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Abstract: Background:

Viruses are amongst the shortest yet highly abundant species that harbor minimal
instructions to infect cells, adapt, multiply, and exist. With the current substantial
availability of viral genome sequences, the scientific repertory lacks a complexity
landscape that automatically enlights viral genomes' organization, relation, and
fundamental characteristics.

Results:

This work provides a comprehensive landscape of the viral genome’s complexity (or
quantity of information), identifying the most redundant and complex groups regarding
their genome sequence while providing their distribution and characteristics at a large
and local scale. For this purpose, we measure the sequence complexity of each
available viral genome using data compression, demonstrating that adequate data
compressors can efficiently quantify the complexity of viral genome sequences,
including sub-sequences better represented by algorithmic sources (e.g., inverted
repeats). Using a state-of-the-art genomic compressor on an extensive viral genomes
database, we show that dsDNA viruses are on average the most redundant viruses
while ssDNA viruses are the lowest. Contrarily, dsRNA viruses show a lower
redundancy relative to ssRNA. We extend the ability of data compressors to quantify
local complexity (or information content) in viral genomes using complexity profiles,
unprecedently providing a direct complexity analysis to human Herpesviruses. We also
conceive a features-based classification methodology that can accurately distinguish
viral genomes at different taxonomic levels without using direct comparisons between
sequences. This methodology works by combining data compression with simple
measures such as GC-content percentage and sequence length followed by machine
learning classifiers.

Conclusions:

This manuscript’s presents methodologies and findings that are highly relevant for
understanding the patterns of similarity and singularity between viral groups, opening
new frontiers for studying viral genomes’ organization while depicting the complexity
trends and classification components of these genomes at different taxonomic levels.
The whole study is supported by an extensive website (  https://asilab.github.io/canvas/
) for comprehending the viral genome characterization using dynamic and interactive
approaches.
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Abstract
Background: Viruses are amongst the shortest yet highly abundant species that harbor minimal instructions to infect
cells, adapt, multiply, and exist. With the current substantial availability of viral genome sequences, the scientific
repertory lacks a complexity landscape that automatically enlights viral genomes’ organization, relation, and
fundamental characteristics.
Results: This work provides a comprehensive landscape of the viral genome’s complexity (or quantity of information),
identifying the most redundant and complex groups regarding their genome sequence while providing their distribution
and characteristics at a large and local scale. For this purpose, we measure the sequence complexity of each available
viral genome using data compression, demonstrating that adequate data compressors can efficiently quantify the
complexity of viral genome sequences, including sub-sequences better represented by algorithmic sources (e.g., inverted
repeats). Using a state-of-the-art genomic compressor on an extensive viral genomes database, we show that dsDNA
viruses are on average the most redundant viruses while ssDNA viruses are the lowest. Contrarily, dsRNA viruses show a
lower redundancy relative to ssRNA. We extend the ability of data compressors to quantify local complexity (or
information content) in viral genomes using complexity profiles, unprecedently providing a direct complexity analysis to
human Herpesviruses. We also conceive a features-based classification methodology that can accurately distinguish viral
genomes at different taxonomic levels without using direct comparisons between sequences. This methodology works by
combining data compression with simple measures such as GC-content percentage and sequence length followed by
machine learning classifiers.
Conclusions: This manuscript’s presents methodologies and findings that are highly relevant for understanding the
patterns of similarity and singularity between viral groups, opening new frontiers for studying viral genomes’
organization while depicting the complexity trends and classification components of these genomes at different
taxonomic levels. The whole study is supported by an extensive website (https://asilab.github.io/canvas/) for
comprehending the viral genome characterization using dynamic and interactive approaches.
Key words: Viruses; Genomics; Sequence-analysis; Data Compression; Phylogenetic-Tree; Viral Classification; Algorithmic
Information Theory

Introduction

Viruses are a strong drive force of life and evolution. On aver-
age, viruses are the shortest and most abundant life realm, be-
ing estimated in around 1031 particles while occupying almost
every ecosystem [1, 2, 3] and infecting all types of life forms,

namely eukaryotes and prokaryotes [4, 5].
The dependence on the host’s cell forces viruses to interact

with cellular pathways to successfully hijack and customise the
host cell machinery for viral production has generated a long-
standing effect of adaptation and counter-adaptation between
host and viruses for gene expression and nucleic acid synthe-
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Key Points

• We provide a comprehensive landscape of the viral genomes complexity.
• We demonstrate that data compressors can efficiently quantify the complexity of viral genome sequences, including sub-

sequences better represented by algorithmic sources.
• We identify the viral genomes with lower and higher quantity of inversions.
• We use minimal bi-directional complexity profiles as local measures of the viral genome.
• We present an in-depth complexity analysis of the human herpesviruses.
• We show that the viral genome redundancy, GC-content, and size are efficient features to accurately distinguish between

viral genomes at different taxonomic levels.
• Our work opens new frontiers for studying viral genomes’ complexity while depicting complexity trends in viral genomes.

sis. In addition to this co-evolution, during their replication,
viruses can perform horizontal gene transfer, increasing the
host species’ genetic diversity analogously to the process of
sexual reproduction [6].

Despite the significant impact that viruses have on the evo-
lution of living beings and the ecosystem, their understanding
is still relatively limited compared with other realms of life.
In particular, the complexity landscape of viruses is unknown.
What are the most redundant and complex viral DNA/RNA se-
quences? Which viruses contain more genetic inversions? How
does the complexity distribution of viruses describe their mor-
phology and behaviour? Additionally, analyzing the complexity
of the genome sequence may uncover important information
regarding viral processes and distinguish among viral charac-
teristics. Studying the complexity (or quantity of information)
of a DNA/RNA sequence requires efficient data compressors
that take into account the probabilistic and algorithmic char-
acteristics of the data.

Already, several studies have shown the high capability of
data compressors as approximations of complexity. In ge-
nomics, for example, it has been used to analyse the complex-
ity of different DNA genomes [7], perform rearrangement de-
tection [8] and sequence clustering [9], compute phylogenetic
trees [10], perform protein structure prediction [11], compare
biological networks [12], and utilised in metagenomic applica-
tions [13].

This manuscript presents an extensive complexity analysis
of the viral world through the automatic computational anal-
ysis of its genome complexity and associated characteristics.
Specifically, we use a genomic compressor to analyse the com-
plexity across viral taxonomies and quantify the algorithmic
information embedded in viral genome sequences better rep-
resented by small programs. Several questions arise when ad-
dressing this problem: How much information is present in a
viral genome? What is the best way to quantify the information
in a viral genome? What type of information can we retrieve
from analysing the complexity of the viral genome? To answer
them, we use unsupervised probabilistic and algorithmic in-
formation quantification in viral genomes. To achieve this, we
built a high-quality viral genomes database using the NCBI ref-
erence database with 12,168 complete reference genomes from
9,605 viral taxa.

To perform the complexity analysis of these genomes, we
made use of the state-of-the-art genome compressor GeCo3
[14]. We compressed each viral sequence using 19 different
levels and calculated its normalized compression (NC) to de-
termine the best models to perform the analysis. With this
level, we compare the compression of GeCo3 with one of the
best general-purpose compressors (PAQ8) and the Block De-
composition Method (BDM) on a synthetic sequence with em-
bedded inverted repeats (IRs). The results show that, unlike
other programs, GeCo3 is capable of detecting and compress-

ing IRs. We use this knowledge to analyse viruses regarding
their complexity and overall abundance of inverted repeats and
construct phylogenetic trees. We provide several insights into
patterns between the complexity and viral groups. Finally, we
show that these measurements can perform viral genome au-
thentication and classification with high accuracy without di-
rectly comparing the sequences but rather using the individual
features. We demonstrate that efficient data compression is
crucial for understanding the viral organization according to
the high reported classification accuracy.

This article is organized as follows. In the next section, we
describe this paper’s background and related work, followed by
a description of the methods. Then, we present the main re-
sults. Finally, we review the results obtained in the discussion,
draw conclusions, and point out possible future work lines.

Background

This manuscript shows that the efficient use of specific data
compressors to quantify data complexity (Kolmogorov com-
plexity) profoundly impacts viral genomes identification, clas-
sification, and organization. For introducing several concepts,
this section provides an overview of the viral nature, Kol-
mogorov complexity and data compression, and the role of in-
verted repeats (IR) in the genome sequence.

Viruses Microbiology

Viruses are submicroscopic biological infectious agents that re-
quire living cells of an organism to be active for replication [15].
Viruses can exist outside of their host in the form of indepen-
dent particles named virions, that are composed of the genetic
material (DNA or RNA) enclosed by the capsid, which is a pro-
tein shell that protects the viral genome while it is extracellular
and promotes its entry in the host cells [16].

The majority of the viruses possess capsids with helical (Fig-
ure 1 A) or icosahedral (1 B) arrangement [17, 18].

Other viruses, like bacteriophages, have developed other
structures composed by elongated capsids attached to a cylin-
drical tailed sheet (Figure 1 C) [19].

Others have an outer lipid bilayer named viral envelope (Fig-
ure 1 D), which is constituted by a modified form of the host’s
cell membranes. Viroids have naked genomes, without any
protective layer. Like viruses, they use the host’s machinery
for their replication, but their genomes do not encode proteins
[20]. Furthermore, some viruses are dependent on the pres-
ence of another virus species in the host cell to be transmitted
to new cells. They were named ’satellites’ and may represent
evolutionary intermediates of viroids and viruses [21, 22].

