome,
temporal lobe epilepsy, schizotypy, bipolar disorder). This suggests a network spreading
phenomenon where focal pathology or perturbation propagates to connected regions,
resulting in cortical abnormality that is correlated with the underlying connection patterns
(Fornito, 2015). This interaction between local vulnerability and connectomic vulnerability
has previously been reported in neurodegenerative syndromes where the trans-synaptic
spreading of misfolded proteins appears to be guided and amplified by local gene
expression (Cornblath et al., 2021, Henderson et al., 2019, Raj et al., 2021, Zheng et al.,
2019, Shafiei & Bazinet et al., 2022). In other words, the poorer performance of
connectivity predictors does not suggest that the white matter architecture is less relevant
to disease progression. Indeed, pathogenesis of multiple diseases is thought to originate
in the white matter of the brain (Fornito et al., 2015, Bartzokis 2011, Hirokawa et al.,
2010). A promising future direction for studying cross-disorder brain abnormalities is to
focus on disruptions in white-matter pathways instead of cortical thickness (de Lange et
al., 2019, Binette et al., 2021).”

Minor:

5. I thought it was only the analysis pipelines that were harmonized across ENIGMA not the image
acquisition (p9) which were quite site specific (but I could be wrong!).

We thank the Reviewer for catching this error, as ENIGMA data is only harmonized across processing
and analysis pipelines, not imaging. We have corrected the error (“Methods” section, “Cortical disorder
maps” subsection):

“The ENIGMA (Enhancing Neuroimaging Genetics through Meta-Analysis) Consortium is
a data-sharing initiative that relies on standardized processing and analysis pipelines,
such that disorder maps are comparable (Thompson 2020).”

6. The overall (anti-)correlations among the graph metrics are stronger than the molecular
features (heatmap of Figure 1), which likely has an impact on how the relative and adjusted R^2
values are derived using the dominance analysis (as the effective degrees of freedom differ and
there does not seem to be a step to partial out mutual correlations).

We agree with the Reviewer that the structure of the molecular and connectomic predictors will have an
influence on the overall result. We have conducted two supplementary analyses to compare the



correlational structure of the molecular and connectomic predictor sets. First, we plot the distribution of
absolute correlation coefficients from the heatmap in Figure 1. Although the connectomic predictors have
greater absolute correlations than molecular predictors, this difference is not statistically significant
(Welch’s t-test, p=0.11). Second, to provide readers more insight into the correlation structure of each
predictor set, we apply PCA to both predictor sets (regions x predictor matrices) and plot the percent
variance explained for each component. Here we find that the first principal component of connectomic
predictors explains more variance (61%) than the first principal component of the molecular predictors
(47%), consistent with the idea that the connectomic predictors tend to have more prominent correlational
structure. We have included this figure in the supplement to be transparent about the correlational
structure of both predictor sets (Figure S15).

“Figure S15. Comparing molecular and connectomic predictor sets | (a) Distributions of
absolute correlations (Pearson’s r) between pairs of predictors are not significantly
different from one another (Welch’s t-test, p=0.11). (b) PCA was applied to the region x
predictor matrices for molecular and connectomic predictors separately. The first principal
component of connectomic predictors explains more variance (61%) than that of
molecular predictors (47%).”

Although we try to be comprehensive for both the molecular and connectomic perspectives, these results
are naturally contingent on the predictor subsets chosen. We decided not to partial out any mutual
correlations from the predictors because we wanted to keep any relationships between input variables.
Nonetheless, this mismatch in correlational structure of the predictor sets is certainly a limitation to the
study. We have therefore expanded on this point in the text (“Discussion” section, Paragraph #8):

“Fourth, we assessed the contribution of multiple predictors to disorder maps using
simple but robust linear models that are not sensitive to non-linear contributions or
higher-order interactions among the predictors. In addition to this, the correlational
structure of the predictor subsets affects predictive power which limits our ability to
compare molecular and connectomic model fits (Figure S15).”

7. p4: Why “embryonic” stage. Wiring abnormalities can arise across any neurodevelopmental
stage.

We have updated the text accordingly (“Results” section, “Interactions between local and global
vulnerability” subsection, Paragraph #1):



“In neurodegenerative diseases, this interaction may result in synaptic pruning and
cortical atrophy whereas in neurodevelopmental disorders, the pathology may manifest
as perturbations in network wiring during development (Di Martino et al., 2014).”

8. The MRI data used to reconstruct the normative functional and structural connectivity data is
not particularly state of the art (long TR, 32 channel head coil, single-shell, deterministic
tractography etc). I doubt this will impact on the bottom-line findings, but I am not sure why the
authors did not choose a more advanced HCP-like data set to work with.

We now repeat all analyses using structural and functional data from HCP (N=326), and find consistent
results. Results from the original dataset are shown in the main text and results from the HCP dataset are
shown in the supplement. Encouragingly, the two datasets show consistent results.

Figure SX:

“Figure S11. Replication using HCP structural networks | The main analysis
(corresponding to Figure 2 in the main text) was repeated using diffusion weighted MRI
data from the Human Connectome Project (N=326) (Van Essen et al., 2013).”

9. The authors note the limitations of the 68-region DK cortical atlas – and the rationale for using
it. But the regions in this atlas differ highly in extent and it would be worth checking that regions



that dominate the cross-diagnostic findings are not simply larger in extent and therefore more
likely to overlap by chance, and more likely to have higher SnR for all the analysis steps.

We have included a supplementary figure to the revised text to show the correlation between cortical
abnormality profile and size of Desikan-Killiany region (defined as the number of MNI152 voxels within a
region), and we find that there is not a consistent influence on parcel size and cortical abnormality.

“Figure S13. Effects of parcel size on disorder profiles | Each cortical abnormality
disorder profile (y-axis) was compared to the region size of each parcel in the Desikan
Killiany 68-region atlas (x-axis). Parcel size was defined as the number of MNI152 voxels
in each parcel.”

We also compare the epicentre likelihood maps with parcel size (which is only done for the seven
disorders that show significance correlation between node and mean neighbour abnormality). We
don’t find a consistent relationship between epicentre likelihood and distance although we do find
positive correlations for the epilepsies and for bipolar disorder.

“Figure S14. Distance and parcel size effects on epicentre likelihood | For the seven
disorders that show significant correlation between node and sc-/fc-weighted neighbour
abnormality, we correlated epicentre likelihood with (a) the average Euclidean distance



between one brain region and all other brain regions, and (b) the parcel size (defined as
number of voxels defined in the MNI-152 atlas) of each brain region.”

