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Abstract: Background:

Viruses are amongst the shortest yet highly abundant species that harbour minimal
instructions to infect cells, adapt, multiply, and exist. However, with the current
substantial availability of viral genome sequences, the scientific repertory lacks a
complexity landscape that automatically enlights viral genomes' organization, relation,
and fundamental characteristics.

Results:

This work provides a comprehensive landscape of the viral genome's complexity (or
quantity of information), identifying the most redundant and complex groups regarding
their genome sequence while providing their distribution and characteristics at a large
and local scale. Moreover, we identify and quantify inverted repeats abundance in viral
genomes.
For this purpose, we measure the sequence complexity of each available viral genome
using data compression, demonstrating that adequate data compressors can efficiently
quantify the complexity of viral genome sequences, including sub-sequences better
represented by algorithmic sources (e.g., inverted repeats).
Using a state-of-the-art genomic compressor on an extensive viral genomes database,
we show that dsDNA viruses are, on average, the most redundant viruses while ssDNA
viruses are the least. Contrarily, dsRNA viruses show a lower redundancy relative to
ssRNA. Furthermore, we extend the ability of data compressors to quantify local
complexity (or information content) in viral genomes using complexity profiles,
unprecedently providing a direct complexity analysis of human Herpesviruses. We also
conceive a features-based classification methodology that can accurately distinguish
viral genomes at different taxonomic levels without direct comparisons between
sequences. This methodology combines data compression with simple measures such
as GC-content percentage and sequence length, followed by machine learning
classifiers.

Conclusions:

This manuscript presents methodologies and findings that are highly relevant for
understanding the patterns of similarity and singularity between viral groups, opening
new frontiers for studying viral genomes' organization while depicting the complexity
trends and classification components of these genomes at different taxonomic levels.
The whole study is supported by an extensive website (  https://asilab.github.io/canvas/
) for comprehending the viral genome characterization using dynamic and interactive
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Abstract
Background: Viruses are amongst the shortest yet highly abundant species that harbour minimal instructions to infect
cells, adapt, multiply, and exist. However, with the current substantial availability of viral genome sequences, the
scientific repertory lacks a complexity landscape that automatically enlights viral genomes’ organization, relation, and
fundamental characteristics.
Results: This work provides a comprehensive landscape of the viral genome’s complexity (or quantity of information),
identifying the most redundant and complex groups regarding their genome sequence while providing their distribution
and characteristics at a large and local scale. Moreover, we identify and quantify inverted repeats abundance in viral
genomes. For this purpose, we measure the sequence complexity of each available viral genome using data compression,
demonstrating that adequate data compressors can efficiently quantify the complexity of viral genome sequences,
including sub-sequences better represented by algorithmic sources (e.g., inverted repeats). Using a state-of-the-art
genomic compressor on an extensive viral genomes database, we show that dsDNA viruses are, on average, the most
redundant viruses while ssDNA viruses are the least. Contrarily, dsRNA viruses show a lower redundancy relative to
ssRNA. Furthermore, we extend the ability of data compressors to quantify local complexity (or information content) in
viral genomes using complexity profiles, unprecedently providing a direct complexity analysis of human Herpesviruses.
We also conceive a features-based classification methodology that can accurately distinguish viral genomes at different
taxonomic levels without direct comparisons between sequences. This methodology combines data compression with
simple measures such as GC-content percentage and sequence length, followed by machine learning classifiers.
Conclusions: This manuscript presents methodologies and findings that are highly relevant for understanding the
patterns of similarity and singularity between viral groups, opening new frontiers for studying viral genomes’
organization while depicting the complexity trends and classification components of these genomes at different
taxonomic levels. The whole study is supported by an extensive website (https://asilab.github.io/canvas/) for
comprehending the viral genome characterization using dynamic and interactive approaches.
Key words: Viruses; Genomics; Sequence-analysis; Data Compression; Cladograms; Viral Classification; Algorithmic In-
formation Theory.

Introduction

Viruses are a strong driving force of life and evolution. They
are the shortest and most abundant life realm, estimated at
around 1031 particles [1]. Likewise, viruses occupy almost every
ecosystem [2, 3, 4] and infect all types of life forms [5, 6].
Viruses depend on the host’s cell for replication. This depen-

dence has forced viruses to interact with cellular pathways to
successfully hijack and customize the host cell machinery for
viral production. This interaction generated a long-standing
effect of adaptation and counter-adaptation between host and
viruses for gene expression and nucleic acid synthesis. Further-
more, during their replication, viruses can perform horizontal
gene transfer, which increases the host species’ genetic diver-

Compiled on: July 13, 2022.
Draft manuscript prepared by the author.

1

Click here to access/download;LaTeX - Main Document (TeX
file);main.tex

https://orcid.org/0000-0002-6331-6091
https://asilab.github.io/canvas/
https://www.editorialmanager.com/giga/download.aspx?id=134773&guid=d7718a30-c64c-4203-9431-cf563baa0cc2&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=134773&guid=d7718a30-c64c-4203-9431-cf563baa0cc2&scheme=1


2 | GigaScience, 2022, Vol. 00, No. 0

Key Points

• We provide a comprehensive landscape of the viral genomes complexity.
• We demonstrate that data compressors can efficiently quantify the complexity of viral genome sequences, including sub-

sequences better represented by algorithmic sources.
• We identify and quantify inverted repeats abundance in viral genomes.
• We use minimal bi-directional complexity profiles as local measures of the viral genome.
• We present an in-depth complexity analysis of the human herpesviruses.
• We show that the viral genome redundancy, GC-content, and size are efficient features to accurately distinguish between

viral genomes at different taxonomic levels.
• Our work opens new frontiers for studying viral genomes’ complexity while depicting complexity trends in viral genomes.

sity analogously to the process of sexual reproduction [7].
Despite the significant impact that viruses have on the evolu-
tion of living beings and the ecosystem, our understanding of
viruses is still relatively limited compared with other realms of
life. In particular, the complexity landscape of viruses is un-
known. For example, what are the most redundant and com-
plex viral DNA/RNA sequences? Which viruses contain more
genomic inversions? How does the complexity distribution of
viruses describe their morphology and behaviour? What can be
uncovered by analyzing the complexity of the viral genomes
regarding viral processes? Moreover, is the information un-
covered shared between the same viral groups? By studying
the complexity of viral sequences and performing information
quantification, one might be able to answer some of these ques-
tions.
Complexity analysis of the genome sequences is not new and
is frequently performed by data compressors, which serve as
an upper bound to Kolmogorov Complexity. Many examples
of these studies appeared after creating the first compressor
for DNA sequences [8]. Specifically, data compression has
been used to detect repeated sequences in the Plasmodium
falciparum DNA, and observed patterns were related to large-
scale chromosomal organization and gene expression control
[8]. The XMAligner tool [9] was created for pairwise genome
local alignment, which considers a pair of nucleotides from two
sequences related if their mutual information in context is sig-
nificant. To measure the information content of nucleotides
in sequences, they used a lossless compression method. Graph
compression was used for comparing large biological networks
[10]. This method was done by compressing the original net-
work structure and then measuring the similarity of the two
networks using the compression ratio of the concatenated net-
works. The method was applied to several organisms, show-
ing an efficient capability to measure the similarities between
metabolic networks. Data compression was used to approxi-
mate the Kolmogorov complexity and applied to data derived
from sequence alignment data [11]. This process identified a
novel way of predicting three different aspects of protein struc-
ture: secondary structures, inter-residue contacts and the dy-
namics of switching between different protein states. An analy-
sis of the complexity of different DNA genomes was performed,
demonstrating various evolution-related findings linked with
complexity, notably that archaea have a higher relative com-
plexity than bacteria and eukaryotes on a global scale. Fur-
thermore, viruses have the most complex sequences accord-
ing to their size [12]. Metagenomic composition analysis of
a sedimentary ancient DNA sample was performed using rela-
tive compression of whole-genome sequences [13]. The results
showed that several viruses and bacteria expressed high levels
of similarity relative to the samples. Finally, an alignment-
free tool was created to accurately find genomic rearrange-