Viral genomes can be of double-stranded DNA (dsDNA),
single-stranded DNA (ssDNA), double-stranded RNA (dsRNA)
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Figure 1. Illustrations of types of virus morphology. Virus (A) is a helical virus,
where the capsoid has an helical shape that envelops the genomic material,
virus (B) is icosahedral following cubic symmetry , (C) is virus covered by a
viral envelop and (D) depicts a complex virus, namely a bacteriophage with a
prolate capsid protecting the genomic material.

or single-stranded RNA (ssRNA) nature, being linear or circular
molecules [23]. The ssRNA viruses can be further classified as
positive- or negative-ssRNA, depending on the sense of their
RNA strand. These features determine the viral replication and
mRNA synthesis pathways. For instance, (+)-ssRNA is directly
translated into proteins by the host cell’s ribosomes, acting as
mRNA. On the other hand, (-)-ssRNA needs to be converted to
a (+)-ssRNA by and RNA-dependent RNA polymerase (RdRp)
before translation. RdRp also transcribes dsRNA to mRNA (us-
ing the negative strand as template) and it is indispensable
for the replication of RNA viral genomes. Finally, ssDNA and
dsDNA normally make use of the host’s DNA-dependent RNA
polymerase to form mRNA. However, before this process, ss-
DNA is converted to a dsDNA by a DNA polymerase upon cell
invasion [24], which is also the enzyme involved in the repli-
cation of DNA viruses. The RdRps have a high error rate due
to their low proofreading activity and, therefore, replication of
RNA viruses is much more prone to mutation than that of DNA
viruses [25].

Viruses have a huge size variation, ranging from around 10
nm with small genomes to viruses with similar dimensions and
genome size of Bacteria and archaea [26, 27]. These viruses are
called giant viruses and contain many unique genes currently
not found in other life forms.

Although the origin of viruses is still uncertain, they play an
important role in the evolution of living organisms since they
are horizontal gene transfer vehicles, a biological phenomenon
that increases genetic diversity. It allows viral genetic material
to occasionally integrate into the host genomes being trans-
ferred vertically to its offspring. This property is so preponder-
ant in evolution that the origin of the eukaryotic nucleus might
be related with this process [28, 29, 30].

Additionally, viral genomic integration allows to infer the
evolutionary distance between hosts by observing the shared
virus integrated into their genomes. For instance, in humans,
viruses frequently establish persisting infections and imprint
their genetic material in the tissues throughout life, display-
ing phylogeographies patterns. These can be used as markers
to better understand the human population history and migra-
tions and provide new insights into unidentified individuals’
origins in both global and local scales [31]. In this respect, the
JC polyomavirus is one of the most comprehensively studied
virus. Its genotype-specific global spread has been suggested
to indicate the origins of modern [32] and ancient humans
[33, 34, 35]. Furthermore, a worldwide study supported the
co-dispersal of this virus with major human migratory routes
and its co-divergence with human mitochondrial and nuclear
markers [36].

Thus, performing computer analysis of viral and host DNA
sequences is fundamental to understand the evolutionary re-
lationships between different viruses and their hosts, identify
the ancestors of modern viruses, and better understand their
behavior and function. Also, the genomic sequences encode not
only production of proteins, but also their high-dimensional

folding structure [37, 38]. Therefore, the direct study of vi-
ral genome sequences also develops the knowledge of the viral
mechanism of protein formation and assembly.

Inverted Repeats

IRs are nucleotide sequences that have a downstream reverse
complement copy, causing a self-complementary base pairing
region [39]. Consequently, IRs normally fold into different
secondary structures (hairpin- and cruciform-like structures,
pseudoknots) that participate or interfere in many cellular pro-
cesses in all forms of life, including DNA replication [40, 25].
Due to these traits, IRs perform an essential role in genome
instability [41], which contributes to mutability. In the short
term, this mutability can create diseases [42], but across long
periods lead to cellular evolution, and genetic diversity [43].
In many viruses, IRs in the form of pseudoknots are involved
in ribosomal frameshifting, a translational mechanism that al-
lows the production of different proteins encoded by overlap-
ping open reading frames (ORFs) of the same mRNA [44, 45].
This feature allows them to encode a larger amount of genetic
information in small genomes and constitutes another level of
gene regulation [46]. The genomes of some viruses, such as
parvovirus, are flanked by inverted terminal repeats (ITRs) that
form hairpin structures functioning as a duplex origin of repli-
cation sequence [40, 47]. Therefore, these ITRs contain most of
the cis-acting information needed for viral replication as well
as viral packaging [47]. In adeno-associated viruses, ITRs are
essential for intermolecular recombination and circularization
of genomes [48]. IRs can also function as termination tran-
scription signals, especially in giant viruses [49, 50].

Kolmogorov Complexity and Data Compression

Solomonoff, Kolmogorov, and Chaitin [51, 52, 53, 54] described
the notion of complexity by showing that there is at least one
optimal algorithm among all the algorithms that decode strings
from their codes. For all strings, this algorithm allows codes as
short as any other, up to an additive constant that depends only
on the strings themselves. Concretely, algorithmic information
is a measure that quantifies the information of a string x by
determining its complexity K(x) by

K(x) := min
p

{l(p) : U(p) = x}, (1)
where K(s) is defined by a shortest length l of a binary pro-

gram p that computes the string x on a universal Turing ma-
chine U and halts [53]. This notion that the complexity of a
string can be defined as the length of a shortest binary pro-
gram that outputs that string was universally adopted and is
the standard to perform information quantification. It differs
from Shannon’s entropy because it recognises that the source
creates structures which follow algorithmic schemes [55, 56],
rather than regarding the machine as generating symbols from
a probabilistic function.

While the Kolmogorov complexity is non-computable, it can
be approximated with programs for such purpose. A possi-
ble approximation is the Coding Theorem Method (CTM) [57],
and its improved version, the Block Decomposition Method
(BDM) [58], which approximate local estimations of algorith-
mic complexity providing a closer relationship to the algorith-
mic nature. This approximation decomposes the quantification
of complexity for segmented regions using small Turing ma-
chines [57]. For modelling the statistical nature, such as noise,
it commutes into a Shannon entropy quantification. This ap-
proach has shown encouraging results for many distinct pur-
poses [59, 60, 61].
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The classical approximation of the Kolmogorov complexity
is performed using data-compressors with probabilistic and al-
gorithmic schemes. Data compressors are a natural solution to
measure complexity, since, with the appropriate decoder, the
bitstream produced by a lossless compression algorithm allows
the reconstruction of the original data and, therefore, can be
seen as an upper bound of the algorithmic complexity of the
sequence. For a definition of safe approximation, see [62].

In genomics, sequences can be codified as messages using
a four symbol alphabet (Σ = {A, C, G, T} for DNA sequences
and Σ = {A, C, G, U} for RNA sequences). These messages con-
tain instructions for survival and replication of the organism,
its’ morphology and historical marks from previous genera-
tions [63]. Initially, genomic sequences were compressed with
general-purpose data-compressors such as gzip [64], bzip2
[65], or LZMA[66]. However, this paradigm shifted towards
using a specific compression algorithm after introducing Bio-
Compress [67]. Genomic compressors can outperform general-
purpose compressors since they are designed to consider spe-
cific genomic properties such as the presence of a high number
of copies and substitutional mutations, and multiple rearrange-
ments, such as inverted repeats [68, 69].

Given this advantage of using specific compressors for the
compression of genomic data, several algorithms have emerged
to model these genomic data behaviours [70]. Specifically, al-
gorithms have been created that model repetitions and inverted
repetitions in the genome regions through simple bit encoding,
dictionary approaches and context modelling [71, 72, 73, 74, 75,
76, 77, 78, 79, 80, 81].

Currently, the state-of-the-art genomic compressors ap-
ply statistical and algorithmic model mixtures combined with
arithmetic encoding. The best compression ratio performance
for various genomic sequences is provided by XM [82], Jarvis
[83], and Geco3 [14]. The XM compressor [82] uses three types
of experts: repeat models, a low-order context model, and
a short memory context model. On the other hand, Jarvis
[83] uses a competitive prediction model that estimates for
each symbol the best class of models to be used. There are
two classes of models: weighted context models and weighted
stochastic repeat models, where both classes of models use
specific sub-programs to handle inverted repeats efficiently.
Finally, GeCo3 [14], currently the best performing reference-
free compressor, uses neural networks to improve upon the
results of specific genomic models of GeCo2 [84]. Specifically,
the neural networks are used in mixing multiple contexts, and
substitution-tolerant context models of GeCo2 [84]. Further-
more, GeCo3 possess embedded subprograms capable of detect-
ing genome-specific patterns, such as inverted repeats.

Methods

This section describes the measures used in this paper. Specif-
ically, we first define information-based measures: the Nor-
malized Block Decomposition Method, the Normalized Com-
pression (NC) with different subprograms, the normalized
compression capacity (NCC), the difference between NCs, and
the minimal bi-directional complexity profiles. Afterwards,
we define the GC-Content, and the compression benchmark
performed. Finally, we described the classification pipeline.
Specifically, the features and classifiers used and the metrics
utilized for evaluating the model’s performance.