(“Results” section, “Sensitivity and robustness analyses” subsection, Paragraph #2):

“Next, since the Desikan-Killiany atlas parcellates the brain into unequally sized parcels,
we tested the effect of parcel size on disorder abnormality maps. Parcel size was defined
as the number of voxels assigned to the parcel using the MNI-152 volumetric
parcellation. Across all thirteen disorder maps, we do not find a significant correlation
between parcel size and cortical abnormality (Figure S13). Likewise, we compare effects
of parcel size on epicentre likelihood maps (Figure S14b). We find no significant
correlations except between parcel size and bipolar epicentre likelihood (r=0.44,
pspin=0.03).”

10. A point perhaps for another occasion, but I am a bit sceptical about the now widely used spin
test to represent nulls for spatial correlations between data sets: While it is crucial that spatial
correlations be preserved in nulls, the process of conflated and then collapsing the cortical
surface will introduce geometric distortions that over-estimate the true underlying null variance:
spatial correlations from highly curved regions will be compressed onto the inflated
representation which are then spun and mapped onto flatter regions. While it seems likely that
spatial correlations will be preserved ‘on average’ the variance (the width of the null distribution)
will be a composite of the true variance plus these geometric effects. A more accurate null could
be obtained through whitening then resampling on the naïve cortical geometry. I do not think this
is an issue for the present paper (because if anything a wider null means a more conservative
test), but hope this limitation either be rebutted or acknowledged in the corresponding Methods
section of the ms (p12).

This is an interesting point that we had not previously considered. Although the Reviewer mentions it is a
minor point, we were interested in finding out whether spin-rotated null distributions might be too wide. To
do this, we used a generative framework (a variogram model originally introduced by Burt et al., 2020) to
make surrogate null maps that retain spatial features characteristic of the data from which they are
estimated. These spatial null models don’t involve spins (i.e. conflating and collapsing the cortical surface)
but also don’t reproduce the spatial autocorrelation of the data as well (Markello & Misic, 2021).

To test this, we used the ADHD cortical abnormality map and its correlation with mean neighbour
abnormality (scatterplot shown in Figure S5 and results used in Figure 3 of the main text). We generate
10,000 rotations of the ADHD cortical abnormality map (using the spin-test) as well as 10,000 generative
null models (using the Burt et al., 2020 generative method). Interesting, as the Reviewer predicted, we
find that the generative null model has a narrower distribution that would result in smaller p-values.



One concern that we have with this parameterized method is that generative models have a harder time
reproducing the spatial autocorrelation of the data. Here we show the Moran’s I (a metric of the degree of
spatial autocorrelation) for the empirical data (vertical line) compared to the 10,000 spin and generative
nulls. Indeed, the spin null better reproduces the autocorrelational structure of the data. One reason the
generative models may struggle is that the parcellation is coarse and composed of uneven parcel sizes.

Additionally, we can’t apply generative nulls to correlations between similarity matrices (as is done in
Figure 5) because the data is not regional.

For these reasons, we have opted to keep the spin-permuted nulls. We thank the Reviewer for this
comment which sparked this exploration and a better understanding of how spin and generative nulls
behave. We mention this potential limitation in the text (“Methods” section, “Null models” subsection,
Paragraph #1):

“This spin-permuted null model involves conflating and collapsing the brain surface to
and from a sphere. The geometry of the cortical surface is therefore not retained in the
spinning process, which may result in null distributions that are too wide.”

Burt, J. B., Helmer, M., Shinn, M., Anticevic, A., & Murray, J. D. (2020). Generative modeling of
brain maps with spatial autocorrelation. NeuroImage, 220, 117038.



Markello, R. D., & Misic, B. (2021). Comparing spatial null models for brain maps. NeuroImage,
236, 118052.
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Reviewer #2 (Remarks to the Author):

This manuscript is a rigorous and methodologically sound study that addresses a key
neuroscience question. The authors present a relevant set of results that will be of major interest
to the research community. Evidently, one of the strongest aspects of the study is the data that
has been exploited. Although this (ENIGMA) data has been extensively analysed before in
previous studies (cited by the authors), the exhaustive coverage of a wide range of local
(molecular) and global (connectivity) metrics using other public datasets demonstrates how
integrative approaches can provide new insights on the molecular underpinnings of structural
brain alterations associated to brain disease. First of all, I want to congratulate the authors for the
important and valuable investment that they have made with the Code and Data repository. The
null models and statistical procedures are appropriate (spin test, cross-validations, etc.).
Guidelines are clear, the code is commented and there is an honest effort to facilitate the
replicability of their findings. Despite the large number of results, they are all clearly explained
and detailed. The schematics are very illustrative and the narrative is easy to follow. I have some
comments that I hope can contribute to improving the manuscript:

1) For some analyses, a considerable number of tests have been carried out (for example those
depicted in Figure 2). I understand that correcting for multiple comparisons could be problematic
here (metrics are not independent) but, if no correction procedure is used I think it should be at
least acknowledged on the limitation section.

This is an important point - dominance p-values were not corrected for multiple comparisons. The
dominance analysis is intended as an informative and interpretable visualization of how the fit (adjusted
R2) of each model is distributed across molecular/connectomic features. We initially applied the spin-test
to the dominance of each input variable to provide an extra source of information, but ultimately, following
the Reviewer’s comment, we think that this additional significance testing is superfluous and potentially
misleading.

One advantage of dominance analysis is that this comparison between input variables is straightforward:
if the dominance of variable X1 is twice that of variable X2, the interpretation is that X1 contributes twice as
much as X2 to the prediction of Y. Therefore, dominances should be interpreted with respect to other input
variables of the same model. Adding p-values gives the incorrect impression that an input variable acts in
isolation.

We have therefore removed the significance testing from the dominance analysis. This does not affect the
results nor the conclusions of the study, as the specific dominance analysis results play a minor part in
the manuscript and those that were labeled significant are also those with large magnitude.

We clarify this in the revised manuscript (“Methods” section, “Dominance analysis” subsection):

“Dominance analysis seeks to determine the relative contribution (“dominance”) of each
input variable to the overall fit (adjusted R2) of the multiple linear regression model
(https://github.com/dominance-analysis/dominance-analysis (Azen & Budescu, 2003,
Budescu 1993). This is done by fitting the same regression model on every combination
of input variables (2p-1 submodels for a model with p input variables). Total dominance is
defined as the average of the relative increase in R2 when adding a single input variable
of interest to a submodel, across all 2p-1 submodels. The sum of the dominance of all
input variables is equal to the total adjusted R2 of the complete model, making total

https://github.com/dominance-analysis/dominance-analysis


dominance an intuitive measure of contribution. Note that significance testing is not
applied to the individual dominances because the contributions of input variables are
relative to other predictors in the model and input variables do not act in isolation.”