ments of DNA sequences following previous studies, which
took alignment-based approaches or performed FISH [14].
Given the applicability of compression methods in the analy-
sis of genomic sequences and intending to better understand
viruses, in this manuscript, we perform an extensive com-
plexity analysis of the viral world through the automatic com-
putational analysis of its genome complexity and associated
characteristics. Specifically, we use a genomic compressor
to analyze the complexity across viral taxonomies and quan-
tify the algorithmic information embedded in viral genome se-
quences better represented by small programs. Several ques-
tions arise when addressing this problem: How much informa-
tion is present in a viral genome? What is the best way to quan-
tify the information in a viral genome? What type of informa-
tion can we retrieve from analyzing the complexity of the viral
genome? We use unsupervised probabilistic and algorithmic
information quantification of viral genomes to answer these
questions. We use a high-quality database using the NCBI ref-
erence database with 12,168 complete reference genomes from
9,605 viral taxa.
Since studying the complexity of a DNA/RNA sequence requires
efficient data compressors that take into account the proba-
bilistic and algorithmic characteristics of the data, we com-
pared several state-of-the-art genomic data compressors and
another approximation of the Kolmogorov complexity besides
data compression. This comparison was made to evaluate their
ability to detect Inverted Repeats (IRs) with increasing levels
of mutations. The results show that GeCo3 could detect and
compress IRs, unlike other programs, using appropriate com-
putational resources.
Consequently, GeCo3 was used to analyze viruses’ complexity
and overall abundance of inverted repeats and construct clado-
grams. The results of our study show several insights into pat-
terns between the complexity and viral groups and that these
measurements can perform viral genome authentication and
classification with high accuracy without directly comparing
the sequences but instead using the individual features.
The following section describes the paper’s background and
related work. A description of the methods follows and the
results obtained. Finally, we discuss the significant results ob-
tained, draw conclusions, and point out possible future work
lines.

Background

This manuscript shows that the efficient use of specific data
compressors to quantify data complexity (Kolmogorov com-
plexity) profoundly impacts viral genomes identification, clas-
sification, and organization. For introducing several concepts,
this section provides an overview of the viral nature, Kol-
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mogorov complexity and data compression, and the role of in-
verted repeats in the genome sequence.

Viruses Microbiology

Viruses are submicroscopic biological infectious agents that re-
quire living cells of an organism to be active for replication [15]
(for more information regarding viral morphology and genome
see the Supplementary material of this article).
They have a vast size variation, ranging from around 10 nm
with small genomes to viruses with similar dimensions and
genome sizes to Bacteria and archaea [16, 17]. These viruses are
called giant viruses and contain many unique genes currently
not found in other life forms.
There can also be hybrid viruses [18], making it difficult to iden-
tify species [19]. There are several possible combinations for
the creation of a hybrid virus. One possible way of occurring is
the infection of a host’s cell by two or more related viruses and
consequential exchange of sequences between viruses. The re-
sult is the creation of a new variant derived from the parental
genomes. Another possible way is the recombination of RNA
viral genomes with the host’s RNA. Finally, there is evidence
that small DNA viruses could have been created by recombina-
tion events between RNA viruses and DNA plasmids [18].
Although the origin of viruses is still uncertain, they play an es-
sential role in the evolution of living organisms since they are
horizontal gene transfer vehicles. This biological phenomenon
increases genetic diversity. Furthermore, it occasionally allows
viral genetic material to integrate into the host genomes, trans-
ferred vertically to its offspring. This property is so preponder-
ant in evolution that the origin of the eukaryotic nucleus might
be related to this process [20, 21, 22].
Additionally, viral genomic integration allows us to infer the
evolutionary distance between hosts by observing the shared
virus integrated into their genomes. For instance, in humans,
viruses frequently establish persisting infections [23] and im-
print their genetic material in the tissues throughout life, dis-
playing phylogeographies patterns. These can be used as mark-
ers to understand the human population history and migra-
tions better and provide new insights into unidentified indi-
viduals’ origins on both global and local scales [24]. In this
respect, the JC polyomavirus is one of the most comprehen-
sively studied viruses. Its genotype-specific global spread has
been suggested to indicate the origins of modern [25] and an-
cient humans [26, 27, 28]. Furthermore, a worldwide study
supported the co-dispersal of this virus with major human mi-
gratory routes and its co-divergence with human mitochon-
drial and nuclear markers [29].
Thus, computer analysis of viral and host DNA sequences is
fundamental to understanding the evolutionary relationships
between different viruses and their hosts, identifying modern
viruses’ ancestors, and better understanding their behaviour
and function. Also, the genomic sequences encode the produc-
tion of proteins and their high-dimensional folding structure
[30, 31]. Therefore, the direct study of viral genome sequences
also develops the knowledge of the viral mechanism of protein
formation and assembly.

Inverted Repeats

Inverted Repeats (IRs) are nucleotide sequences with a
downstream reverse complement copy, causing a self-
complementary base-pairing region [32]. Consequently, IRs
usually fold into different secondary structures (hairpin- and

cruciform-like structures, pseudoknots) that participate or in-
terfere in many cellular processes in all forms of life, including
DNA replication [33, 11]. Due to these traits, IRs play an essen-
tial role in genome instability [35], contributing to mutability.
This mutability can create diseases in the short term [36], but
across long periods leads to cellular evolution and genetic di-
versity [37]. In many viruses, IRs in pseudoknots are involved
in ribosomal frameshifting. This translational mechanism al-
lows the production of different proteins encoded by overlap-
ping open reading frames (ORFs) of the same mRNA [38, 39].
This feature allows them to encode a more significant amount
of genetic information in small genomes and constitutes an-
other level of gene regulation [40].
The genomes of some viruses, such as parvovirus, are flanked
by inverted terminal repeats (ITRs) that form hairpin struc-
tures functioning as a duplex origin of replication sequence
[33, 41]. Therefore, these ITRs contain most of the cis-acting
information needed for viral replication and viral packaging
[41]. In adeno-associated viruses, ITRs are essential for inter-
molecular recombination and circularization of genomes [42].
IRs can also function as termination transcription signals, es-
pecially in giant viruses [43, 44].