Information-based measures

This section describes two approximations of the Kolmogorov
complexity, one based on the decomposition of a string into

blocks and their approximation based on the output of small
Turing machines (Block Decomposition Method) and another
based on data compression. The data compression approach
was utilized to compute the Normalized Complexity and con-
struct the minimal bi-directional complexity profiles. There-
fore, we describe the Normalized Compression (NC), the min-
imal bi-directional complexity profiles, and the Normalized
Block Decomposition Method (NBDM), in this subsection.
Normalized Block Decomposition Method (NBDM)
A possible approximation of the Kolmogorov complexity is
given by using small Turing machines (TM), which approxi-
mate the components of a broader representation. The Coding
Theorem Method (CTM) uses the algorithmic probability be-
tween a string’s production frequency from a random program
and its algorithmic complexity. The more frequent a string
is, the lower its Kolmogorov complexity, and the lower fre-
quency strings have, the higher Kolmogorov complexity is. The
Block Decomposition Method (BDM) increases the capability of
a CTM, approximating local estimations of algorithmic infor-
mation based on Solomonoff-Levin’s algorithmic probability
theory. In practice, it approximates the algorithmic informa-
tion and, when it loses accuracy, it approximates the Shannon
entropy. Since in this article we use BDM to perform a com-
parison with the Normalized Compression, we considered the
normalization of the BDM (NBDM) according to [85]. In this
case, the NBDM is computed as

NBDM(x) = BDM(x)
|x| log2 |A| = BDM(x)

2× |x| . (2)

where x is a string, BDM(x) is the BDM value of the string, |A|
the number of different elements in x (size of the alphabet)
and |x| the length of x. Since we have a four symbol alphabet
(Σ = {A, C, G, T} for DNA sequences and Σ = {A, C, G, U} for RNA
sequences), |A| = 4, log2 4 = 2. Although BDM has difficulty
dealing with full information quantification due to the block
representability, it has proven to be a helpful tool for measur-
ing and identifying data content similar to simple algorithms
[85].
Normalized Compression (NC)
An efficient compressor, C(x), provides an upper bound approx-
imation for the Kolmogorov complexity (K(x)), where K(x) <
C(x) ≤ |x| (|x| is the length of string x in the appropriate scale).
Usually, an efficient data compressor is a program that approx-
imates both probabilistic and algorithmic sources using afford-
able computational resources (time and memory). Although
the algorithmic nature may be more complex to model, data
compressors can have embedded sub-programs to handle this
nature. The normalized version, known as the Normalized
Compression (NC), is defined by

NC(x) = C(x)
|x| log2 |A| = C(x)

2× |x| , (3)

where C(x) is the compressed size of x in bits. Given the nor-
malization, the NC enables to compare the proportions of infor-
mation contained in the strings independently from their sizes
[7]. If the compressor is efficient, then it can approximate the
quantity of probabilistic-algorithmic information in data using
affordable computational resources. In our work, to determine
the NC, we made use of the state-of-the-art genome compres-
sor GeCo3 [14], with the level that yielded the best average re-
sults (benchmark provided in the results section).

Besides the computation of the NC using the standard con-
figuration of this model, we also computed the NC using GeCo3
with three subprogram configurations. These subprogram con-
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figurations address the use or absence of inverted repetitions,
namely:
• IR0 → uses the regular context model without IR detection;
• IR1→ uses IR detection simultaneously with the regular con-

text model;
• IR2 → uses IR detection sub-program without regular con-

text models.
There was a need to determine the sequences with the

highest normalized compression capacity (NCC) in some cases.
When the compressor was only using the subprogram IR2, NCC
was computed as NCCIR2 (x) = 1 – NCIR2 . Only positive values
were considered to filter computations where the compressor
could not compress the sequence sufficiently. Another measure
used to quantify inverted repeats was the difference between
NCIR0 and NCIR1 .
Minimal bi-directional complexity profiles
A complexity profile is a numerical sequence describing for
each symbol (xi) of a sequence x the number of bits required
for its compression assuming a causal order [86]. A minimal
bi-directional complexity, B(x), profile assumes the minimal
representation of compressing the sequences using both direc-
tions independently, namely −→C (xi) as from the beginning to
the end of the sequence, and ←−C (xi) as from the end to the be-
ginning. Accordingly, these profiles are defined as

B(xi) = min{−→C (xi),←−C (xi)}. (4)
The construction of these profiles follows a pipeline formed

of many transformations, including reversing, segmenting, in-
verting, and the use of specific low-pass filters after data com-
pression to achieve better visualization. For computing these
profiles, we use the GTO toolkit [87].

The generation of these profiles is robust to localize specific
features in the sequences, namely low and high complexity se-
quences, inverted repeat regions, duplications, among others.

Other Measures

The two other measures used to perform viral analysis and clas-
sification are the GC-Content (GC) and the length of the viral
genome |x|.

GC-Content (GC) represents the proportion of guanine
(G) and cytosine (C) bases out the quaternary alphabet
{A, C, G, T/U}. This includes thymine (T) in DNA and uracil (U)
in RNA. The GC percentage is given by the number of cytosine
(C) and guanine (G) bases in a viral genome x with length |x|
according to

GC(x) = 100
|x|

|x|∑
i=1
N (xi||xi ∈ Ξ), (5)

where xi is each symbol of x (assuming causal order), Ξ is a
subset of the genomic alphabet containing the symbols {G, C}
and N the program that counts the numbers of symbols in Ξ.

GC-content is variable between different organisms. In ad-
dition, the GC-content value correlates with the organism’s
life-history traits, genome size [88], and GC-biased gene con-
version [89]. As such, this measure is useful to perform viral
classification. Furthermore, an organism with a genome high
in GC-content is rich in energy and more prone to mutation.
Thus, over time, a species tends to decrease its GC-content to
become more stable [90], giving us further information regard-
ing viral characterization.

Data Description

The dataset is composed of 12,163 complete reference genomes
from 9,605 viral taxa retrieved from NCBI database on 22 of Jan-
uary 2021 using the following url https://tinyurl.com/ncbidtbs.
The download was performed in a custom manner to re-
trieve the taxonomic id, host and geolocation of each refer-
ence genome. The metadata header was removed from each
sequence using the GTO toolkit [87], where any nucleotide out-
side the quaternary alphabet {A, C, G, T/U}, was replaced by a
random nucleotide from the quaternary alphabet. Notice that
the sequences with symbols outside the alphabet are scarce.
Finally, the type of genome and the taxonomic description of
each sequence were retrieved using Entrez-direct [91].

Then, the retrieved NCBI sequences were filtered to remove
possibly contaminated or poorly sequenced sequences. Firstly,
using the taxonomic metadata, sequences that did not hold
complete taxonomic information down to the genus rank and
any sequences that maintained a taxonomic description of un-
classified were removed. Secondly, a filter was applied to re-
move outlier sequences. Specifically, after computing all se-
quences’ length, GC-Content, and Normalized Complexities,
sequences whose measure fell outside µ±3×σ (approximately
0.03% of all sequences) of any measure were removed. After
filtering, 6,091 of the initial 12,163 sequences were kept.

Compression Model Benchmark

We selected a total of 19 levels of models to determine the best
level configuration to compress the viral sequences. These lev-
els correspond to the default 13 levels of the GeCo3 compressor
and 6 others built for this task. The list of the levels used are
shown in Table S1, and the description of parameters can be
found in Table S2. The 13 default levels of the compressor have
increasingly higher complexity and take longer to run since
they use higher context models. Therefore, since the first and
lightest level performed best, the other six custom-build levels
were also built with small models.

Classification

We tested several machine learning algorithms to perform the
genomic and taxonomic classification task, namely, the classi-
fiers used were Linear Discriminant Analysis (LDA) [92], Gaus-
sian Naive Bayes (GNB) [93], K-Nearest Neighbors (KNN) [94],
Support Vector Machine (SVM) [95], and XGBoost classifier
(XGB)[96].

Linear Discriminant Analysis is a generalization of Fisher’s
linear discriminant, a method used in statistics and other fields,
to find a linear combination of features that separates classes of
objects. The resulting combination can be used as a linear clas-
sifier [92]. Gaussian Naive Bayes is defined as a supervised ma-
chine learning classification algorithm based on the Bayes the-
orem following Gaussian normal distribution [93]. K-Nearest
Neighbors is another approach to data classification, taking
distance functions into account and performing classification
predictions based on the majority vote of its neighbors [94].
Support Vector machines are supervised learning models with
associated learning algorithms that construct a hyperplane in
a high-dimensional space using data and perform classifica-
tion [95]. Finally, XGBoost [96] is an efficient open-source
implementation of the gradient boosted trees algorithm. Gra-
dient boosting is a supervised learning algorithm that predicts
a target variable by combining the estimates of a set of simpler
models. Specifically, new models are created that predict the
residuals or errors of prior models and then added together to
make the final prediction. This task uses a gradient descent

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Viruses,%20taxid:10239&SourceDB_s=RefSeq&GenomeCompleteness_s=complete&CreateDate_dt=1998-01-01T00:00:00.00Z%20TO%202021-01-22T23:59:59.00Z
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algorithm to minimize the loss when adding new models. XG-
Boost can use this method in both regression and classification
predictive modeling problems.

The accuracy and weighted F1-score were used to select and
evaluate the classification performance of the measures. Accu-
racy is the proportion between correct classifications and the
total number of cases examined, while the F1-score is com-
puted using the precision and recall of the test. We utilized the
weighted version of the F1-Score due to the presence of imbal-
anced classes.

For comparison of the obtained results, we assessed the out-
comes obtained using a random classifier. For that purpose, for
each task, we determined the probability of a random sequence
being correctly classified (phit) as

phit =
n∑

i=0
[p(ci) ∗ pcorrect(ci)], (6)

where p(ci) is the probability of each class, determined as

p(ci) = |samplesclass||samplestotal| .

On the other hand, pcorrect(ci) is the probability of that class
being correctly classified. In the case of a random classifier,

pcorrect(ci) = 1
|classes| .

Results

The results reported in this manuscript can be computed using
the minimal characteristics described in Supplementary Sub-
section entitled Software and Hardware recommendations and
using the procedures described in Supplementary Subsection
entitled Reproducibility. The following subsections describe
the data, the compression level selection benchmark, the syn-
thetic sequence benchmark, the viral genome analysis and phy-
logenetic trees, and the viral classification application.

Level selection benchmark

Viral genomes have specific characteristics, for example, short
length, high average complexity, and specific structures, that
require the proper optimization of the data compressor to pro-
vide higher modeling adaptability and efficiency. GeCo3 is
a state-of-the-art genomic compressor that contains many
types of compression levels [14]. Herein, we used this tool to
compress each viral genome from the dataset using 19 different
levels and computed its normalized compression (NC).

We evaluated the frequency where each level yielded the
lowest NC (provided the best compression for a given sequence;
Figure 2 A) and determined the sum of the NC from the com-
pression of all reference genomes for each model (Figure 2 B).
Overall, level 16 was selected because it provided the lowest NC
on average (selected 28.38% as the best compression level) and
provided the lowest sum of the NC from compressing all refer-
ence genomes. This level is constituted by a mixture using a
neural network with the following models:
• Model 1→ context-order of 1, alpha parameter of 1 (without

inverted repeats), and gamma parameter of 0.7;
• Model 2 → context-order of 12, alpha parameter of 1/50

(with inverted repeats), and gamma parameter of 0.97.
The chosen level is constituted by two models with a small
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Figure 2. Selection of a level for GeCo3 from a pool of 19 levels. A depicts the
frequency where each level provided the best NC results, and B shows for each
level the sum of the NC from the compression of all reference genomes. For
better visualization, visit the website https://asilab.github.io/canvas/.

and average context model. This configuration performed bet-
ter because most of the viral genomes are small and compact,
where repetitions and IRs are usually separated by a small
genomic space. Therefore, the depth of the models is more
adapted to provide higher efficiency to the average of the vi-
ral genomes than, for example, a higher context model (higher
than 13) that can perform marginally better in more extensive
and repetitive sequences but that loses sensitivity in the aver-
age of the genomes.