Figure 2:

2) Is the epicentre likelihood related to Euclidean distance? I found intriguing that the highest
epicentre likelihood is located at motor (and parietal) cortex. I would have expected that
association regions and hubs will constitute these epicentres. As authors point out “In particular,
regions that are highly connected and potentially important for communication tend to be
disproportionately affected by disease [26, 114].”. I wonder whether I am misinterpreting the
metric or whether the distance effect on the connectivity matrix influences the epicentre
likelihood. Interestingly, authors discuss this finding in the discussion but arguments are focused
on previous evidence showing that sensory-motor cortex is a plausible epicentre. Could you
please discuss whether this is specific to primary cortex? or rather there is also evidence of the
opposite (epicentres predominantly in associations cortices). Note: Looking at Figure S7, I think
that one possibility is that this is driven by the epilepsy (which is duplicated). Given that these
maps show considerable differences in regional distribution across conditions, is the average a
meaningful metric?



To test whether epicentre likelihood is related to distance, we correlated the epicentre likelihood of the
seven disorders to the average Euclidean distance between a region and all other regions. 22q11.2
deletion syndrome and ADHD do show moderate negative correlations with distance (i.e. central regions
have greater epicentre likelihood), but the remaining disorders show no relationship (except bipolar
disorder which oddly shows a positive correlation (r=0.37) such that likely epicentres are actually farther
away from other brain regions). In other words, we don’t find consistent evidence for epicentre likelihood
being distance-driven.

“Figure S14. Distance and parcel size effects on epicentre likelihood | For the seven
disorders that show significant correlation between node and sc-/fc-weighted neighbour
abnormality, we correlated epicentre likelihood with (a) the average Euclidean distance
between one brain region and all other brain regions, and (b) the parcel size (defined as
number of voxels defined in the MNI152 atlas) of each brain region.”

(“Results” section, “Sensitivity and robustness analyses” subsection, Paragraph #2):

“Finally, since epicentre likelihood is calculated using the structural connectome, we also
assessed the relationship between epicentre likelihood and distance. Specifically, we
correlate epicentre likelihood with the average distance between a brain region and all
other brain regions (Figure S14a). We do not find any significant correlations between
epicentre likelihood and distance.”

We agree with the Reviewer that the average epicentre likelihood might not be the most meaningful
metric, especially considering that both right and left temporal lobe epilepsy have similar epicentre
likelihood maps (and may be biasing the average). We therefore combine the left and right temporal lobe
epilepsy epicentre likelihood maps into a single average. Then, for these six disorders (five disorder maps
plus the composite epilepsy epicentre map), we look at (1) the mean epicentre likelihood, (2) the median
epicentre likelihood, and (3) a map where each brain region is coloured by the number of disorders for
which the brain region is in the top 50% of most likely epicentres.



“Figure S8. Cross-disorder epicentre likelihood maps | Epicentre likelihood was
calculated for the seven disorders that show significant correlation between node and
mean neighbour abnormality. To avoid biasing results, right and left temporal lobe
epilepsy epicentre likelihood is represented by a single mean likelihood map (see
disorder-specific epicentre likelihood maps in Figure S7). Epicentre likelihood can be
calculated as the (a) mean likelihood, (b) median likelihood (shown in Figure 4c), and (c)
frequency a brain region is in the top 50% of most likely epicentres across the included
disorders.”

We find similar results across cross-disorder epicentre likelihood maps, including the presence of inferior
temporal cortex, posterior parietal cortex (especially the angular gyrus), and primary motor cortex
(especially in the left hemisphere). Bilaterally, the precuneus and superior parietal cortex appear as
cross-disorder epicentres. We choose to show the median epicentre likelihood map in the main text
because it is a continuous map (unlike the frequency map) and is not as easily skewed by single
disorders (unlike the mean map), but we note that the mean map and the frequency map are both viable
alternatives.

(“Results” section, “Interactions between local and global vulnerability” subsection, Paragraph #4):

“Next, we aimed to construct a single cross-disorder epicentre likelihood map (Figure 4c).
To avoid having left and right temporal lobe epilepsy - which demonstrate similar
epicentre likelihood maps - bias the cross-disorder likelihood map, we combined left and
right epilepsy epicentre likelihood into a single average map. We calculated the median
epicentre likelihood across these six disorders and find that cross-disorder epicentre
likelihood is highest in bilateral sensory-motor cortex, medial temporal lobe, precuneus,
and superior parietal cortex. In Figure S8 we show mean epicentre likelihood as well as a
map that shows the frequency with which a brain region is in the top 50% of most likely
epicentres across the six disorders. Across all three methods (mean, median, frequency),
cross-disorder epicentre likelihood is consistent.”

Since the cross-disorder epicentres include both unimodal and transmodal brain regions, we discuss both
the perspective that the sensory-motor cortex is an epicentre as well as the perspective that transmodal
regions are epicentres.

(“Discussion” section, Paragraph #5):



“The interaction between molecular vulnerability and network structure naturally raises
the question of what are the network epicentres of cortical disorder maps. We find
cross-disorder epicentres - regions with high abnormality that are also strongly connected
with other regions with high abnormality - in primarily transmodal regions (e.g. inferior
temporal lobe, angular gyrus, precuneus, superior parietal cortex), although the motor
cortex also appears as an epicentre. That unimodal regions such as the motor cortex is
an epicentre is consistent with recent reports that multiple psychiatric and neurological
disorders are accompanied by sensory deficits and reduced motor control (Marco et al.,
2011, Javitt et al,, 2015, Bernard et al., 2015). Indeed, the sensory-motor cortex has been
previously established as a functional hub in temporal lobe epilepsies and across multiple
psychiatric disorders (Lariviere et al., 2020, Kebets et al., 2019). Interestingly, the
precuneus and superior parietal cortex are members of the brain's putative rich club -
densely inter-connected regions that are thought to support the integration and
broadcasting of signals (van den Heuvel & Sporns., 2011). Rich club regions undergo
changes in connectivity patterns in multiple diseases such as schizophrenia, Alzheimer's,
and Huntington's (van den Heuvel et al., 2013, van den Heuvel & Sporns, 2019, deLange
et al, 2019, Crossley et al., 2014, McColgan et al., 2015). We complement this work by
showing that the precuneus and superior parietal cortex are both vulnerable to cortical
abnormality and, by virtue of their network embedding, increase disease exposure to
connected regions. Conversely, although the anterior cingulate cortex (ACC) is implicated
across multiple psychiatric disorders (Shafiei et al, 2020, Goodkind et al., 2015), we do
not find that the ACC is an epicentre of cross-disorder cortical morphology. This suggests
that although the ACC demonstrates considerable local vulnerability in a subset of brain
disorders, it is not consistently involved across the seven disorders included in the
epicentre analyses. Altogether, despite variable cortical morphology patterns across the
thirteen disorders, when looked at through the lens of network connectivity, we see a
more consistent and compact subset of potential epicentres, suggesting greater
commonality among diseases than previously appreciated.”