Kolmogorov Complexity and Data Compression

Solomonoff, Kolmogorov, and Chaitin [45, 46, 47, 48] de-
scribed the notion of data complexity by showing that there is
at least one minimal algorithm among all the algorithms that
decode strings from their codes. For all strings, this algorithm
allows codes as short as any other, up to an additive constant
that depends only on the strings themselves. Concretely, algo-
rithmic information is a measure that quantifies the informa-
tion of a string x by determining its complexity K(x) by

K(x) := min
p

{l(p) : U(p) = x}, (1)

where K(s) is defined by a shortest length l of a binary pro-
gram p that computes the string x on a universal Turing ma-
chine U and halts [47]. This notion that the complexity of a
string can be defined as the length of a shortest binary pro-
gram that outputs that string was universally adopted and is
the standard to perform information quantification. It differs
from Shannon’s entropy because it recognises that the source
creates structures which follow algorithmic schemes [49, 50],
rather than regarding the machine as generating symbols from
a probabilistic function.
While the Kolmogorov complexity is non-computable, it can
be approximated with programs for such purpose. A possi-
ble approximation is the Coding Theorem Method (CTM) [51],
and its improved version, the Block Decomposition Method
(BDM) [52], which approximate local estimations of algorith-
mic complexity providing a closer relationship to the algorith-
mic nature. This approximation decomposes the quantification
of complexity for segmented regions using small Turing ma-
chines [51]. For modelling the statistical nature, such as noise,
it commutes into a Shannon entropy quantification. This ap-
proach has shown encouraging results for many distinct pur-
poses [53, 54, 55]. However, it has also shown underestimation
issues related to side information [56].
The classical approximation of the Kolmogorov complexity is
performed using data-compressors with probabilistic and algo-
rithmic schemes [57]. Data compressors are a natural solution
to measure complexity, since, with the appropriate decoder,
the bitstream produced by a lossless compression algorithm al-
lows the reconstruction of the original data and, therefore, can
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be seen as an upper bound of the algorithmic complexity of the
sequence. For a definition of safe approximation, see [58].
In genomics, sequences can be codified as messages using a
four symbol alphabet (Σ = {A, C, G, T} for DNA sequences and
Σ = {A, C, G, U} for RNA sequences). These messages con-
tain instructions for survival and replication of the organism,
its’ morphology and historical marks from previous genera-
tions [59]. Initially, genomic sequences were compressed with
general-purpose data-compressors such as gzip [60], bzip2
[61], or LZMA [62]. However, this paradigm shifted towards
using a specific compression algorithm after introducing Bio-
Compress [63]. Genomic compressors can outperform general-
purpose compressors since they are designed to consider spe-
cific genomic properties such as the presence of a high number
of copies and substitutional mutations, and multiple rearrange-
ments, such as inverted repeats [64, 65].
Given this advantage of using specific compressors for the com-
pression of genomic data, several algorithms have emerged to
model these genomic data behaviours [66]. Specifically, sev-
eral algorithms have been created to model repetitions and
inverted repetitions in the genome regions through simple
bit encoding, dictionary approaches and context modelling
[67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77].
Currently, state-of-the-art compressors have different objec-
tives, such as optimizing for compression strength or priori-
tizing a balance between compression speed and compression
capability. Examples of the latter are NAF (Nucleotide Archival
Format) [78, 79] and MBGC (Multiple Bacteria Genome Com-
pressor) [80], which are more suitable for collections of data
and frequently used by computational biologists. Compressors
focused on compressibility at the expense of more computa-
tional resources, on the other hand, generally apply statistical
and algorithmic model mixtures combined with arithmetic en-
coding. Among the best compressors regarding compression
ratio performance for various genomic sequences, the best re-
sults are provided by cmix [81], XM [82], Jarvis [83], and Geco3
[84]. For additional information regarding data compressors’
compressibility capacity of genomic sequences, see [85]. Cmix
[81] is a general-purpose lossless data compression program
that optimises compression ratio at the cost of high CPU/mem-
ory usage. It is based on PAQ compressors [86, 87] but dra-
matically increases the amount of processing per input bit and
computational memory. Current updates include LSTM (Long
Short-Term Memory) based models [88]. The XM compressor
[82] uses three types of experts: repeat models, a low-order
context model, and a short memory context model. On the
other hand, Jarvis [83] uses a competitive prediction model
that estimates for each symbol the best class of models to be
used. There are two classes of models: weighted context mod-
els and weighted stochastic repeat models, where both classes
of models use specific sub-programs to handle inverted re-
peats efficiently. Finally, GeCo3 [84], currently one of the best
performing reference-free data compressors, uses neural net-
works to improve upon the results of specific genomic mod-
els of GeCo2 [89]. Specifically, the neural networks are used
in mixing multiple contexts and substitution-tolerant context
models of GeCo2. Furthermore, GeCo3 has embedded subpro-
grams capable of detecting genome-specific patterns, such as
inverted repeats.

Methods

This section describes the measures used in this paper. Specif-
ically, we first define information-based measures: the Nor-
malized Block Decomposition Method, the Normalized Com-

pression (NC) with different subprograms, the Normalized
Compression Capacity (NCC), the difference between NCs, and
the minimal bi-directional complexity profiles. Afterwards,
we define the GC-Content, and the compression benchmark
performed. Finally, we described the classification pipeline.
Specifically, the features and classifiers used and the metrics
utilized for evaluating the model’s performance.

Information-based measures

This section describes two approximations of the Kolmogorov
complexity, one based on the decomposition of a string into
blocks and their approximation based on the output of small
Turing machines (Block Decomposition Method) and another
based on data compression. The data compression approach
was utilized to compute the Normalized Compression and con-
struct the minimal bi-directional complexity profiles. There-
fore, in this subsection, we describe the Normalized Compres-
sion (NC), the minimal bi-directional complexity profiles, and
the Normalized Block Decomposition Method (NBDM).
Normalized Block Decomposition Method (NBDM)
A possible approximation of the Kolmogorov complexity is
given by using small Turing machines (TM), which approxi-
mate the components of a broader representation. The Coding
Theorem Method (CTM) uses the algorithmic probability be-
tween a string’s production frequency from a random program
and its algorithmic complexity. The more frequent a string
is, the lower its Kolmogorov complexity, and the lower fre-
quency strings have, the higher Kolmogorov complexity is. The
Block Decomposition Method (BDM) increases the capability of
a CTM, approximating local estimations of algorithmic infor-
mation based on Solomonoff-Levin’s algorithmic probability
theory. In practice, it approximates the algorithmic informa-
tion, and when it loses accuracy, it approximates the Shannon
entropy. Since in this article we use BDM to perform a com-
parison with the Normalized Compression, we considered the
normalization of the BDM (NBDM) according to [56]. In this
case, the NBDM is computed as

NBDM(x) = BDM(x)
|x| log2 |Σ| = BDM(x)

2× |x| . (2)

where x is a string, BDM(x) is the BDM value of the string, |Σ|
the number of different elements in x (size of the alphabet)
and |x| the length of x. Since we have a four symbol alphabet
(Σ = {A, C, G, T} for DNA sequences and Σ = {A, C, G, U} for RNA
sequences), |Σ| = 4, log2 (4) = 2. Although BDM has difficulty
dealing with full information quantification due to the block
representability, it has proven to be a helpful tool for measur-
ing and identifying data content similar to simple algorithms
[56].
Normalized Compression (NC)
An efficient compressor provides an upper bound approxima-
tion for the Kolmogorov complexity. Specifically, K(x) < C(x) ≤
|x| log2 |Σ|, where K(x), is the Kolmogorov complexity of the
string x in bits, C(x) is the compressed size of x in bits, and |x|
is the length of string x. This relation neglects the constant
that asymptotically becomes irrelevant. Usually, an efficient
data compressor is a program that approximates both proba-
bilistic and algorithmic sources using affordable computational
resources (time and memory). Although the algorithmic nature
may be more complex to model, data compressors can have
embedded sub-programs to handle this nature. The normal-
ized version, known as the Normalized Compression (NC), is
defined by
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NC(x) = C(x)
|x| log2 |Σ| = C(x)