Synthetic sequence benchmark

Viral genomes can contain IRs that are subsequences better de-
scribed using simple algorithmic approaches. To benchmark
the capability of different programs to quantify IRs accurately,
we created a genomic sequence of 10,000 nucleotides in which
the last 5,000 were inverted repeats of the first 5,000. This
sequence was mutated incrementally from 0% to 10%, mean-
ing that the number of IRs will decrease with the increase of
nucleotide substitutions. For each sequence, the NC was com-
puted with (Figure 3): i) GeCo3, without and with IR detection
program (IR0 and IR2, respectively) and ii) PAQ8 data compres-
sor (one of the best general-purpose data compressors). Addi-
tionally, the Normalized Block Decomposition Method (NBDM)
was also computed, as a measure more prone for the algo-
rithmic nature quantification. Results show that GeCo3 with
the IR2 subprogram compresses the sequences better than the
other programs since its NC is lower at 0% mutational rate (Fig-
ure 3). NBDM can also not detect the IRs because it provides
the same high value across all sequences with various mutation
rates. It is also evident that GeCo3 with IR2 can detect IRs even
in the presence of substantial mutations (5% of mutation) and
takes into account different levels of nucleotide substitutions
because increases with the increase of the mutational rate (i.e.
decrease of IRs). The difference between NCIR0 and NCIR1 , both
computed with GeCO3, was also analyzed. Its profile is inverse

https://asilab.github.io/canvas/
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to the IR2 and confirms that nucleotide substitutions’ accumu-
lation decreases the number of IRs in the sequence.
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Figure 3. Plot describing the variation of Normalized Compression (NC) and
Normalized Block Decomposition Method (NBDM) with an increase of mutation
rate of a sequence (0%-10%). The NC was computed using the state-of-the-
art genomic compressor (GeCo3 [14]) and a general-purpose compressor (PAQ8
[97]). The NBDM is depicted by a red line and the NC value using PAQ8 by a
purple line. Furthermore, the GeCo3 compressor with (IR2) and without the
IR detection subprogram (IR0) is shown in orange and blue lines, respectively.
Finally, the green line shows the difference between NCIR0 – NCIR1 .

Viral genome analysis and Phylogenetic trees

The core of the viral genomes was analyzed in terms of com-
plexity landscape, including the trends, singularities, and pat-
terns for both the use or absence of IRs. The NC, using GeCo3,
with IR0, IR1 and IR2 subprograms was determined and the
NCCIR2 was calculated. The outcome was interpreted accord-
ing to the genome type or the taxonomic group, together with
the average of their genome sizes (Figure 4 and Table S3). No-
tice that the NC enables to compare proportions of the absence
of redundancy independently from the sizes of the genomes.
This value is complementary to the normalized redundancy.
Specifically, consider the redundancy (R) of a sequence x, as
R(x) = log2(A)|x|–C(x), where |x| is the length of the sequence,
A is the cardinally of the sequences’ alphabet and C(x) is the
compressed size of x in bits, and the normalized redundancy
(NR) as NR(x) = 1–(C(x)/log2(A)|x|).
Complexity landscape according to genome type
According to NCBI, the virus’s genomes herein analyzed are
of five types: dsDNA, ssDNA, dsRNA, ssRNA and mixed-DNA.
Results show that ssDNA, followed by mixed-DNA and dsRNA
viruses, are the genomes with higher NC, whereas dsDNA
genomes have the lowest (Figure 4 A; Table S3). In general,
smaller genomes are less complex and are more likely to con-
tain fewer repeats and, hence, less redundancy, and the ss-
DNA, mixed-DNA and dsRNA genomes have smaller average
sequence lengths (3282 bp, 3258 bp, and 8377 bp; Table S3).

According to the NCC and the NCIR0–NCIR1 difference results,
dsDNA and ssDNA have most significant quantities of IRs than
the other genome types. This can be due to ITRs present at
the ends of some dsDNA viruses, such as Adenovirus and Am-
pullaviruses, and ssDNA virus as Parvoviruses, or other IRs
structures important that perform ribosomal frameshifting.

Complexity landscape according to taxonomic level
In complexity analysis of viral genomic sequences, when con-
sidering the Realm taxonomic level (Figure 4 B), the lowest NC
values were obtained for Adnaviria, Varidnaviria and Duplod-
naviria (Table S4 and S5). These results are consistent with
the genomic grouping since they are composed exclusively of
dsDNA viruses and have the highest sequence lengths. Thus,
generally, an inverse correlation between genome size and NC
was also observed as with the genome type analysis (Figure 4 A
and B) and occurs across all taxonomic levels (Table S5). How-
ever, within these three Realms, Adnaviria has the lowest se-
quence length and presented a lower NC than Varidnaviria and
Duplodnaviria, suggesting that the last are highly complex.

Regarding IRs, Adnaviria was the realm where the highest
compression was obtained using the IR2 subprogram (highest
rate of IRs; Table S6). Consequently, its only recognized king-
dom, Zilligvirae, has also one of the highest NCC values (Ta-
ble S6). Adnaviria is a realm constituted of mostly A-form
dsDNA viruses, and the ends of their genomes contain ITRs
[98]. A-form is proposed to be an adaptation allowing DNA sur-
vival under extreme conditions since their hosts are hyperther-
mophiles and acidophiles microorganisms from the archaea
domain [98, 99]. The fact that Adnaviria presented the low-
est NC might indicate that their genomes require redundancy
to survive such extreme environments. The kingdom Trapavi-
rae, belonging to the realm Monodnaviria, is also composed by
dsDNA viruses that infect halophilic archaea. Together with
kingdom Zilligvirae, Trapavirae presented the highest differ-
ence between IRs and standard compression (Table S7). These
results also support the fact that IRs can stabilize the DNA of
viruses that exist in extreme environments. It has already been
demonstrated that archaeal viruses with linear genomes use
diverse solutions for protection and replication of the genome
ends, such as including covalently closed hairpins and terminal
IRs [100].

At the family level, Botourmiaviridae presented the high-
est complexity, followed by Alphasatellitidae and Tolecusatel-
litidae families (Table S5). Botourmiaviridae is composed of
ssRNA viruses that infect plants, and filamentous fungi [101].
Curiously, plants and fungi have higher redundancy despite
the lower redundancy of their pathogens. Alphasatellitidae and
Tolecusatellitidae are families of satellite viruses that depend
on the presence of another virus (helper viruses) to replicate
their genomes. These satellite viruses have minimal genomes,
making sense that they possess very low redundancy. Re-
garding IRs, Malacoherpesviridae, Herpesviridae, and Rudiviri-
dae contained the highest NCIR0–NCIR1 difference (Table S7).
Malacoherpesviridae and Herpesviridae are dsDNA viruses evo-
lutionarily close since they belong to the order Herpesvirales
[102]. Malacoherpesviridae encompasses the genera Aurivirus
and Ostreavirus, which infect molluscs. Herpesviridae are also
known as herpesviruses and have reptiles, birds and mammals
as hosts. This family will be discussed in more detail in the
following subsection. Rudiviridae is a family of viruses with
linear dsDNA genomes that also infect archaea. The virus of
these families are highly thermostable and can act as a tem-
plate for site-selective and spatially controlled chemical mod-
ification. Furthermore, the two strands of the DNA are cova-
lently linked at both ends of the genomes, which have long
ITRs [103]. Again, these IRs could be an adaptation to stabilize
the genome.
Complexity landscape of the family Herpesviridae
Here we analyzed the complexity landscape of the genera of
the family Herpesviridae in more detail, and results show a
significant variation between them (Figure 5 A). Mardivirus
had the highest NCIR0 – NCIR1 difference among all viruses,
and only other three genera (out of thirteen) of herpesviruses
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were within the ten highest differences list (Table S7). Indeed,
the genus Mardivirus had the highest compression, whereas
the genus Lymphocryptovirus possessed very low compres-
sion with the IR2 subprogram. We performed the minimal bi-
directional complexity profiles of one sequence of each virus to
visualize their distribution of complexity locally (Figure 5 C).
As we can see, Human herpesvirus 4 (also known as Epstein-
Barr virus) has more internal repeats (Figure 5 C, IR0 profile)
detected and fewer IRs (Figure 5 B; IR2 profile). The opposite
occurs with the Falconid herpesvirus-1 strain S-18, where IRs
are more prominent than internal repetitions. Furthermore,
notice that these regions determined with compression profiles
coincide with actual regions detected in the genome with other
methods (Figure 5 C; first profile).