3) The disorder similarity matrix shown in Figure 5a looks very similar to a Structural Covariance
Network. Given that it is computed as “pairwise correlation of regional cortical thickness”
(according to figure 5a legend) I wonder whether the associations described later are
structural-Covariance-related (e.g. as described in Romero-Garcia et al. 2018, Neuroimage) rather
than disorder-related. Would it make sense to compute the disorder similarity as the correlation
between “cortical thinning (for example, the difference with controls or the T-scores)” rather than
using raw cortical thickness? Note: The Disorder similarity methods section states that “we
correlated the abnormality vectors” so authors may already have gone down this route. If that’s
the case, it will be just a matter of rephrasing this part of Figure 5a legend) and no discussion or
analysis would be required.

We apologize for our inconsistent description of the disorder similarity matrix. Disorder similarity was
calculated by correlating vectors of the cortical abnormality measure, which is the case vs. control
“thinning” metric shown on the brain surfaces in Figure 2. In other words, disorder similarity was not
calculated using raw cortical thickness. This was a poor choice of words on our part and has been fixed in
the manuscript.

This point has also inspired us to contextualize disorder similarity within the broader literature on
annotation similarity (“Results” section, “Brain regions with similar molecular annotations are similarly
affected across disorders” subsection, Paragraph #1):



“In the previous sections, we mapped molecular annotations and network measures to
each disorder separately. Here, we focused on disorder similarity. For every region we
constructed a 13-element vector of abnormality values, where each element corresponds
to cortical change (i.e. cortical abnormality) in that region in one disorder. We then
correlated regional vectors with each other to estimate how similarly two regions are
affected across the thirteen disorders (Figure 5a). Disorder similarity is analogous to
other measures of inter-regional attribute similarity including anatomical covariance
(Romero-Garcia et al., 2018, Evans et al., 2013, Vasa et al., 2018), morphometric
similarity (Seidlitz et al., 2018), correlated gene expression (Arnatkeviciute et al., 2021,
Fulcher et al., 2016, Richiardi et al., 2015), receptor similarity (Hansen et al., 2021),
temporal profile similarity (Shafiei et al., 2020), and microstructural similarity (Paquola et
al., 2019).”

4) Is there a reason why results depicted in Figure 5c,d,e,f are not tested using the spin null
model? By doing that it will not be necessary to regress out distance (which as opposed to the
spin approach it assumes a linear relationship)

We have revised the analysis and now apply the spin null to the correlations between matrices. This is
done by spinning both rows and columns in the similarity matrices (region x region disorder similarity,
molecular similarity, connectivity similarity, receptor similarity, correlated gene expression, functional
connectivity). The new Figure 5 now depicts the correlations between matrices without distance
regression using the spin null, and we have moved the distance-regressed versions to the Supplement
(Figure S9).

Minor



5) Explicitly mention that the Lausanne dataset has been used elsewhere (e.g. Bazinet et al. 2021,
Neuroimage).

We now mention that the Lausanne dataset has been used elsewhere (“Methods” section, “Structural and
Functional networks” subsection):

“The Lausanne dataset is available at
https://zenodo.org/record/2872624#.XOJqE99fhmM and has been used in other work
(Vazquez-Rodriguez et al., 2019, Bazinet et al., 2021).”

Vázquez-Rodríguez, B., Suárez, L. E., Markello, R. D., Shafiei, G., Paquola, C., Hagmann, P., ...
& Misic, B. (2019). Gradients of structure–function tethering across neocortex. Proceedings of the
National Academy of Sciences, 116(42), 21219-21227.

Bazinet, V., de Wael, R. V., Hagmann, P., Bernhardt, B. C., & Misic, B. (2021). Multiscale
communication in cortico-cortical networks. NeuroImage, 243, 118546.

6) Could authors briefly mention why deterministic rather than probabilistic tractography was
used?

We now show results using both deterministic (the original Lausanne dataset) and probabilistic (HCP
dataset) tractography (see also our response to Reviewer #1 Comment #8 and Reviewer #3 Comment
#2). Results using the original Lausanne dataset are in the main text and results using the HCP dataset
are in the supplement. We find consistent results across both datasets.



“Figure S11. Replication using HCP structural networks | The main analysis
(corresponding to Figure 2 in the main text) was repeated using diffusion weighted MRI
data from the Human Connectome Project (N=326) (Van Essen et al., 2013).”

7) I am afraid I do not understand the binning process of the DSI-based connectomes (“last
paragraph of the Structural Network Reconstruction). Could authors rephrase this section? What
is the objective of this preprocessing step? Is there any reference that readers can check?

The binning process applied to the structural connectomes is part of the procedure to create a single
consensus network that preserves the density and edge-length distributions of individual connectomes.
This method was first used in Misic et al., 2015 but is formally presented in Betzel et al., 2019 where the
method is compared to other group-representative network construction methods.

We have revised the text to clarify the motivation and procedure, as well as including the relevant
references (“Methods” section, “Group-consensus structural network” subsection):

“To construct a group-level connectome, we used a consensus approach that seeks to
preserve the density and edge-length distributions of the individual connectomes (first
applied in Misic et al., 2015 and presented formally in Betzel et al., 2019). This procedure
better captures important organizational features of subject-level networks compared to
other consensus methods (i.e. thresholding based on whether an edge is observed in a



fraction of subjects) (Betzel et al., 2019). The procedure for generating the consensus
network is as follows. First, existing edges across participants were binned according to
length. The number of bins was determined heuristically as the square root of the mean
binary density across participants. Within each bin, the k most frequently occurring edges
across participants were retained. k was set as the average across the number of edges
each participant has in the bin. To ensure that interhemispheric edges are not
underrepresented, we carried out this procedure separately for inter- and
intrahemispheric edges.”

Mišić, B., Betzel, R. F., Nematzadeh, A., Goni, J., Griffa, A., Hagmann, P., ... & Sporns, O. (2015).
Cooperative and competitive spreading dynamics on the human connectome. Neuron, 86(6), 1518-1529.

Betzel, R. F., Griffa, A., Hagmann, P., & Mišić, B. (2019). Distance-dependent consensus thresholds for
generating group-representative structural brain networks. Network neuroscience, 3(2), 475-496.

8) The quantification of myelin content using MRI is still under debate. For example, to my
knowledge, there are no articles correlating myelin histology with T1w/T2w ratio. For other
approaches such as Magnetization Transfers, R2 ranges between 0.4 and 0.7 approximately. I
understand that this is not within the scope of this manuscript (it doesn’t even show a significant
association) but I recommend to the authors that they add a one or two lines outlining this
limitation of MRI-based myelin markers (see Van der Weijden et al. 2021, Neuroimage,
https://www.sciencedirect.com/science/article/pii/S1053811920310466?via=ihub, for an interesting
discussion.).