2× |x| . (3)

Given the normalization, the NC enables to compare the pro-
portions of information contained in the strings independently
from their sizes [12]. If the compressor is efficient, then it
can approximate the quantity of probabilistic-algorithmic in-
formation in data using affordable computational resources. In
our work, to determine the NC, we made use of the state-of-
the-art genome compressor GeCo3 [84], with the level 16 that
yielded the best average results (benchmark provided in the
results section).
Besides the computation of the NC using the standard config-
uration of this model, we also computed the NC using GeCo3
with three subprogram configurations. These subprogram con-
figurations address the use or absence of inverted repetitions,
namely:

• IR0 → uses the regular context model without IR detection;
• IR1→ uses IR detection simultaneously with the regular con-

text model;
• IR2 → uses IR detection sub-program without regular con-

text models.

There was a need to determine the sequences with the highest
normalized compression capacity (NCC) in some cases. When
the compressor was only using the subprogram IR2, NCC was
computed as NCCIR2 (x) = 1 – NCIR2 . Only positive values were
considered to filter computations where the compressor could
not compress the sequence sufficiently. Another measure used
to quantify inverted repeats was the difference between NCIR0and NCIR1 .
Minimal bi-directional complexity profiles
A complexity profile is a numerical sequence describing for
each symbol (xi) of a sequence x the number of bits required
for its compression assuming a causal order [90]. A minimal
bi-directional complexity, B(x), profile assumes the minimal
representation of compressing the sequences using both direc-
tions independently, namely −→C (xi) as from the beginning to
the end of the sequence, and ←−C (xi) as from the end to the be-
ginning [91]. Accordingly, these profiles are defined as

B(xi) = min{−→C (xi),←−C (xi)}. (4)

The construction of these profiles follows a pipeline formed
of many transformations, including reversing, segmenting, in-
verting, and the use of specific low-pass filters after data com-
pression to achieve better visualization. For computing these
profiles, we use the GTO toolkit [92].
The generation of these profiles is robust to localize specific
features in the sequences, namely low and high complexity se-
quences, inverted repeat regions, duplications, among others.

Other Measures

The two other measures used to perform viral analysis and clas-
sification are the GC-Content (GC) and the length of the viral
genome |x|.
GC-Content (GC) represents the proportion of guanine (G)
and cytosine (C) bases out the quaternary alphabet (Σ =
{A, C, G, T/U}). This includes thymine (T) in DNA and uracil (U)

in RNA. The GC percentage is given by the number of cytosine
(C) and guanine (G) bases in a viral genome x with length |x|
according to

GC(x) = 100
|x|

|x|∑
i=1
N (xi||xi ∈ Ξ), (5)

where xi is each symbol of x (assuming causal order), Ξ is a
subset of the genomic alphabet containing the symbols {G, C}
and N the program that counts the numbers of symbols in Ξ.
GC-content is variable between different organisms and corre-
lates with the organism’s life-history traits, genome size [93],
and GC-biased gene conversion [94]. Furthermore, in RNA
viruses, excess C to U substitutions accounted for 11–14% of
the sequence variability of viruses, indicating that a decrease
in GC-content is a potent driver of RNA viruses’ diversification
and longer-term evolution [95]. As such, this measure helps
perform viral classification.
On the other hand, it was shown that the number of base stack-
ings (typical arrangement of nucleobases found in the three-
dimensional structure of nucleic acids) is one of the most crit-
ical elements contributing to the thermal stability of double-
stranded nucleic acids. Furthermore, due to the relative loca-
tions of exocyclic groups, GC pairings have higher stacking en-
ergy than AT or AU pairs [96]. This energy accumulation in the
GC pair in an organism’s genome makes the DNA more prone
to mutation. Thus, over time, a species tends to decrease its
GC-content to become more stable [97], giving us further in-
formation regarding viral characterization.

Data Description

The dataset is composed of 12,163 complete reference genomes
from 9,605 viral taxa retrieved from NCBI database on 22 of
January 2021 using the following footnote url1. The download
was performed in a custom manner to retrieve the taxonomic id,
host and geolocation of each reference genome. The metadata
header was removed from each sequence using the GTO toolkit
[92], where any nucleotide outside the quaternary alphabet
{A, C, G, T/U}, was replaced by a random nucleotide from the
quaternary alphabet. Notice that the sequences with symbols
outside the alphabet are scarce. Finally, the type of genome
and the taxonomic description of each sequence were retrieved
using Entrez-direct [98].
Then, the retrieved NCBI sequences were filtered to remove
possibly contaminated or poorly sequenced sequences. Firstly,
using the taxonomic metadata, sequences that did not hold
complete taxonomic information down to the genus rank and
any sequences that maintained a taxonomic description of un-
classified were removed. Secondly, we applied a filter to re-
move outlier sequences. Specifically, after computing all se-
quences’ length, GC-Content, and Normalized Complexities,
sequences whose measure fell outside µ±3×σ (approximately
0.03% of all sequences) of any measure were removed. A total
of 182 sequences were removed since they most likely have er-
rors in the assembly process or contamination. After filtering,
we kept 6,091 of the initial 12,163 sequences.

1 https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=
Nucleotide&VirusLineage_ss=Viruses,%20taxid:10239&SourceDB_s=
RefSeq&GenomeCompleteness_s=complete&CreateDate_dt=1998-01-01T00:
00:00.00Z%20TO%202021-01-22T23:59:59.00Z

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Viruses,%20taxid:10239&SourceDB_s=RefSeq&GenomeCompleteness_s=complete&CreateDate_dt=1998-01-01T00:00:00.00Z%20TO%202021-01-22T23:59:59.00Z
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Viruses,%20taxid:10239&SourceDB_s=RefSeq&GenomeCompleteness_s=complete&CreateDate_dt=1998-01-01T00:00:00.00Z%20TO%202021-01-22T23:59:59.00Z
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Viruses,%20taxid:10239&SourceDB_s=RefSeq&GenomeCompleteness_s=complete&CreateDate_dt=1998-01-01T00:00:00.00Z%20TO%202021-01-22T23:59:59.00Z
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Viruses,%20taxid:10239&SourceDB_s=RefSeq&GenomeCompleteness_s=complete&CreateDate_dt=1998-01-01T00:00:00.00Z%20TO%202021-01-22T23:59:59.00Z


6 | GigaScience, 2022, Vol. 00, No. 0

Data compressors and Level selection benchmark

First, we tested cmix and GeCo3 regarding compression ratio
and time required per sequence compression. This was fol-
lowed by selection of a total of 19 levels of models in GeCo3
to determine the best level configuration to compress the viral
sequences. These levels correspond to the default 13 levels of
the GeCo3 compressor and 6 others built for this task. The list
of the levels used are shown in Table S1, and the description of
parameters can be found in Table S2. The 13 default levels of
the compressor have increasingly higher complexity and take
longer to run since they use higher context models. Therefore,
since the first and lightest level performed best, the other six
custom-build levels were also built with lightweight models.