A particular group of family Herpesviridae are the human
herpesviruses (HHVs). These viruses are involved in globally
prevalent infections and cancers and characterized by lifelong
persistence with reactivations that can potentially manifest
life-threatening conditions [104]. Globally, the HHVs present
a higher redundancy relative to other viruses (Figure 5 B).
These viruses are divided into: i) the alpha-subfamily mem-
bers, namely herpes simplex virus type 1 and 2 (HSV-1 and HSV-
2) and varicella-zoster virus (VZV), ii) the beta-subfamily of
human cytomegalovirus (HCMV) and human herpesviruses 6A,
6B, and 7 (HHV-6A, HHV-6B, and HHV-7) and iii) the gamma-
subfamily of Epstein-Barr virus (EBV) and Kaposi’s sarcoma-
associated herpesvirus (KSHV). Specifically, the EBV, one of the
most potent cell transformation and growth-inducing viruses
known, capable of immortalizing human B lymphocytes, con-
tains a higher redundancy than the other HHVs (Figure 5
B). The other gamma-herpesvirus, KSHV, is the genome with
the highest NCIR1 (Figure 5 B). Unlike the beta- and gamma-
subfamilies, the alpha-subfamily is characterized by a sub-
stantial quantity of IRs, as suggested by the NCs with IR1and IR2 configurations (Figure 5 B). The VZV has the short-
est genome and the highest NC within this group. These dif-
ferences might be justified by the different rates of evolution
within these genomes [105]. Considering the beta-subfamily
members, HCMV contains a small proportion of IRs while hav-
ing a substantial-high NC relative to most other HHVs being
analyzed. Since the HCMV has the largest genome, this was
surprising because the NC typically has an inverse correlation
with the genome size and the quantity of IRs. The other beta-
subfamily members are the Human Herpesvirus 6A, 6B, and
7, which produced lower NCs (with IR1 and IR2 configurations)
compared to the other HHVs, with a low quantity of IRs, an

effect that their integrating function might favour. For in-
stance, HHV-6A and 6B integrate their genomes into the telom-
eres of latently infected cells [106, 107]. Thus, their genomes
contain subsequences similar to the human telomere regions
that can be formed by internal nucleotide repetitions [108]. As
such, these are sequences with very low complexity and, hence,
highly compressible.
Alternative visualization methods of the viral complexity landscape
Phylogenetic trees were generated depicting the redundancy
(NC; Figure 6 A) and the prevalence of inverted repeats (NCC;
Figure 6 B) on each taxonomic branch. In addition, we per-
formed the same analysis to portray the relation between in-
verted and internal repetitions (Figure S1). These phylogenetic
trees show the broad picture of the regions with more complex
and less redundant sequences, regions rich in inverted repeats,
and regions with a higher prevalence of inverted repeats rela-
tive to standard repetitions in the genomes.

Another way to analyze the results is by producing 3D-
scatter plots of randomly sampled values obtained from com-
puting the features sequence length (SL), NC and GC-content
(GC; Figure 7 A) or 2D-scatter plots of their projections (Fig-
ure 7 B and 7 C), both concerning a particular taxonomic level
(herein Realm). Analyzing the sequence length projections
(Figure 7 B), it is evident that there is a logarithmic downtrend
of the NC with the increase in sequence length. Thus, although
longer sequences have, on average, greater complexity (abso-
lute quantities), they have higher redundancy, which the data
compressor takes advantage of to perform a better compres-
sion. On the other hand, the NC vs the GC-content displays a
normal distribution around the 0.5 GC-mark, with higher com-
plexities associated with similar frequency of occurrence of the
four bases A, C, G, T/U (Figure 7 C). This result also makes sense
since, in principle, a well-distributed frequency of bases makes
more complex sequences to compress. More importantly, the
NC, GC and SL seem to discriminate between different taxo-
nomic groups (Figure 7). As such, in the following section, we
analyze the classification capability of these features.

Viral Classification

In this section, we performed eight different classification
tasks for each viral sequence from the dataset. Specifically, the
sequences were classified regarding their genome type, realm,
kingdom, phylum, class, order, family, and genus.

We conducted a random 80-20 train-test split on the

https://asilab.github.io/canvas/
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Figure 5. Average Normalized Compression (ANC) and average sequence length per the genera of the Herpesviridae family (A) and for various Human Herpesviruses
(from type 1 to 8, B). In the boxplot where the genera of the Herpesviridae family are displayed, two genera were selected, one with a low level of inverted repeats
(Lymphocryptovirus) and one with a high (Mardivirus). Then, a representative reference sequence was selected (Lymphocryptovirus - Human herpesvirus 4 or
EBV, NCBI Reference Sequence: NC_024450.1; Mardivirus - Falconid herpesvirus 1 strain S-18, NCBI Reference Sequence: NC_009334.1) and created minimal
bi-directional complexity profiles (C).

dataset to perform viral classification. Due to classes being im-
balanced in the dataset, several actions were performed. First,
we did not consider classes with less than four samples. As
such, depending on the classification task, the number of sam-
ples decreased from 6,091 to the values shown in Table S8 (N.
Classes column). Secondly, we performed the train-test split
in a stratified way to ensure the representability of each la-
bel in the train and test sets. Finally, instead of performing
k-fold cross-validation, we performed the random train-test
split fifty times, and we retrieved the average of the evaluation
metrics. Then, we computed the Accuracy and the Weighted
F1-score to select the best performing method.

As described in the method section, we applied 5 types
of classifiers: Linear Discriminant Analysis (LDA) [92], Gaus-
sian Naive Bayes (GNB) [93], K-Nearest Neighbors (KNN) [94],
Support Vector Machine (SVM) [95] and XGBoost classifier
(XGB)[96].

Furthermore, we performed classification using seven dif-
ferent features: sequence length (SL), GC-content (GC), the
Normalized Compression (NC) values for the best performing
model, and the NC of the same model with IR configuration to
0, 1 and 2.

These seven features were fed to all the classifiers, and the
accuracy and weighted F1-score were measured to determine
which classifier was best suited for this task.

Tables S8 and S9 depict the accuracy and weighted F1-score
values obtained for each classifier. For all classification tasks,
the best performing classifier was the XGBoost classifier.

Following this, we analyzed if all features were necessary.
For that purpose, the XGBoost classifier was used with only
the NC feature, the NC with SL and GC, and finally, using all
features. The obtained accuracies are shown in Table 1, and
the weighted F1-score results are shown in Table S10. Except
for the genome classification, where the usage of the NC, GC

and SQ provided slightly better results than using all features,
the remaining results yielded the best result when using all fea-
tures. This improvement increased when the number of classes
was higher, demonstrating that the different compression sub-
programs (IR0, IR1, and IR2) are more helpful in classifying
more specific taxonomic groups.

Regarding the results, there is decrease in accuracy and
F1-score when there is an increase in the number of classes.
Specifically, we obtained the best performance in the realm
classification of the virus (accuracy - 92.41%, F1-score -
0.9214) and our lowest performance in genus classification (ac-
curacy - 68.42%, F1-score - 0.6525). This decrease is mainly
because the average number of samples per class decreases as
the number of classes increases. As such, many classes may
have insufficient number of samples to be accurately classi-
fied. Figure S2 represents the number of samples (genome se-
quences) per viral genus. We minimized this impact by remov-
ing classes from the classification that possessed less than four
samples. Furthermore, part of the classification inaccuracies
can be explained by possible errors in the assembly process of
the original sequence or eventual sub-sequence contamination
of parts of the genomes. Moreover, other inaccuracies could be
due to several genomes being reconstructed using older meth-
ods that have been improved since then [109].

As far as we know, this is the first attempt at performing
this type of reference-free classification. As such, for com-
parison purposes, we assessed the outcomes obtained using a
random classifier. Specifically, for each task, we determined
the probability of a random sequence being correctly classified
(phit). Overall there is a vast improvement relative to the ran-
dom classifier, showing the importance of the features used
in the classification process. These classification results seem
promising, showing that this metric can be utilized for viral
taxonomic classification if enough sequence samples are pro-
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Figure 6. Phylogenetic tree showing average NC of each viral group (A), and the normalized compression capacity (NCC) (B). NCC results were obtained by
NCC = 1 – NCIR2 > 0. The colour red depicts the highest complexity, and the blue the lowest. The first phylogenetic tree describes the NC of each taxonomic branch.
Red colour show genomes with less redundancy, and blue ones with more redundancy. On the other hand, the second tree depicts the prevalence of inverted
repeats on each taxonomic branch. Red indicates branches with genomes with a high percentage of inverted repeats, whereas blue shows branches with a low
percentage. For better visualization, visit the website https://asilab.github.io/canvas/.

vided.

Discussion

The usage of a specialized compressor is crucial to quan-
tify the complexity present in a genome accurately. Special-
ized compressors outperform general-purpose compressors
because they take into account the intrinsic nature of the data.
Genomic data is highly heterogeneous and has high substi-
tution mutations and data rearrangements, such as fusions,
translocations, and inversions [68, 69]. Therefore, the abil-
ity of a genomic data compressor to adapt to this heteroge-

neous data, being able to perform an accurate structure mod-
elling and detect repetitions in the presence of the high sub-
stitutional mutations and rearrangements in genomic data is
fundamental to achieve high compressibility of the genome se-
quence. This article evaluates the capacity to identify data-
specific patterns in genomic sequences by comparing the po-
tential of tree methods to recognize IRs. Precisely, the NBDM
was estimated, and the NC was computed using a genomic com-
pressor (GeCo3 [14]) and a general-purpose data-compressor
(PAQ8 [110, 111]). When GeCo3 had the subprogram activated
that detects IRs (NCIR2 ), it showed substantially higher com-
pression than general-purpose because PAQ uses models that
do not consider these specific properties of the genomic se-
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Table 1. Results obtained for viral taxonomic classification task regarding the genome type, realm, kingdom, phylum, class, order, family,and genus using XGBoost classifier. The features used were the genome’s sequence length (SL), the GC-content (GC) and the NormalizedCompression (NC) values for the best model, the same model with IR configuration to 0, to 1 and 2. The results correspond to the accuracy(ACC), and the probability of a random sequence being correctly classified (phit) using a random classifier (phit(CRandom).
Classification N. Classes N. Samples phit(CRandom) ACCNC ACCNC+SL+GC ACCAllFeatures

Genome 5 6089 20.00 75.48 87.06 87.09
Realm 5 5799 20.00 78.05 92.22 92.41
Kingdom 10 5788 10.00 76.22 90.57 90.89
Phylum 17 5778 5.88 64.18 82.42 83.39
Class 34 5845 2.94 60.03 79.01 80.47
Order 48 5838 2.08 58.35 78.02 79.52
Family 102 5990 0.98 43.38 72.86 74.53
Genus 360 4673 0.28 35.28 66.93 68.42
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Figure 7. Scatter-plots of Normalized Compression vs. Sequence Length
and GC-Content (A), Scatter-plots of Normalized Compression vs. Sequence
Length (B) and Normalized Compression vs. GC-Content (C).

quences. The same occurs when comparing GeCo3 (NCIR2 ) with
NBDM, showing that despite NBDM being able to detect small
subprograms in synthetic data [85], it cannot detect IRs in ge-
nomic data. Moreover, GeCo3 compression capability was re-
sistant to substitutional mutation up to 10%, showing that it
can also deal with this extreme nature of genomic data, namely
approximate IRs.