We have revised the manuscript to address the limitation of using the T1w/T2w ratio as a proxy for myelin
content.

(“Methods” section, “Molecular predictors” subsection):

“Myelination. Data from the Human Connectome Project (HCP, S1200 release; Van
Essen et al., 2013, Glasser et al., 2013) was used for measures of T1w/T2w ratios---a
proxy for intracortical myelin---for 417 unrelated participants (age range 22--37 years,
193 males), as approved by the WU-Minn HCP Consortium. Images were acquired on a
Siemens Skyra 3T scanner, and included a T1-weighted MPRAGE sequence at an
isotropic resolution of 0.7mm, and a T2-weighted SPACE also at an isotropic resolution of
0.7mm. Details on imaging protocols and procedures are available at
http://protocols.humanconnectome.org/HCP/3T/imaging-protocols.html. Image
processing includes correcting for gradient distortion caused by non-linearities, correcting
for bias field distortions, and registering the images to a standard reference space.
T1w/T2w ratios for each participant was made available in the surface-based CIFTI file
format and parcellated into 68 cortical regions according to the Lausanne anatomical
atlas (Cammoun et al., 2012). Note that the T1w/T2w ratio is an MRI-based estimate of
myelin content that has not yet been validated against myelin histology (Van der Weijden
et al., 2021). Other MRI-based proxies may be more suitable alternatives, such as
magnetization transfer or simultaneous tissue relaxometry of R1 and R2 relaxation rates
and proton density (SyMRI), which have been validated using myelin histology and are
closely correlated to one another (Hagiwara et al., 2018, Van der Weijden et al., 2021).
Additionally, PET imaging may be a promising avenue for mapping myelin content in the
brain (Auvity et al., 2020, Zeydan et al., 2018).”

https://www.sciencedirect.com/science/article/pii/S1053811920310466?via=ihub


(“Discussion” section, Paragraph #8):

“Additionally, the molecular predictors are limited by imaging modality (in particular
myelination, for which the T1w/T2w ratio is an indirect estimate (Van der Weijden et al.,
2021, Hagiwara et al., 2018), and, in the case of the gene and receptor gradients, by the
subset of genes and receptors included in the data decomposition.”

9) I am intrigued that Schizophrenia and Schizotypy have such a differentiated influence of
molecular vs. connectivity predictors. It is mentioned on the results but it would be interesting to
mention on the discussion

We have added a new paragraph about how the influence of molecular and connectomic predictors
changes with disease severity (as well as age and sex). This paragraph complements a new analysis on
PD disease severity (prompted by Reviewer #1 Comment #2), where we find that connectomic predictors
become more important with disease severity. Likewise, we find that the connectomic predictors perform
better in schizophrenia than schizotypy.

We discuss this in the text (see also our response to Reviewer #1 Comment #2 and Reviewer #3
Comment #1; “Discussion” section, Paragraph #6):

“One strength of the ENIGMA consortium is that the datasets are pooled over thousands
of individuals. However, such large-scale analyses obscure the important inter-subject
variability that exists within all disorders. We conduct supplementary analyses in which
cortical disorder profiles are stratified by age and disease severity (Figure S4) and find
that molecular and connectomic contributions vary. For example, we find that molecular
and connectomic influences on Parkinson’s disease differ with disease severity:
molecular predictors become less powerful predictors and connectomic predictors
become more powerful predictors as the disease progresses. This complements previous
work that suggests that atrophy in Parkinson’s is the result of network-mediated spread of
alpha-synuclein (Luk et al., 2012, Henderson et al. 2019, Zheng et al., 2019).
Furthermore, we find a similar trend of increased connectomic influence for severity of
psychotic symptoms: namely, schizotypy and schizophrenia. Although schizotypy is not
an earlier stage of schizophrenia (indeed, schizotypy is not a disorder per se but rather a
multidimensional continuum of traits related to psychosis), individuals with schizotypy
exhibit similar, albeit attenuated, characteristics as schizophrenia patients (Kirschner et
al., 2021). We find that the connectomic influence is considerably greater in
schizophrenia compared to schizotypy, which may suggest that the structural network
gradually becomes more implicated in disease progression.”

10) Given that gene PC1 is likely to mainly reflect differences in cell type distribution, do authors
consider that the association between gene PC1 and the thickness differences are driven by this
factor?

We agree with the Reviewer that the genomic gradient is likely reflective of cell type distribution. The
original manuscript did not properly contextualize the genomic gradient and why it is relevant. We have
now emphasized the relevance of the genomic gradient.

(“Methods” section, “Biological predictors” subsection, Paragraph #2):



“The first principal component of gene expression (“gene gradient”) was used to
represent the variation in gene expression levels across the left cortex. This gradient has
been previously related to cell type distributions and cell-specific gene expression, which
suggests the gradient is related to the cellular architecture of the brain (Hawrylycz et al.,
2012, Burt et al., 2018, Seidlitz et al., 2020, Anderson et al., 2020, Hansen et al., 2021).”

(“Results” section, Paragraph #1):

“The molecular fingerprint of a region was defined using the gene expression gradient (a
potential proxy for cell type distribution (Hawrylycz et al., 2012, Burt et al., 2018, Seidlitz
et al., 2020, Anderson et al., 2020, Hansen et al., 2021)), neurotransmitter receptor
gradient, excitatory-inhibitory receptor density ratio, glycolytic index, glucose metabolism,
synapse density, and myelination.”

(“Results” section, “Local and global contributions to disorder-specific cortical morphology” subsection,
Paragraph #3):

“From the dominance analysis, we find that certain predictors are consistently
unimportant. Indeed, synapse density and myelination demonstrate less dominance than
microscale gradients such as the gene expression gradient (a potential proxy for cell type
distribution (Hawrylycz et al., 2012, Burt et al., 2018, Seidlitz et al., 2020, Anderson et al.,
2020, Hansen et al., 2021)), neurotransmitter receptor gradient, and metabolic gradients.”

I am happy to be approached by the authors if that could help with the revision.
Rafael Romero-Garcia (rromerog-ibis@us.es)



Reviewer #3 (Remarks to the Author):

In the manuscript "Molecular and connectomic vulnerability shape cross-disorder cortical
abnormalities" the authors present an analysis of brain disorders. They consider data from the
ENIGMA meta-consortium (N = 21,000 cases, N = 26,000 controls collected from over 50 studies in
40 countries; Thompson et al. 2020). They look at local phenotypes (such as gene expression,
mylenation) and global phenotypes (such as graph theoretical parameters such as centrality of
the brain network). They find that local phenotypes are the best predictors of disease. They also
find some interaction between local and global phenotypes (hence "molecular and connectomic"
in the title). For example, they say "We consistently find that disorder-specific cortical abnormality
is shaped more by the local molecular fingerprints of brain regions than network embedding." The
conclusion that local effects are more important can also be seen clearly in Figure 3: most
diseases (notably not schizophrenia) show the trend.