Classification

We tested several machine learning algorithms to perform the
genomic and taxonomic classification task, namely, the classi-
fiers used were Linear Discriminant Analysis (LDA) [99], Gaus-
sian Naive Bayes (GNB) [100], K-Nearest Neighbors (KNN)
[101], Support Vector Machine (SVM) [102], and XGBoost clas-
sifier (XGB)[103].
Linear Discriminant Analysis is a generalization of Fisher’s lin-
ear discriminant, a method used in statistics and other fields,
to find a linear combination of features that separates classes of
objects. The resulting combination can be used as a linear clas-
sifier [99]. Gaussian Naive Bayes is defined as a supervised ma-
chine learning classification algorithm based on the Bayes the-
orem following Gaussian normal distribution [100]. K-Nearest
Neighbors is another approach to data classification, taking
distance functions into account and performing classification
predictions based on the majority vote of its neighbors [101].
Support Vector machines are supervised learning models with
associated learning algorithms that construct a hyperplane in
a high-dimensional space using data and perform classifica-
tion [102]. Finally, XGBoost [103] is an efficient open-source
implementation of the gradient boosted trees algorithm. Gra-
dient boosting is a supervised learning algorithm that predicts
a target variable by combining the estimates of a set of simpler
models. Specifically, new models are created that predict the
residuals or errors of prior models and then added together to
make the final prediction. This task uses a gradient descent
algorithm to minimize the loss when adding new models. XG-
Boost can use this method in both regression and classification
predictive modeling problems.
The accuracy and weighted F1-score were used to select and
evaluate the classification performance of the measures. Accu-
racy is the proportion between correct classifications and the
total number of cases examined, while the F1-score is com-
puted using the precision and recall of the test. We utilized the
weighted version of the F1-Score due to the presence of imbal-
anced classes.
For comparison of the obtained results, we assessed the out-
comes obtained using a random classifier. For that purpose,
for each task, we determined the probability of a random se-
quence being correctly classified (phit) as

phit =
n∑

i=0
[p(ci) ∗ pcorrect(ci)], (6)

where p(ci) is the probability of each class, determined as

p(ci) = |samplesclass||samplestotal| .

On the other hand, pcorrect(ci) is the probability of that class
being correctly classified. In the case of a random classifier,

pcorrect(ci) = 1
|classes| .

Results

The results reported in this manuscript can be computed us-
ing the minimal characteristics described in Supplementary
Subsection entitled Software and Hardware recommendations
and using the procedures described in Supplementary Subsec-
tion entitled Reproducibility. The following subsections de-
scribe the data, the compression level selection benchmark, the
synthetic sequence benchmark, the viral genome analysis and
cladograms, and the viral classification application.

Data compressors and Level selection benchmark re-
sults

Viral genomes have specific characteristics, for example, short
length, high average complexity, and specific structures, that
require the proper optimization of the data compressor to pro-
vide higher modelling adaptability and efficiency. Cmix and
GeCo3 are state-of-the-art genomic compressors. To assess
the viability of each compressor, we tested their computational
time and NC values on a small sample consisting of 8 medium
size viral genomes. The results, presented in Figure S2 of the
supplementary material, show that the compression ratio of
GeCo3 is, on average, slightly better, with a much more rea-
sonable computational time (on average, three orders of mag-
nitude faster than cmix). As such, for the remaining of the
work, we consider the GeCo3 compressor.

On the other hand, GeCo3 contains many types of compression
levels [84]. Therefore, we applied GeCo3 to each viral genome
from the dataset using 19 different levels and computed its nor-
malized compression (NC).

We evaluated the frequency where each level yielded the lowest
NC (provided the best compression for a given sequence; Figure
1 A) and determined the sum of the NC from the compression of
all reference genomes for each model (Figure 1 B). Overall, we
selected level 16 because it provided the lowest NC on average
(28.38% as the best compression level) and the lowest NC sum
from compressing all reference genomes. This level is consti-
tuted by a mixture using a neural network with the following
models:

• Model 1→ context-order of 1, alpha parameter of 1 (without
inverted repeats), and gamma parameter of 0.7;

• Model 2 → context-order of 12, alpha parameter of 1/50
(with inverted repeats), and gamma parameter of 0.97.

The chosen level is constituted by two models with a small and
average context model. This configuration performed better be-
cause most viral genomes are small and compact, where a small
genomic space usually separates repetitions and IRs. Therefore,
the depth of the models is more adapted to provide higher ef-
ficiency to the average of the viral genomes than, for exam-
ple, a higher context model (higher than 13) that can perform
marginally better in more extensive and repetitive sequences,
but that loses sensitivity in the average of the genomes.
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Figure 1. Selection of a level for GeCo3 from a pool of 19 levels. (A) depicts the
frequency where each level provided the best NC results, and (B) shows for each
level the sum of the NC from the compression of all reference genomes. For
better visualization, please visit the website https://asilab.github.io/canvas/.

Synthetic sequence benchmark

Viral genomes can contain IRs that are subsequences better de-
scribed using simple algorithmic approaches. To benchmark
the capability of different programs to quantify IRs accurately,
we created a genomic sequence of 10,000 nucleotides in which
the last 5,000 were inverted repeats of the first 5,000. This size
was chosen since the median size of the viral genomes is 9,836
bases, which is close to the total size of the synthetic sequence
generated. This sequence was mutated incrementally from 0%
to 10%, meaning that the number of IRs decreases with the in-
crease of nucleotide substitutions. For each sequence, the NC
was computed with (Figure 2): i) GeCo3, without and with the
IR detection program (IR0 and IR2, respectively), ii) PAQ8 and
iii) Cmix. Additionally, the Normalized Block Decomposition
Method (NBDM) was also computed as a more prone measure
of algorithmic nature quantification. Results show that GeCo3
with the IR2 subprogram compresses the sequences better than
the other programs since its NC is lower at 0% mutational rate
(Figure 2). All other compressors (cmix and PAQ8) could not de-
tect IRs and compress the sequence. Furthermore, NBDM can
also not detect the IRs because it provides the same high value
across sequences with various mutation rates. It is also evi-
dent that GeCo3 with IR2 can detect IRs even in the presence of
substantial mutations (5% of mutation) and takes into account
different levels of nucleotide substitutions because it increases
with the increase of the mutational rate (i.e. decrease of IRs).
The difference between NCIR0 and NCIR1 , both computed with
GeCO3, was also analyzed. Its profile is inverse to the IR2 and
confirms that nucleotide substitutions’ accumulation decreases
the number of IRs in the sequence.