On average, RNA viruses mutate faster than DNA viruses,
double-strand viruses mutate slower than single-stranded
viruses, and genome size correlates negatively with mutation
rate [112]. In this article, we have shown that the redundancy of
dsDNA is higher than ssDNA, but for RNA viruses, the opposite
occurs. The sequences used in this study to measure a lower
NC (higher normalized redundancy) of the ssRNA to dsRNA
have approximately the same length. However, the dataset
of dsRNA has less than one order of magnitude in the num-
ber of sequences. This difference is natural since the ssRNA is
much more abundant than dsRNA. Nevertheless, this discrep-
ancy could justify the higher normalized redundancy of ssRNA
in the first instance. However, although the lower average NC
values of ssRNA are similar to dsRNA, the dsRNA has higher NC
extremes. Therefore, we argue that this difference in the num-
ber of sequences in the dsRNA is not significant in changing
the lower average of the ssRNA. Also, ssRNA are more prone
to mutation than dsRNA [113]. On the other hand, extensive C
to U mutations have been reported in many mammalian RNA
viruses [114]. This behaviour was detected during a much faster
evolution of the SARS-CoV- 2, an ssRNA virus [115]. Therefore,
the faster average decrease of GC-content in ssRNA viruses ex-
plains a decrease in the ssRNA entropy and, hence, average NC.
A higher GC-content (approximately 2%) of the dsRNA over
ssRNA strengthens these outcomes (Table S3).

We performed an analysis of the human herpesvirus regard-

ing their genome complexity and IRs abundance. Specifically,
we analyzed the various behaviours of their subfamilies and
identified that different complexities could be representative of
the different rates of evolution within these genomes. Finally,
we suggest that maybe a lower NC and abundance of inversions
present in herpesvirus are associated with viral genome inte-
gration.

Lastly, we evaluated the capability of using complexity mea-
sures to perform viral classification at different taxonomic lev-
els. Notably, results showed that we can automatically and
accurately distinguish between viral genomes at different tax-
onomic levels using the XGBoost classifier with all features (NC
with different configurations, GC-content and SL). However, a
decrease in accuracy when approaching the lowest taxonomic
levels was observed, which can be increased with future en-
tries to the database. Finally, despite the high accuracy results
obtained, further improvement of the results may be possible
in the classification by adding the transcribed viral proteome
information.

Conclusion

This manuscript shows that the efficient approximation of the
Kolmogorov complexities of viral sequences as measures that
quantify the absence of redundancy have a profound impact on
genomes identification, classification, and organization.

For computing an upper bound of the sequence complex-
ity, we benchmark a specific data compressor (GeCo3), after
optimization, against other approaches, namely a high com-
pression ratio general-purpose data compressor (PAQ) and a
measure that combines small algorithmic programs and Shan-
non entropy (BDM). Unlike the other approaches, we show that
GeCo3 can efficiently address and quantify regions properly de-
scribed by simple algorithmic sources, namely exact and ap-
proximate inverted repeats, among other characteristics.

Using an optimized compression level of GeCo3 in an ex-
tensive viral dataset, we provide a comprehensive landscape of
the viral genome’s complexity, comparing the viral genomes at
several taxonomic levels while identifying the genome regard-
ing the lowest and highest proportion of complexity. Specifi-
cally, on average, dsDNA viruses are the most redundant (less
complexity) according to their size, and ssDNA the less redun-
dant. Contrarily, dsRNA shows a lower redundancy relative to
ssRNA.

We perform an in-depth analysis of the human herpesvirus
regarding their genome complexity and abundance of IRs. We
induce that a lower NC and abundance of inversions present in
herpesvirus may be associated with viral genome integration.

We describe and use minimal bi-directional complexity pro-
files of one sequence of each virus to visualize the distribution
of complexity of these sequences locally. These profiles can de-
scribe actual regions detected in the genome with other meth-
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ods, proving the description capability of data compression at
a structural level.

We reveal the importance of efficient data compression in
genome classification tasks, explicitly showing that the com-
plexity, when combined with simple measures (GC-content
and size), is efficient to accurately distinguish between viral
genomes at different taxonomic levels without using direct
comparisons between sequences.

The methods and results presented in this work provide new
frontiers for studying viral genomes’ complexity while magni-
fying the importance of developing efficient data compression
methods for automatic and accurate viral analysis.

Availability of source code and requirements

• Project name: C.A.N.V.A.S. (Complexity ANalysis of VirAl
Sequences)

• Project home page: https://github.com/jorgeMFS/canvas
• Operating system(s): Linux
• Programming language: Bash; Python.
• Other requirements: Python v3.6; Conda v4.3.27.
• License: e.g. MIT License.

To see the reproductions guidelines go to the Reproducibil-
ity section of the Supplementary Material.

Availability of supporting data and materials

Website

You can access a support website to this paper at
https://asilab.github.io/canvas/. This site showcases, among
other things, the pipeline of this study, the compressor’s
model selection, the detection of inverted repeats in synthetic
genomic sequences, the viral genome characterization with
regards to genome and type of taxonomic group, and the
computed phylogenetic trees with a magnifier to allow a
better observation of the normalized complexity results with
illustrative examples of viruses.
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Supplementary Material

Here, we depict the supplementary material of the article. The supplementary material is described in four main sections: Com-
pression Model Benchmark, Viral Genome Analysis, Classification, Software and Hardware recommendations, and Reproducibility.
The Compression Model Benchmark, Viral Genome Analysis and Classification sections have auxiliary material to their corre-
sponding sections of the main article. On the other hand, the Software and Hardware recommendations section defines minimum
requirements, and the Reproducibility section describes how to reproduce the results obtained in this article.

Compression Level Benchmark

Herein, it is depicted the supplementary material to the Compression Levels Benchmark of the methods section. Table S1 describes
the parameters used in the six costume build levels. The flag “tm” is the template of a target context model, the flag “lr” defines
the learning rate, and the flag “hs” defines the number of hidden nodes for the neural network.

Table S1. Depiction of the parameters used in the six costume levels.
Level Values

1 -tm 1:1:0:0:0.7/0:0:0 -tm 12:20:1:1:0.97/1:1:0.97
2 -tm 1:1:0:0:0.7/0:0:0 -tm 12:20:1:1:0.97/2:1:0.97
3 -tm 1:1:0:0:0.7/0:0:0 -tm 12:50:1:1:0.97/0:0:0.97
4 -tm 1:1:0:0:0.7/0:0:0 -tm 12:20:1:1:0.97/0:0:0.97 -lr 0.05 -hs 40
5 -tm 1:1:0:0:0.7/0:0:0 -tm 12:20:1:1:0.97/0:0:0.97 -lr 0.15 -hs 40
6 -tm 1:1:0:0:0.7/0:0:0 -tm 12:20:1:1:0.97/0:0:0.97 -lr 0.3 -hs 40

Table S2 describes the parameters used in the template of a target context model. The template has the flag “tm” and follows
the model “[NB_C]:[NB_D]:[NB_I]:[NB_H]:[NB_G]/[NB_S]:[NB_E]:[NB_A]”.

Table S2. Depiction of the parameters used in the template of a target context model.
Parameter Values Description

[NB_C] integer [1;20] Order size of the regular context model. The higher the value of the regular context model, the
more RAM it uses but, usually, are related to a better compression score.

[NB_D] integer [1;5000] Denominator to build alpha, which is a parameter estimator. Alpha is given by 1/[NB_D]. Higher
values are usually used with higher [NB_C] and are related to sure bets. When [NB_D] is one, the
probabilities assume a Laplacian distribution.

[NB_I] integer {0,1,2} Number to define if a sub-program that addresses the specific properties of DNA sequences (in-
verted repeats) is used or not. The number 2 turns ON this sub-program without the regular
context model (only inverted repeats). The number 1 turns ON the sub-program using at the
same time the regular context model. The number 0 does not contemplate its use (inverted re-
peats OFF). This sub-program increases the necessary time to compress, but it does not affect the
RAM.

[NB_H] integer [1;254] Size of the cache-hash for deeper context models, namely for [NB_C] >14. When the [NB_C] <=
14 use, for example, 1 as a default. The RAM is highly dependent of this value (higher value stand
for higher RAM).

[NB_G] real [0;1) Real number to define gamma. This value represents the decaying forgetting factor of the regular
context model in the definition.

[NB_S] integer [0;20] The maximum number of editions allowed to use a substitutional tolerant model with the same
memory model of the regular context model with an order size equal to [NB_C]. The value 0 stands
for turning the tolerant context model off. When the model is on, it pauses when the number of
editions is higher than [NB_C]. When it is turned on when a full match of size [NB_C] is seen
again, this is a probabilistic-algorithmic model advantageous to handle the high substitutional
nature of genomic sequences. When [NB_S] >0, the compressor used more processing time but
used the same RAM and, usually, achieved a substantial higher compression ratio. The impact of
this model is usually only noticed for [NB_C] >= 14.

[NB_E] integer [1;5000] Denominator to build alpha for substitutional tolerant context model. It is analogous to [NB_D].
However, it is only used in the probabilistic model for computing the statistics of the substitutional
tolerant context model.

[NB_A] real [0;1) Real number to define gamma. This value represents the decaying forgetting factor of the substi-
tutional tolerant context model in the definition. Its definition and use are analogous to [NB_G].



2 | GigaScience, 2022, Vol. 00, No. 0

Viral Genome Analysis

We present the supplementary material discussed in the Viral Genome Analysis of this main article. Table S3 depicts the genome
types ordered by the highest normalized compression (NC), normalized compression capacity (NCC) and difference. NCC is computed
by NCC = 1–NCIR2 > 0, and the difference as difference = NCIR0 –NCIR1 . Furthermore, the Table shows the genomes’ average Sequence
Length (SL) and GC-Content (GC).