Their methodology is good, and this is some of the best evidence I have seen for the local
hypothesis. They note that "How local attributes and global connectivity shape cross-disorder
pathology remains an open question." This work provides evidence for the importance of local
phenotypes over global phenotypes.

This work has the potential to influence priorities in neurology and molecular psychiatry
(although, the authors can correct me if I'm wrong but I don't see anything immediately clinically
relevant in this work).

Major points:

1) Genetic sex has an impact on brain development. Should sex-stratified analysis be done? This
may improve power by deconfounding, or lead to some further insight.

We agree with the Reviewer that sex has an effect of disease pathology and, especially from a clinical
perspective, is an important consideration to take into account. Unfortunately, the ENIGMA data used in
the present work are not stratified by sex. Instead, all ENIGMA-derived cortical abnormality maps (i.e.
case versus control cortical thickness) were derived after age and sex correction. Therefore, our analyses
make conclusions on how local and global features map onto disorder profiles outside of the effects of
sex.

Nonetheless, we agree that a sex-stratified analysis is of interest and therefore discuss the effects of sex
on disease in the Discussion (see also our response to Reviewer #1 Comment #2 and Reviewer #2
Comment #9).

(“Discussion” section, Paragraph #6):

“One strength of the ENIGMA consortium is that the datasets are pooled over thousands
of individuals. However, such large-scale analyses obscure the important inter-subject
variability that exists within all disorders. We conduct supplementary analyses in which
cortical disorder profiles are stratified by age and disease severity (Figure S4) and find
that molecular and connectomic contributions vary. For example, we find that molecular
and connectomic influences on Parkinson’s disease differ with disease severity:
molecular predictors become less powerful predictors and connectomic predictors
become more powerful predictors as the disease progresses. This complements previous



work that suggests that atrophy in Parkinson’s is the result of network-mediated spread of
alpha-synuclein (Luk et al., 2012, Henderson et al. 2019, Zheng et al., 2019).
Furthermore, we find a similar trend of increased connectomic influence for severity of
psychotic symptoms: namely, schizotypy and schizophrenia. Although schizotypy is not
an earlier stage of schizophrenia (indeed, schizotypy is not a disorder per se but rather a
multidimensional continuum of traits related to psychosis), individuals with schizotypy
exhibit similar, albeit attenuated, characteristics as schizophrenia patients (Kirschner et
al., 2021). We find that the connectomic influence is considerably greater in
schizophrenia compared to schizotypy, which may suggest that the structural network
gradually becomes more implicated in disease progression. One key factor that we were
not able to study in more depth is that of sex. Since ENIGMA datasets are all
sex-corrected, we are unable to make conclusions about how molecular and connectomic
contributions may differ between the sexes. Multiple disorders show well-established
sex-differences, including schizophrenia (Abel et al., 2010), autism (Werling &
Geschwind, 2013), and depression (Altemus et al., 2014). Designing effective clinical
interventions will require more nuanced studies that consider the many heterogeneities
that exist within disease.”

Abel, K. M., Drake, R., & Goldstein, J. M. (2010). Sex differences in schizophrenia. International review of
psychiatry, 22(5), 417-428.

Werling, D. M., & Geschwind, D. H. (2013). Sex differences in autism spectrum disorders. Current opinion
in neurology, 26(2), 146.

Altemus, M., Sarvaiya, N., & Epperson, C. N. (2014). Sex differences in anxiety and depression clinical
perspectives. Frontiers in neuroendocrinology, 35(3), 320-330.

2) The extent to which the global hypothesis is refuted by this work depends much on the quality
of the global phenotypes. For example, if the noise level is higher in the global phenotypes, then
they will be found to be less of a contributer to cortical abnormality even if a "noise free" version
of the global phenotypes is actually more predictive. Can the authors somehow assess the noise
level in the local -vs- global phenotypes (maybe with a simulation?) Or possibly repeat the
construction of the global attributes using a different preprocessing pipeline?
What I mean is that 20 years from now, we'll have better technology for assessing graph
properties of brains. How confident are the authors that their global evidence will still hold in 20
years, and is there anything more we can do now to gain confidence?

To gain confidence in the connectomic predictors used in this analysis, and to ensure the conclusions are
rooted in robust methodology and data, we have repeated all analyses using an additional dataset that
was acquired using different imaging and processing pipelines.

Specifically, we repeated the calculation of connectivity predictors using diffusion data from the Human
Connectome Project (N=326 unrelated participants, 145 males). HCP data were acquired on a different
scanner model (Siemens Skyra instead of Siemens Medical), using a different diffusion MRI and
tractography protocol (probabilistic streamline tractography, 18 b0 images, max b-value=3000s/mm2,
voxel size=1.25mm3, 270 diffusion directions; previously deterministic streamline tractography, 1 b0
image, max b-value=8000s/mm2, voxel size=2.2*2.2*3mm, diffusion-spectrum imaging with 128 diffusion



directions), and structural connectivity  matrices were generated using different software (MRtrix3;
previously Connecome Mapping Toolkit).

We find that the predictors remain consistent across datasets, as do the results from the dominance
analysis in Figure 2. This is encouraging and suggests that the global phenotypes used in the present
report are robust and consistent across datasets, acquisition parameters and processing methodologies.

We have added a Supplementary Figure (Figure S10) showing the correspondence of global connectivity
predictors across datasets:

“Figure S10. Comparing connectome predictors from two different datasets | Connectome
predictors were calculated using a structural network from diffusion-spectrum MRI data
from the Lausanne dataset (used in the main text) and diffusion-weighted MRI data from
the Human Connectome Project (used in the supplement). Connectome predictors are
consistent across datasets, acquisition parameters, and processing methodologies.”

As well as a Supplementary Figure (Figure S11) showing the dominance analysis when HCP data was
applied.



“Figure S11. Replication using HCP structural networks | The main analysis
(corresponding to Figure 2 in the main text) was repeated using diffusion weighted MRI
data from the Human Connectome Project (N=326) (Van Essen et al., 2013).”

We also mention this explicitly in the text (“Results” section, “Sensitivity and robustness analyses”
subsection, Paragraph #1):

“To ensure the results are not driven by choice of dataset, acquisition parameters and
processing methodology, we repeated the analyses using structural and functional
networks from the Human Connectome Project (N=326, see Methods for details), for
which acquisition parameters and processing methodologies differ. The connectomic
predictors from the Lausanne dataset used in the main text are highly correlated with the
same metrics calculated using HCP data (Figure S10). As a result, the regression models
and dominance analyses show consistent results (Figure S11).”