Viral genome analysis and cladograms

The core of the viral genomes was analyzed in terms of com-
plexity landscape, including the trends, singularities, and pat-
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Figure 2. Plot describing the variation of Normalized Compression (NC) and
Normalized Block Decomposition Method (NBDM) with an increase of muta-
tion rate of a sequence (0%-10%). The NC was computed using the state-of-
the-art genomic compressor (GeCo3 [84]) and a general-purpose compressor
(PAQ8 [104]). A red line depicts the NBDM, the NC value using cmix with
brown, and PAQ8 by a purple line. Furthermore, the GeCo3 compressor with
(IR2) and without the IR detection subprogram (IR0) is shown in orange and
blue lines, respectively. Finally, the green line shows the difference between
NCIR0 – NCIR1 .

terns for both the use or absence of IRs. The NC, using GeCo3,
with IR0, IR1 and IR2 subprograms was determined and the
NCCIR2 was calculated. The outcome was interpreted accord-
ing to the genome type or the taxonomic group, together with
the average of their genome sizes (Figure 3 and Table S3). No-
tice that the NC enables to compare proportions of the absence
of redundancy independently from the sizes of the genomes.
This value is complementary to the normalized redundancy.
Specifically, consider the redundancy (R) of a sequence x, as
R(x) = log2(A)|x| – C(x), where |x| is the length of the sequence,
A is the cardinally of the sequences’ alphabet and C(x) is the
compressed size of x in bits, and the normalized redundancy
(NR) as NR(x) = 1 – (C(x)/(log2(A)|x|)).
Complexity landscape according to genome type
According to NCBI, the virus’s genomes herein analyzed are
of five types: dsDNA, ssDNA, dsRNA, ssRNA and mixed-DNA.
Results show that ssDNA, followed by mixed-DNA and dsRNA
viruses, are the genomes with higher NC, whereas dsDNA
genomes have the lowest (Figure 3 A; Table S3). In general,
smaller genomes are less complex and are more likely to con-
tain fewer repeats and, hence, less redundancy, and the ss-
DNA, mixed-DNA and dsRNA genomes have smaller average
sequence lengths (3282 bp, 3258 bp, and 8377 bp; Table S3).
According to the NCC and the NCIR0 – NCIR1 difference results,
dsDNA and ssDNA have most significant quantities of IRs than
the other genome types. This can be due to ITRs present at
the ends of some dsDNA viruses, such as Adenovirus and Am-
pullaviruses, and ssDNA virus as Parvoviruses, or other IRs
structures important that perform ribosomal frameshifting.
Complexity landscape according to taxonomic level
In complexity analysis of viral genomic sequences, when con-
sidering the Realm taxonomic level (Figure 3 B), the lowest NC
values were obtained for Adnaviria, Varidnaviria and Duplod-
naviria (Table S4 and S5). These results are consistent with
the genomic grouping since they are composed exclusively of
dsDNA viruses and have the highest sequence lengths. Thus,

https://asilab.github.io/canvas/
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generally, an inverse correlation between genome size and NC
was also observed as with the genome type analysis (Figure
3 A and B) and occurs across all taxonomic levels (Table S5).
However, within these three Realms, Adnaviria has the lowest
sequence length and presented a higher compressibility than
Varidnaviria and Duplodnaviria, suggesting that the last are
highly complex.
Regarding IRs, Adnaviria was the realm where the highest com-
pression was obtained using the IR2 subprogram (highest rate
of IRs; Table S6). Consequently, its only recognized king-
dom, Zilligvirae, has also one of the highest NCC values (Ta-
ble S6). Adnaviria is a realm constituted of mostly A-form ds-
DNA viruses, and the ends of their genomes contain ITRs [105].
A-form is proposed to be an adaptation allowing DNA sur-
vival under extreme conditions since their hosts are hyperther-
mophiles and acidophiles microorganisms from the archaea do-
main [105, 106]. The fact that Adnaviria presented the lowest
NC might indicate that their genomes require redundancy to
survive such extreme environments. The kingdom Trapavi-
rae, belonging to the realm Monodnaviria, is also composed
by dsDNA viruses that infect halophilic archaea. Together with
kingdom Zilligvirae, Trapavirae presented the highest differ-
ence between IRs and standard compression (Table S7). These
results also support the fact that IRs can stabilize the DNA of
viruses that exist in extreme environments. It has already been
demonstrated that archaeal viruses with linear genomes use
diverse solutions for protection and replication of the genome
ends, such as including covalently closed hairpins and terminal
IRs [107].
At the family level, Botourmiaviridae presented the highest
complexity, followed by Alphasatellitidae and Tolecusatelliti-
dae families (Table S5). Botourmiaviridae is composed of ss-
RNA viruses that infect plants, and filamentous fungi [108].
Curiously, plants and fungi have higher redundancy despite
the lower redundancy of their pathogens. Alphasatellitidae and
Tolecusatellitidae are families of satellite viruses that depend
on the presence of another virus (helper viruses) to replicate
their genomes. These satellite viruses have minimal genomes,
making sense that they possess very low redundancy. Re-
garding IRs, Malacoherpesviridae, Herpesviridae, and Rudiviri-
dae contained the highest NCIR0 – NCIR1 difference (Table S7).
Malacoherpesviridae and Herpesviridae are dsDNA viruses evo-
lutionarily close since they belong to the order Herpesvirales
[109]. Malacoherpesviridae encompasses the genera Aurivirus
and Ostreavirus, which infect molluscs. Herpesviridae are also
known as herpesviruses and have reptiles, birds and mammals
as hosts. This family will be discussed in more detail in the
following subsection. Rudiviridae is a family of viruses with
linear dsDNA genomes that also infect archaea. The virus of
these families are highly thermostable and can act as a tem-
plate for site-selective and spatially controlled chemical mod-
ification. Furthermore, the two strands of the DNA are cova-
lently linked at both ends of the genomes, which have long
ITRs [110]. Again, these IRs could be an adaptation to stabilize
the genome.
Complexity landscape of the family Herpesviridae
Here we analyzed the complexity landscape of the genera of
the family Herpesviridae in more detail, and results show a
significant variation between them (Figure 4 A). Mardivirus
had the highest NCIR0 – NCIR1 difference among all viruses,
and only other three genera (out of thirteen) of herpesviruses
were within the ten highest differences list (Table S7). Indeed,
the genus Mardivirus had the highest compression, whereas
the genus Lymphocryptovirus possessed very low compres-
sion with the IR2 subprogram. We performed the minimal bi-
directional complexity profiles of one sequence of each virus to