Table S4 depicts the top Normalized Compression (NC) values by taxonomic group. Three main groups separate the Table. The
first represents the highest 10 NC values using standard settings NC (best performing model); the second group shows the top 10
lowest NC values obtained using the IR2 subprogram. Finally, the third group shows the top 10 highest values of the difference
between NC using IR0 and IR1 subprograms.

Tables S5,S6,and S7 organize the top taxa (by taxonomic group) regarding their normalized compression (NC), normalized
compression capacity (NCC) and difference. The tables also shows the genomes’ average Sequence Length and GC-Content.

Finally, Figure S1 depicts the phylogenetic tree with average NC difference (NCIR0 – NCIR1 > 0) for each viral taxonomic group up
to the viral genus. The colour red depicting the highest NC difference, and the blue the lowest.

Table S3. Depiction of the genome type by the highest normalized compression (NC), normalized compression capacity (NCC) and difference.
NCC is computed by NCC = 1 – NCIR2 > 0, and the difference as difference = NCIR0 – NCIR1 . Furthermore, the Table shows the genomes’ averageSequence Length (SL) and GC-Content (GC).

Normalized Compression Inverted Repeats Difference

Genome NC SL GC Genome NCC SL GC Genome difference SL GC

ssDNA 1.065 3282 0.447 dsDNA 0.029 84721 0.485 ssDNA 0.006 4672 0.435
mixedDNA 1.050 3258 0.491 ssDNA 0.026 5981 0.389 dsDNA 0.006 80636 0.470
dsRNA 1.047 8377 0.456 ssRNA 0.015 13425 0.393 mixedDNA 0.002 3311 0.434
ssRNA 1.013 9564 0.437 dsRNA 0.015 19911 0.396 dsRNA 0.001 6186 0.431
dsDNA 0.977 70353 0.481 ssRNA 0.001 10197 0.433
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Table S5. Depiction of the taxonomic groups with the highest NC values. The Table shows each group’s average Normalized Compression,Sequence Length and GC-Content.
Taxonomic Group Taxonomic Name Normalized Compression Sequence Length GC-Content

Super-Realm Viruses 1.007 36067 0.460

Realm

Ribozyviria 1.080 1682 0.588
Monodnaviria 1.046 4380 0.450
Riboviria 1.016 9332 0.438
Duplodnaviria 0.972 78102 0.500
Varidnaviria 0.957 109560 0.448
Adnaviria 0.948 33068 0.353

Kingdom

Shotokuvirae 1.049 4200 0.447
Sangervirae 1.026 5518 0.435
Orthornavirae 1.018 9472 0.438
Pararnavirae 0.995 7787 0.433
Loebvirae 0.994 7332 0.483
Trapavirae 0.993 10151 0.564
Heunggongvirae 0.972 78102 0.500
Bamfordvirae 0.957 112955 0.441
Helvetiavirae 0.949 24833 0.665
Zilligvirae 0.948 33068 0.353

Phylum

Lenarviricota 1.094 2654 0.476
Cressdnaviricota 1.067 3134 0.453
Duplornaviricota 1.045 9418 0.456
Phixviricota 1.026 5518 0.435
Kitrinoviricota 1.018 8548 0.474
Cossaviricota 1.013 6260 0.436
Pisuviricota 1.012 10580 0.442
Negarnaviricota 1.012 9620 0.397
Artverviricota 0.995 7787 0.433
Hofneiviricota 0.994 7332 0.483

Class

Miaviricetes 1.151 1792 0.514
Arfiviricetes 1.085 2557 0.464
Chunqiuviricetes 1.075 3870 0.503
Magsaviricetes 1.073 3730 0.513
Amabiliviricetes 1.072 2703 0.586
Duplopiviricetes 1.066 3298 0.467
Allassoviricetes 1.063 3753 0.493
Repensiviricetes 1.063 3281 0.451
Yunchangviricetes 1.061 3987 0.358
Insthoviricetes 1.054 5784 0.425

Order

Ourlivirales 1.151 1792 0.514
Cirlivirales 1.103 1864 0.471
Cremevirales 1.078 2572 0.478
Muvirales 1.075 3870 0.503
Nodamuvirales 1.073 3730 0.513
Wolframvirales 1.072 2703 0.586
Durnavirales 1.066 3298 0.467
Levivirales 1.063 3753 0.493
Geplafuvirales 1.063 3281 0.451
Goujianvirales 1.061 3987 0.358

Family

Botourmiaviridae 1.151 1792 0.514
Alphasatellitidae 1.143 1296 0.418
Tolecusatellitidae 1.116 1347 0.389
Circoviridae 1.103 1864 0.471
Genomoviridae 1.096 2201 0.517
Nodaviridae 1.080 3368 0.514
Kolmioviridae 1.080 1682 0.588
Smacoviridae 1.078 2572 0.478
Qinviridae 1.075 3870 0.503
Narnaviridae 1.072 2703 0.586

Genus

Clostunsatellite 1.192 1008 0.423
Milvetsatellite 1.186 1022 0.402
Aumaivirus 1.185 1168 0.510
Virtovirus 1.180 1150 0.442
Mivedwarsatellite 1.179 1014 0.402
Babusatellite 1.178 1104 0.437
Fabenesatellite 1.176 1007 0.385
Ourmiavirus 1.167 1605 0.519
Albetovirus 1.167 1221 0.426
Geminialphasatellitinae 1.131 1370 0.418
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Table S6. Depiction of the taxonomic groups with the highest normalized compression capacity (NCC) using only the inverted repeatssubprogram IR2. The top results were obtained by NCC = 1 – NCIR2 > 0. Besides the normalized compression capacity, the Table shows eachgroup’s average Sequence Length and GC-Content.
Group Taxonomic Group NCC = 1 – NCIR2 > 0 Sequence Legth GC-Content

Super-Realm Viruses 0.026 66796 0.462

Realm

Adnaviria 0.052 33068 0.353
Varidnaviria 0.038 110591 0.447
Duplodnaviria 0.028 82677 0.499
Monodnaviria 0.022 6958 0.399
Riboviria 0.015 13682 0.391

Kingdom

Loebvirae 0.053 7371 0.385
Zilligvirae 0.052 33068 0.353
Helvetiavirae 0.050 24833 0.665
Bamfordvirae 0.038 114079 0.440
Heunggongvirae 0.028 82677 0.499
Trapavirae 0.021 12225 0.577
Shotokuvirae 0.016 6184 0.378
Pararnavirae 0.016 9610 0.378
Orthornavirae 0.015 14012 0.393
Sangervirae 0.005 4421 0.321

Phylum

Peploviricota 0.068 168832 0.534
Nucleocytoviricota 0.063 210417 0.389
Hofneiviricota 0.053 7371 0.385
Taleaviricota 0.052 33068 0.353
Dividoviricota 0.050 24833 0.665
Uroviricota 0.026 79042 0.497
Saleviricota 0.021 12225 0.577
Preplasmiviricota 0.017 32147 0.483
Negarnaviricota 0.016 12180 0.376
Cossaviricota 0.016 6128 0.378

Class

Pokkesviricetes 0.072 190762 0.365
Herviviricetes 0.068 168832 0.534
Maveriviricetes 0.066 18227 0.290
Mouviricetes 0.066 8377 0.299
Faserviricetes 0.053 7371 0.385
Tokiviricetes 0.052 33068 0.353
Laserviricetes 0.050 24833 0.665
Megaviricetes 0.046 248459 0.436
Naldaviricetes 0.040 132022 0.410
Milneviricetes 0.029 11079 0.349

Order

Imitervirales 0.109 899501 0.256
Chitovirales 0.091 193551 0.356
Herpesvirales 0.068 168832 0.534
Priklausovirales 0.066 18227 0.290
Polivirales 0.066 8377 0.299
Ligamenvirales 0.055 34464 0.343
Tubulavirales 0.053 7371 0.385
Halopanivirales 0.050 24833 0.665
Pimascovirales 0.043 162587 0.456
Lefavirales 0.040 132022 0.410

Family

Mimiviridae 0.109 899501 0.256
Rudiviridae 0.103 30804 0.299
Poxviridae 0.091 193551 0.356
Malacoherpesviridae 0.091 209479 0.427
Plectroviridae 0.080 7045 0.248
Mononiviridae 0.077 41178 0.275
Herpesviridae 0.074 158421 0.539
Lavidaviridae 0.066 18227 0.290
Bidnaviridae 0.066 8377 0.299
Polydnaviridae 0.055 306235 0.377

Genus

Betaentomopoxvirus 0.174 247441 0.195
Oryzopoxvirus 0.164 185139 0.236
Vespertilionpoxvirus 0.156 176688 0.236
Simplexvirus 0.144 148626 0.694
Cafeteriavirus 0.127 617453 0.233
Mardivirus 0.121 177993 0.509
Cervidpoxvirus 0.115 166259 0.262
Varicellovirus 0.107 139331 0.560
Ostreavirus 0.107 207439 0.387
Vespertiliovirus 0.103 7970 0.228

Classification

Herein, we show the supplementary classification tables that are discussed in the classification subsection of this article.
Figure S2 represents the number of samples (genome sequences) per viral genus.
Table S8 and Table S9 show the values obtained using different classifiers for accuracy and F1-score, respectively. In both cases,

the XGBoost classifier had the best performance.
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Table S7. Depiction of the taxonomic groups with the highest difference of values between NCIR0 – NCIR1 . The Table shows each group’saverage difference = NCIR0 – NCIR1 , Sequence Length and GC-Content.
Taxonomic Group Taxonomic Name NCIR0 – NCIR1 > 0 Sequece Length GC-Content

Super-Realm Viruses 0.004 44293 0.451

Realm

Adnaviria 0.019 35299 0.322
Varidnaviria 0.007 111364 0.443
Duplodnaviria 0.007 78316 0.512
Monodnaviria 0.005 5359 0.436
Ribozyviria 0.002 1682 0.588
Riboviria 0.001 9847 0.431