3) This might be a good validation of the methodology: can the authors look at pairwise genetic
correlation between the pathologies and conditions they study, and see if the pathologies and
conditions that share genetic architecture significantly are also close together in the Figure 3
axis? This seems like a good control (towards gaining the sort of confidence I asked for in the
previous point) and if the global attributes are robust they should emerge correlated in traits that
have similar genetic etiology.



We thank the Reviewer for this suggestion and agree that this test would be not only convincing but also
of great interest to the general field. We unfortunately do not have access to (nor the expertise to analyze)
population-level genetic correlations among disorders. However, we do find the idea of comparing
genetically similar disorders interesting. In Figure 1 of Lee et al., 2019, the authors show the genetic
similarity (based on correlations of SNPs) of eight different psychiatric disorders - 6 of which are included
in the present manuscript. Interestingly, the strongest association is between schizophrenia and bipolar
disorder, two disorders with similar connectomic R2. Lee et al., 2019 also find strong relationships
between ADHD, ASD, and MDD - the three disorders that we find have the greatest molecular R 2.
Furthermore, Radonijic et al., 2021 compare ENIGMA-derived structural similarity of neuropsychiatric
disorders to their genetic similarity from open GWAS studies and find a positive relationship between the
two. In other words, disorder profiles that are more similar to one another tend to also have similar genetic
profiles. Although relating these results to our findings can only be done in a qualitative capacity, they
present a promising future direction for transdiagnostic, cross-disorder research.

We have expanded on this in the text (see also our response to Reviewer #1 Comment #1 who has a
similar point about cognitive phenotypes).

(“Discussion” section, Paragraph #7):

“This work considers multimodal molecular and connectomic contributions to disorders
but does not make conclusions about two important features of disease: cognitive
phenotypes and genetics. An exciting future direction is to explore whether molecular and
connectomic contributions to disease can be related to phenotypic or genetic similarity.
Lee et al., 2019 compare single-nucleotide polymorphism data across eight psychiatric
disorders and find that schizophrenia and bipolar disorder show greatest genetic
similarity. This complements our finding that schizophrenia and bipolar disorder have
consistent connectomic profiles. Lee et al., 2019 also find a clique among the disorders
that we find are best predicted by molecular features: ADHD, autism, and major
depressive disorder. On the other hand, a comprehensive battery of cognitive and
behavioural tests was not uniformly applied to all the disease groups in the ENIGMA
datasets. As a result, robust cross-disorder phenotypic profiles are less well established.
Our findings potentially suggest an executive function (anchored by schizophrenia)
versus attention (anchored by ADHD and ASD) cognitive axis that separates
connectomic versus molecularly informed disorder profiles, but more work is needed to
standardize cognitive testing and assess how cognitive/behavioural phenotypes may be
related to brain structure. Altogether, future work is necessary to explore how overlapping



genetic and neurocognitive disturbances correspond to molecular and connectomic
contributions to disease.”

Lee, P. H., Anttila, V., Won, H., Feng, Y. C. A., Rosenthal, J., Zhu, Z., ... & Burmeister, M. (2019). Genomic
relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell, 179(7),
1469-1482.

Radonjić, N. V., Hess, J. L., Rovira, P., Andreassen, O., Buitelaar, J. K., Ching, C. R., ... & Faraone, S. V.
(2021). Structural brain imaging studies offer clues about the effects of the shared genetic etiology among
neuropsychiatric disorders. Molecular psychiatry, 26(6), 2101-2110.

Minor points:

4) Some short forms such as pd for Parkinson's and 22q for 22q11.2 deletion are inconsistently
used (i.e., sometimes the short form is used othertimes not, which could be confusing).

We have revised the manuscript to use consistent language throughout. In the case of Parkinson’s and
22q11.2 deletion syndrome, we use their long-form labels throughout.

5) If it's possible, the title could be changed so that it's more clear that "shape" is a verb, for
example "Cross-disorder cortical abnormalities are shaped by ..." I know that's longer, maybe
there's another way. As it is, it is a bit hard to parse.

Original:
“Molecular and connectomic vulnerability shape cross-disorder cortical abnormalities”

New:
“Local molecular and global connectomic contributions to cross-disorder cortical abnormalities”

6) On page 3, there is a typo "cortical abnormalitiy" should be "cortical abnormality"

Fixed.

7) For Figure 5: x-axis should be on same scale across all except panel a. Pearson's r in some
panels looks like < -1, is that because of jitter? panel b: The authors claim this is a normal
distribution, can they provide a ks test? panel g: the top 2 and bottom 2 should likely be switched
to match caption. Finally, significant correlation is not a contrast to low correlation. None of these
are highly correlated (but, they are indeed all positively correlated).

We have updated Figure 5 according to the Reviewer’s comments (Figure 5 shown at the end of the
response). Note that the correlations are no longer distance-regressed but instead assessed against the
spin-test (in response to Reviewer #2 Comment #4). Specifically,

● The x-axes in panels b-h are all identical in the revised version of the figure.
● All points in the scatter plots are within the [-1, 1] range.
● The Kolmogorov-Smirnov test for normality was significant (s=0.23, p<0.001) which means

disorder similarity is significantly different from a normal distribution. We therefore no longer claim
that the distribution is approximately normal.

● The caption for panel g has been fixed to match the figure.



● We agree with the Reviewer that a significant correlation does not mean that the effect is strong.
Nonetheless, the conclusion of this section is that brain regions with similar molecular make-up
tend to be similarly affected across disorders. The key panels are panels c, e, and f where
correlation coefficients are >0.40 which we feel is strong enough evidence to make our
conclusion.

8) Typo in caption of Figure 1: "inihibitory".

Fixed.



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have been very responsive to my prior concerns and addressed them accordingly - I also 
thank the authors for their collegial response letter. I have only very minor residual comments, 

numbered according to my original review 

1. Although not relevant to the present paper, the lack of detailed phenotypic information that 

accompanies the ENIGMA data seems a challenge going forward. As a clinician, a binary segregation 
into patients and controls seems anachronistic and I hope efforts are made to address this, either 

through imputation on suitable subsamples, or changes to data acquisition practices prospectively. 

2. Is there any simple way of making formal inference on the trends shown in Figure S4 and the 

accompanying text. 

10. The simplest way of performing spatial resampling whilst preserving the correlation structure and 
not inflating the variance of the null distribution is through 2D spatial wavestrapping [1] - it's not clear 
to me why this relatively simple method has not been adopted into this fledgling field. 