visualize their distribution of complexity locally (Figure 4 C).
As we can see, Human herpesvirus 4 (also known as Epstein-
Barr virus) has more internal repeats (Figure 4 C, IR0 profile)
detected and fewer IRs (Figure 4 B; IR2 profile). The opposite
occurs with the Falconid herpesvirus-1 strain S-18, where IRs
are more prominent than internal repetitions. Furthermore,
notice that these regions determined with compression profiles
coincide with actual regions detected in the genome with other
methods (Figure 4 C; first profile).
A particular group of family Herpesviridae are the human her-
pesviruses (HHVs). These viruses are involved in globally
prevalent infections and cancers and characterized by lifelong
persistence with reactivations that can potentially manifest
life-threatening conditions [111]. Globally, the HHVs present
a higher redundancy relative to other viruses (Figure 4 B).
These viruses are divided into: i) the alpha-subfamily mem-
bers, namely herpes simplex virus type 1 and 2 (HSV-1 and HSV-
2) and varicella-zoster virus (VZV), ii) the beta-subfamily of
human cytomegalovirus (HCMV) and human herpesviruses 6A,
6B, and 7 (HHV-6A, HHV-6B, and HHV-7) and iii) the gamma-
subfamily of Epstein-Barr virus (EBV) and Kaposi’s sarcoma-
associated herpesvirus (KSHV). Specifically, the EBV, one of the
most potent cell transformation and growth-inducing viruses
known, capable of immortalizing human B lymphocytes, con-
tains a higher redundancy than the other HHVs (Figure 4
B). The other gamma-herpesvirus, KSHV, is the genome with
the highest NCIR1 (Figure 4 B). Unlike the beta- and gamma-
subfamilies, the alpha-subfamily is characterized by a sub-
stantial quantity of IRs, as suggested by the NCs with IR1and IR2 configurations (Figure 4 B). The VZV has the short-
est genome and the highest NC within this group. These dif-
ferences might be justified by the different rates of evolution
within these genomes [112]. Considering the beta-subfamily
members, HCMV contains a small proportion of IRs while hav-
ing a substantial-high NC relative to other HHVs being an-
alyzed. Since the HCMV has the largest genome, this was
surprising because the NC typically has an inverse correlation
with the genome size and the quantity of IRs. The other beta-
subfamily members are the Human Herpesvirus 6A, 6B, and
7, which produced lower NCs (with IR1 and IR2 configurations)
compared to the other HHVs, with a low quantity of IRs, an ef-
fect that their integrating function might favour. For instance,
HHV-6A and 6B can integrate their genomes into the telom-
eres of latently infected cells [113, 114]. Thus, their genomes
contain subsequences similar to the human telomere regions
that can be formed by internal nucleotide repetitions [115]. As
such, these are sequences with very low complexity and, hence,
highly compressible.
Alternative visualization methods of the viral complexity landscape
Cladograms were generated depicting the redundancy (NC; Fig-
ure 5 A) and the prevalence of inverted repeats (NCC; Figure 5 B)
on each taxonomic branch. In addition, we performed the same
analysis to portray the relation between inverted and internal
repetitions (Figure S3). These cladograms show the broad pic-
ture of the regions with more complex and less redundant se-
quences, regions rich in inverted repeats, and regions with a
higher prevalence of inverted repeats relative to standard rep-
etitions in the genomes.
Another way to analyze the results is by producing 3D-scatter
plots of randomly sampled values obtained from computing the
features sequence length (SL), NC and GC-content (GC; Fig-
ure 6 A) or 2D-scatter plots of their projections (Figure 6 B
and 6 C), both concerning a particular taxonomic level (herein
Realm). Analyzing the sequence length projections (Figure 6
B), it is evident that there is a logarithmic downtrend of the
NC with the increase in sequence length. Thus, although longer
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Figure 3. Average Normalized Compression (ANC) and average sequence length per viral group. The values were obtained for genome type (A) and realm (B). To
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Figure 4. Average Normalized Compression (ANC) and average sequence length per the genera of the Herpesviridae family (A) and for various Human Herpesviruses
(B). In the boxplot where the genera of the Herpesviridae family are displayed, two genera were selected, one with a low level of inverted repeats (Lymphocryp-
tovirus) and one with a high (Mardivirus). Then, a representative reference sequence was selected (Lymphocryptovirus - Human herpesvirus 4 or EBV, NCBI
Reference Sequence: NC_024450.1; Mardivirus - Falconid herpesvirus 1 strain S-18, NCBI Reference Sequence: NC_009334.1) and created minimal bi-directional
complexity profiles (C).

sequences have, on average, greater complexity (absolute quan-
tities), they have higher redundancy, which the data compres-
sor takes advantage of to perform a better compression. On
the other hand, the NC vs the GC-content displays a normal
distribution around the 0.5 GC-mark, with higher complexi-
ties associated with similar frequency of occurrence of the four
bases A, C, G, T/U (Figure 6 C). This result also makes sense
since, in principle, a well-distributed frequency of bases makes
more complex sequences to compress. More importantly, the
NC, GC and SL seem to discriminate between different taxo-
nomic groups (Figure 6). As such, in the following section, we
analyze the classification capability of these features.

Viral Classification

Although sequence alignment is essential for genomic analy-
sis, the fact that pairwise and multiple alignment methods are
often slow methods led to the popularization of fast alignment-
free methods for sequence comparison. Most alignment-
free methods are based on word frequencies for words of
a fixed length or word-matching statistics. Others use the
length of maximal word matches, and others rely on spaced-
word matches (SpaM). These inexact word matches allow mis-
matches at certain pre-defined positions and can accurately
estimate phylogenetic distances between DNA or protein se-
quences using a stochastic model of molecular evolution [116].

https://asilab.github.io/canvas/


10 | GigaScience, 2022, Vol. 00, No. 0

Figure 5. Cladograms showing average NC of each viral group (A), and the normalized compression capacity (NCC) (B). NCC results were obtained by NCC =
1 – NCIR2 > 0. The colour red depicts the highest complexity, and the blue the lowest. The first cladogram describes the NC of each taxonomic branch. Red colour
show genomes with less redundancy, and blue ones with more redundancy. On the other hand, the second cladogram depicts the prevalence of inverted repeats
on each taxonomic branch. Red indicates branches with genomes with a high percentage of inverted repeats, whereas blue shows branches with a low percentage.
For better visualization, please visit the website https://asilab.github.io/canvas/.

This approach has also been updated as the Multiple Spaced-
Word Matches (Multi-SpaM) method, which is based on multi-
ple sequence comparison and maximum likelihood [117]. Re-
garding viral sequences, many studies were performed on
alignment-free sequence comparison and classification. For
instance, Garcia et al. [118] developed a dynamic programming
algorithm for creating a classification tree using metagenome
viruses. For the classification tree creation, k-mer profiles of
each metagenome virus were created, and proportional similar-
ity scores were generated and clustered. Using the JGI metage-
nomic and NCBI databases, the authors were able to identify
the correct virus (including its parent in the classification tree)
82% of the time. Zhang et al. [119] created an alignment-free

method that employed k-mers as genomic features for a large-
scale comparison of complete viral genomes. After determining
the optimal k for all 3,905 complete viral genomes, a dendro-
gram was created, which shows consistency with the viral tax-
onomy of the ICTV and the Baltimore classification of viruses.
He et al. [120] proposed an alignment-free sequence compari-
son method for viral genomes based on the location correlation
coefficient. When applied to the evolutionary analysis of the
common human viruses, including SARS-CoV-2, Dengue virus,
Hepatitis B virus, and human rhinovirus and achieves the same
or even better results than alignment-based methods. Finally,
Huang et al. [121] proposed a classification method based on
discriminant analysis employing the first and second moments

https://asilab.github.io/canvas/
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Figure 6. Scatter-plots of Normalized Compression vs. Sequence Length
and GC-Content (A), Scatter-plots of Normalized Compression vs. Sequence
Length (B) and Normalized Compression vs. GC-Content (C).