Kingdom

Zilligvirae 0.019 35299 0.322
Trapavirae 0.009 16113 0.503
Bamfordvirae 0.007 114249 0.437
Heunggongvirae 0.007 78316 0.512
Shotokuvirae 0.005 5124 0.434
Helvetiavirae 0.004 27439 0.664
Loebvirae 0.002 8519 0.453
Sangervirae 0.001 4552 0.426
Orthornavirae 0.001 10049 0.430
Pararnavirae 0.001 8050 0.435

Phylum

Peploviricota 0.050 159507 0.557
Taleaviricota 0.019 35299 0.322
Nucleocytoviricota 0.013 210797 0.381
Saleviricota 0.009 16113 0.503
Cossaviricota 0.007 5450 0.433
Dividoviricota 0.004 27439 0.664
Hofneiviricota 0.002 8519 0.453
Cressdnaviricota 0.002 4539 0.438
Preplasmiviricota 0.002 32788 0.483
Duplornaviricota 0.001 8140 0.389

Class

Herviviricetes 0.050 159507 0.557
Mouviricetes 0.029 8377 0.299
Tokiviricetes 0.019 35299 0.322
Pokkesviricetes 0.017 193309 0.354
Quintoviricetes 0.011 5164 0.446
Huolimaviricetes 0.009 16113 0.503
Megaviricetes 0.005 247791 0.441
Laserviricetes 0.004 27439 0.664
Arfiviricetes 0.004 5459 0.432
Faserviricetes 0.002 8519 0.453

Order

Herpesvirales 0.050 159507 0.557
Polivirales 0.029 8377 0.299
Chitovirales 0.022 196072 0.341
Ligamenvirales 0.019 35299 0.322
Piccovirales 0.011 5164 0.446
Haloruvirales 0.009 16113 0.503
Cirlivirales 0.008 2114 0.476
Pimascovirales 0.005 169619 0.458
Algavirales 0.005 339710 0.413
Kalamavirales 0.004 15181 0.459

Family

Malacoherpesviridae 0.062 209479 0.427
Herpesviridae 0.050 155406 0.564
Rudiviridae 0.035 30804 0.299
Bidnaviridae 0.029 8377 0.299
Poxviridae 0.022 196072 0.341
Polydnaviridae 0.019 306235 0.377
Ampullaviridae 0.012 23814 0.346
Nudiviridae 0.012 127615 0.416
Parvoviridae 0.011 5164 0.446
Ascoviridae 0.010 172411 0.453

Genus

Mardivirus 0.103 177993 0.509
Ostreavirus 0.072 207439 0.387
Iltovirus 0.070 155856 0.546
Leporipoxvirus 0.066 160815 0.415
Simplexvirus 0.061 148626 0.694
Varicellovirus 0.061 139331 0.560
Aurivirus 0.052 211518 0.468
Oryzopoxvirus 0.050 185139 0.236
Vespertilionpoxvirus 0.046 176688 0.236
Entnonagintavirus 0.036 29564 0.558
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Figure S1. Phylogenetic tree showing average difference (NCIR0 – NCIR1 > 0).The colour red depicts the branches where on average, the genome possesses more
inverted repetitions than internal repetitions (higher difference), whereas the blue colour represents the branches with fewer inverted repetitions than internal
repetitions (smaller difference).

Table S10 displays the XGBoost classifier F1-score results when using different sets of features. With the notable exception of
the type of genome classification, the best results were obtained using all features.
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Figure S2. Frequency of genome sequences per viral genus.
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Table S8. Accuracy (ACC) results obtained for viral taxonomic classification task regarding genome type, realm, kingdom, phylum, class,order, family, and genus. The classifiers used were Linear Discriminant Analysis (LDA), Gaussian Naive Bayes (GNB), K-Nearest Neighbors(KNN), Support Vector Machine (SVM) and XGBoost classifier (XGB).
Classification N. Classes N. Samples ACCLDA ACCGNB ACCSVM ACCKNN ACCXGB

Genome 5 6089 66.17 73.32 72.58 84.24 87.09
Realm 5 5799 76.38 80.69 80.34 89.31 92.41
Kingdom 10 5788 72.97 78.76 78.67 86.01 90.89
Phylum 17 5778 60.90 57.44 57.70 70.16 83.39
Class 34 5845 50.98 52.52 49.36 64.24 80.47
Order 48 5838 49.32 55.48 48.54 60.53 79.52
Family 102 5990 37.15 43.49 28.71 43.41 74.53
Genus 360 4673 45.03 35.51 18.82 17.54 68.42

Table S9. F1-score (F1) results obtained for viral taxonomic classification task regarding genome type, realm, kingdom, phylum, class,order, family, and genus. The classifiers used were Linear Discriminant Analysis (LDA), Gaussian Naive Bayes (GNB), K-Nearest Neighbors(KNN), Support Vector Machine (SVM) and XGBoost classifier (XGB).
Classification N. Classes N. Samples F1LDA F1GNB F1SVM F1KNN F1XGB

Genome 5 6089 0.6461 0.7306 0.7006 0.8368 0.8645
Realm 5 5799 0.7545 0.7996 0.7861 0.8881 0.9214
Kingdom 10 5788 0.7200 0.7630 0.7543 0.8411 0.9031
Phylum 17 5778 0.5763 0.5275 0.4822 0.6741 0.8295
Class 34 5845 0.4709 0.4526 0.4034 0.5969 0.7983
Order 48 5838 0.4418 0.4773 0.3870 0.5474 0.7874
Family 102 5990 0.3062 0.3573 0.1686 0.3456 0.7325
Genus 360 4673 0.3633 0.2815 0.0698 0.0610 0.6525

Table S10. F1-score (F1) obtained for the viral taxonomic classification task regarding genome type, realm, kingdom, phylum, class, order,family, and genus. The features used were the genome’s sequence length (SL), the GC-content (GC) and the Normalized Compression (NC)values for the best model, the same model with IR configuration to 0, 1 and 2.
Classification N. Classes N. Samples F1NC F1NC+SL+GC F1AllFeatures

Genome 5 6089 0.7481 0.8642 0.8645
Realm 5 5799 0.7738 0.9194 0.9214
Kingdom 10 5788 0.7496 0.8999 0.9031
Phylum 17 5778 0.6248 0.8197 0.8295
Class 34 5845 0.5761 0.7837 0.7983
Order 48 5838 0.5557 0.7718 0.7874
Family 102 5990 0.4122 0.7155 0.7325
Genus 360 4673 0.3230 0.6378 0.6525

Software and Hardware recommendations

The experiences of the manuscript can be replicated using a laptop, desktop, or server computer running Arch linux or Linux
Ubuntu (for example, 18.04 LTS or higher) with GCC (https://gcc.gnu.org),git and git LFS, Conda (https://docs.conda.io) and
python version 3.6. The hardware must contain at least 8 GB of RAM and a 100 GB disk.

Reproducibility

Creating Project and intalling tools
The descriptions of reproducion is depicted bellow, for more detail see https://github.com/jorgeMFS/canvas. Install Git LFS:

1 mkdir -p gitLFS
2 cd gitLFS /
3 wget https :// github .com/git -lfs/git -lfs/ releases / download /v2 .9.0/ git -lfs -linux -amd64 -v2 .9.0. tar.gz
4 tar -xf git -lfs -linux -amd64 -v2 .9.0. tar.gz
5 chmod 755 install .sh
6 sudo ./ install .sh

Get CANVAS project, create the docker and run it:
1 git clone https :// github .com/ jorgeMFS / canvas .git
2 cd canvas
3 docker - compose build
4 docker - compose up -d && docker exec -it canvas bash && docker - compose down

Inside the docker, give run permissions to the files and install tools using :
1 chmod +x *. sh
2 bash Make.sh;

https://gcc.gnu.org
https://docs.conda.io
https://github.com/jorgeMFS/canvas
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Result Replication
The code was created in order to allow independent replication and reproduction of each step, this was done due to the extensive
processing time required to filter and rearrange viral DB and extract the features and taxonomic information of each viral sequence.
If you wish to rebuild database and feature reports extracted see the Database reconstruction subsection.

To obtain the Compression Benchmark plots run:
1 cd python || exit;
2 python select_best_nc_model .py;

To perform the synthetic sequence test run:
1 cd scripts || exit;
2 bash Stx_seq_test .sh;

To perform classification run the following code:
1 cd python || exit;
2 python prepare_classification .py; # recreate classification dataset
3 python classifier .py; # perform classifications

To perform the complete IR analysis and create:
• boxplots;
• 2d scatter plots;
• 3d scatter plots;
• top taxonomic group lists;
• Occurrence of each Genus.

Execute this code:
1 cd python || exit;
2 python ir_analysis .py; # Performs complete IR analysis

To perform the Human Herpesvirus analysis and obtain the plots run:
1 cd scripts || exit;
2 bash Herpesvirales .sh;

Database reconstruction
To run the pipeline and obtain all the Reports in the folder reports, use the following commands. Note that if you wish to recreate
the features reports, you must perform the database reconstruction task.

If you wish to reconstruct the viral database, run the following script:
1 cd scripts || exit;
2 bash Build_DB .sh;

To create the features for analysis and classification (very time consuming, can take several days) run:
1 cd scripts || exit;
2 bash Process_features .sh;

To recreate the compression reports used for benchmark (very time consuming, can take several hours) run:
1 cd scripts || exit;
2 bash Compress .sh;

Phylogenetic Trees
The Phylogenetic Trees require GUI application. As such, the reproduction of the trees has to be performed outside of the docker
on the Ubuntu system on the /canvas folder:

1 bash so_dependencies .sh # install Ubuntu system dependencies required for the script to run and Anaconda
2 conda create -n canvas python =3.6
3 conda activate canvas
4 bash Make.sh # install python libs
5 bash Install_programs .sh # install tools using conda

Afterwards, to obtain the Phylogenetic Tree plots run:
1 cd python || exit;
2 python phylo_tree .py;
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