Reference: 

1. Breakspear, M., Brammer, M. J., Bullmore, E. T., Das, P., & Williams, L. M. (2004). Spatiotemporal 

wavelet resampling for functional neuroimaging data. Human brain mapping, 23(1), 1-25. 

Reviewer #2 (Remarks to the Author): 

I want to congratulate the authors for such an elaborated rebuttal letter. They have addressed all my 
major concerns with additional analysis, and they have clarified the minor points: 

I agree with the authors that removing uncorrected p-values from the dominance analyses is a good 
approach since the aim of the analysis is to compare input variables. Otherwise, it could have been 

misleading. 

Authors have demonstrated that epicentre likelihood is not related to Euclidean distance. 

Statistical tests have been re-run using the spin method. 

Some of the concepts and methodological aspects have been clarified. 

In summary, my methodological concerns have been completely addressed and the resulting 
manuscript (together with the SM) will be of major interest to the neuroscience community. 

Reviewer #3 (Remarks to the Author): 

The authors have provided a revised version of the manuscript "Local molecular and global 
connectomic contributions to cross-disorder cortical abnormalities." The main conclusion of this paper 
is that local phenotypes in the brain (such as gene expression and mylenation) are better predictors of 

disease than global phenotypes (such as brain networks). This work is of interest to the neuroscience 
community. 



The authors have made many improvements to the manuscript since the last version, and answered 
reviewer questions in detail. The main improvements are: 

1) More comparison of results across the diseases examined. 

2) More analysis of the correlation structure of the predictors. 

3) Replication of results on an independent dataset: the Human Connectome Project (HCP). This 
involved a modern MRI technology, and provided validation of the main conclusion. 

This follow up work is high quality, and I don't have further comments. I did recommend a sex 

stratified analysis in my previous review, which was not done. But the authors have now discussed 
sex stratification in the discussion, and this may be an avenue of future work. 



Dear Reviewer, 

Thank you for the conditional acceptance of our revised submission. We feel the revision process was fair 
and considerably improved the manuscript. Here we respond to the remaining Reviewer comments, and
make minor changes to the manuscript. Reviewer comments are in bold font and our responses are in 
regular font. 

Reviewer #1 (Remarks to the Author): 

The authors have been very responsive to my prior concerns and addressed them accordingly - I 
also thank the authors for their collegial response letter. I have only very minor residual 
comments, numbered according to my original review 

1. Although not relevant to the present paper, the lack of detailed phenotypic information that 
accompanies the ENIGMA data seems a challenge going forward. As a clinician, a binary 
segregation into patients and controls seems anachronistic and I hope efforts are made to 
address this, either through imputation on suitable subsamples, or changes to data acquisition 
practices prospectively. 

We fully agree with the Reviewer that the lack of phenotypic information is a limitation of the ENIGMA 
datasets. The primary challenge lies in harmonizing cognitive and clinical measures. The ENIGMA 
consortium relies on collected data, and has well-established guidelines for harmonizing the processing
and analytic pipelines of neuroimaging and genetic data. However, guidelines for combining phenotypic
information across multiple cohorts remain unclear, in part because not all sites collect phenotypic data,
but more importantly because different groups have different assessment methods. One option would be
to convert site-specific cognitive/behavioural scores to a standardized score based on population mean
and standard deviation. Encouragingly, new ENIGIMA Working Groups (for example the Brain Injury 
Working Group) are putting together recommended practices for harmonizing phenotypic data (Wilde et
al., 2021, psyarxiv). These protocols will hopefully be adopted across all the Working Groups in the near
future. 

Wilde, E. A., Dennis, E. L., & Tate, D. F. (2021). The ENIGMA brain injury working group: Approach, 
challenges, and potential benefits. Brain imaging and behavior, 15(2), 465-474. 

2. Is there any simple way of making formal inference on the trends shown in Figure S4 and the 
accompanying text. 

We now conduct F-tests between two regression models with the same number of input variables to 
statistically compare whether one model performs better than another. In the case of the age-stratified 
analysis, we conduct the F-test between the adulthood stage and the adolescent stage (or pediatric, when
adolescence isn’t available). We find significant increases (i.e. F > Fcrit) for ADHD and depression using 
the molecular predictor set. For the Parkinson’s disease severity analysis, we do not find that the 
increase/decrease in model fit is statistically significant, so we mention this directly in the text and in the
figure caption. 

(“Results” section, “Local and global contributions to disorder-specific cortical morphology” subsection, 
Paragraph #4): 



“First, we tracked the model fit (R2
adj) of regression models that fit molecular/connectomic

features to pediatric, adolescent, and adult cortical abnormality profiles for the four
available disorders with this data (ADHD, bipolar disorder, depression, and OCD;
Supplementary Fig. 4a). We find that model fit is greatest in adulthood, except for OCD
which shows little change for connectomic predictors and a lower model fit in adulthood
for molecular predictors. Model fit significantly improves when molecular features are
used to predict cortical abnormality patterns of ADHD and depression (F > Fcritical,
one-sided). Next, focusing on disease severity, we show how model fit changes across
four levels of Parkinson’s disease severity (Hoehn and Yahr (HY) stages (Hoehn & Yahr,
1967); Supplementary Fig. 4b). Interestingly, we find that from stage HY2, molecular
predictors perform worse with disease severity whereas connectomic predictors perform
better (although note the changes in model fit are not statistically significant), supporting
the notion that Parkinson’s pathology is influenced by the spread of misfolded proteins on
the structural connectome (Luk et al., 2012, Henderson et al., 2019, Zheng et al., 2019).
Altogether, these analyses provide a more nuanced and transdiagnostic representation of
molecular and connectomic contributions to cortical disorder vulnerability.”

10. The simplest way of performing spatial resampling whilst preserving the correlation structure
and not inflating the variance of the null distribution is through 2D spatial wavestrapping [1] - it's
not clear to me why this relatively simple method has not been adopted into this fledgling field.

Spatial wavestrapping is theoretically a promising avenue for resampling the brain surface. However, 2D
spatial wavestrapping is designed for two dimensional data like fMRI slices. This method would have to
be extended to 3D surface data before it can be used in a similar manner as the spin test. A
surface-version of the 2D spatial wavestrapping method would no doubt be of great use to the
neuroimaging community but is beyond the scope of this study.

We mention alternative nulls in the text (“Methods” section, “Null models” subsection, Paragraph #1):

“Other methods for constructing spatial null models exist, such as generative models
(Burt et al., 2020) and 2D spatial wavestrapping (Breakspear et al., 2004).”

Reference:

1. Breakspear, M., Brammer, M. J., Bullmore, E. T., Das, P., & Williams, L. M. (2004). Spatiotemporal
wavelet resampling for functional neuroimaging data. Human brain mapping, 23(1), 1-25.