of positions of each nucleotide of the genome sequences as fea-
tures and performed classification of genomes regarding their
Baltimore classification and family (12 families) and obtained
a maximum value of accuracy of 88.65% and 85.91%, respec-
tively.
With these considerations in mind, we created an alignment-
free feature-based classification method in this section. We
performed eight different classification tasks for each viral se-
quence from the dataset. Specifically, the sequences were clas-
sified regarding their genome type, realm, kingdom, phylum,
class, order, family, and genus.
We conducted a random 80-20 train-test split on the dataset
to perform viral classification. Due to classes being imbalanced
in the dataset, we performed several actions. First, we did not
consider classes with less than four samples. As such, depend-
ing on the classification task, the number of samples decreased
from 6,091 to the values shown in Table S8 (N. Classes column).
Secondly, we performed the train-test split in a stratified way
to ensure the representability of each label in the train and test
sets. Finally, instead of performing k-fold cross-validation,
we performed the random train-test split fifty times, and we
retrieved the average of the evaluation metrics. Then, we com-
puted the Accuracy and the Weighted F1-score to select the best
performing method.
Considering these works, herein we perform feature-based
classification. As described in the method section, we applied
5 types of classifiers: Linear Discriminant Analysis (LDA) [99],
Gaussian Naive Bayes (GNB) [100], K-Nearest Neighbors (KNN)
[101], Support Vector Machine (SVM) [102] and XGBoost classi-
fier (XGB) [103].
Furthermore, we performed classification using seven different
features: sequence length (SL), GC-content (GC), the Normal-
ized Compression (NC) values for the best performing model,
and the NC of the same model with IR configuration to 0, 1 and
2.
These seven features were fed to all the classifiers, and the
accuracy and weighted F1-score were measured to determine
which classifier was best suited for this task.
Tables S8 and S9 depict the accuracy and weighted F1-score
values obtained for each classifier. For all classification tasks,
the best performing classifier was the XGBoost classifier.
Following this, we analyzed if all features were necessary. For
that purpose, the XGBoost classifier was used with only the NC
feature, the NC with SL and GC, and finally, using all features.
The obtained accuracies are shown in Table 1, and the weighted

F1-score results are shown in Table S10. The best results are
obtained when using all features. This improvement increased
when the number of classes was higher, demonstrating that
the different compression subprograms (IR0, IR1, and IR2) are
more helpful in classifying more specific taxonomic groups.
The results show a decrease in accuracy and F1-score when
there is an increase in the number of classes. Specifically, we
obtained the best performance in the realm classification of
the virus (accuracy - 92.57%, F1-score - 0.9234) and our low-
est performance in genus classification (accuracy - 68.71%, F1-
score - 0.6561). This decrease is mainly because the average
number of samples per class decreases as the number of classes
increases. As such, many classes may still have an insufficient
number of samples to be accurately classified. Figure S4 rep-
resents the number of samples (genome sequences) per viral
genus. Furthermore, part of the classification inaccuracies can
be explained by possible errors in the assembly process of the
original sequence or eventual sub-sequence contamination of
parts of the genomes. Moreover, other inaccuracies could be
due to several genomes being reconstructed using older meth-
ods that have been improved since then [122].
Despite being pertinent, the alignment-free studies are not di-
rectly comparable due to sample size, absence of classification
metrics and source code. Furthermore, the method proposed
in this work is not only alignment-free but also feature-based,
providing a higher level of flexibility since it does not resort
directly to the reference genomes but instead to features that
the biological sequences share. Therefore, we compared our re-
sults with the outcome obtained using a random classifier as
a measure of comparison. Specifically, for each task, we de-
termined the probability of a random sequence being correctly
classified (phit). Overall there is a vast improvement relative to
the random classifier, showing the importance of the features
used in the classification process. These classification results
seem promising, showing that this metric can be utilized for
viral taxonomic classification if enough sequence samples are
provided.

Discussion

The usage of a specialized compressor is crucial to accurately
quantify the complexity present in a genome and detect the in-
trinsic algorithmic nature of the data. Genomic data is highly
heterogeneous and has high substitution mutations and data
rearrangements, such as fusions, translocations, and inver-
sions [64, 65]. Therefore, the ability of a genomic data com-
pressor to adapt to this heterogeneous data, being able to per-
form an accurate structure modelling and detect repetitions
in the presence of the high substitutional mutations and rear-
rangements in genomic data is fundamental to achieve high
compressibility of the genome sequence. This article eval-
uates the capacity to identify data-specific patterns in ge-
nomic sequences by comparing the potential of three meth-
ods to recognize IRs. Precisely, the NBDM was estimated, and
the NC was computed using a genomic compressor (GeCo3
[84]) and a general-purpose data-compressor (cix and PAQ8
[86, 87]). When GeCo3 had the subprogram activated that de-
tects IRs (NCIR2 ), it showed substantially higher compression
than general-purpose because cmix and PAQ use models that
do not consider these specific properties of the genomic se-
quences. The same occurs when comparing GeCo3 (NCIR2 ) with
NBDM, showing that despite NBDM being able to detect small
subprograms in synthetic data [56], it cannot detect IRs in ge-
nomic data. Moreover, GeCo3 compression capability was re-
sistant to substitutional mutation up to 10%, showing that it
can also deal with this extreme nature of genomic data, namely



12 | GigaScience, 2022, Vol. 00, No. 0

Table 1. Results obtained for viral taxonomic classification task regarding the genome type, realm, kingdom, phylum, class, order, family,and genus using XGBoost classifier. The features used were the genome’s sequence length (SL), the GC-content (GC) and the NormalizedCompression (NC) values for the best model, the same model with IR configuration to 0, to 1 and 2. The results correspond to the accuracy(ACC), and the probability of a random sequence being correctly classified (phit) using a random classifier (phit(CRandom).
Classification N. Classes N. Samples phit(CRandom) ACCNC ACCNC+GC ACCNC+SL+GC ACCAll without SQ ACCAll Features

Genome 5 6089 20.00 75.57 80.60 87.11 81.24 87.25
Realm 5 5799 20.00 77.90 84.56 92.25 86.16 92.57
Kingdom 10 5788 10.00 76.44 82.51 90.82 84.06 90.96
Phylum 17 5778 5.88 63.97 70.69 82.36 73.21 83.41
Class 34 5845 2.94 59.83 65.90 79.05 68.66 80.23
Order 48 5838 2.08 58.44 65.08 78.20 67.88 79.62
Family 102 5990 0.98 43.35 54.06 72.46 58.34 74.46
Genus 360 4673 0.28 35.59 50.02 67.32 54.23 68.71

approximate IRs.
On average, RNA viruses mutate faster than DNA viruses,
double-strand viruses mutate slower than single-stranded
viruses, and genome size correlates negatively with mutation
rate [123]. In this article, we have shown that the redundancy
of dsDNA is higher than ssDNA, but for RNA viruses, the op-
posite occurs. The sequences used in this study to measure
a lower NC (higher normalized redundancy) of the ssRNA to
dsRNA have approximately the same length. However, the
dataset of dsRNA has less than one order of magnitude in the
number of sequences. This difference is natural since the ss-
RNA is much more abundant than dsRNA. Nevertheless, this
discrepancy could justify the higher normalized redundancy of
ssRNA in the first instance. However, although the lower av-
erage NC values of ssRNA are similar to dsRNA, the dsRNA has
higher NC extremes. Therefore, we argue that this difference
in the number of sequences in the dsRNA is not significant in
changing the lower average of the ssRNA. Also, ssRNA are more
prone to mutation than dsRNA [124]. On the other hand, ex-
tensive C to U mutations have been reported in many mam-
malian RNA viruses [95]. This behaviour was detected during
a much faster evolution of the SARS-CoV- 2, an ssRNA virus
[125]. Therefore, the faster average decrease of GC-content in
ssRNA viruses explains a decrease in the ssRNA entropy and,
hence, average NC. A higher GC-content (approximately 2%)
of the dsRNA over ssRNA strengthens these outcomes (Table
S3).
We performed an analysis of the human herpesvirus regarding
their genome complexity and IRs abundance. Specifically, we
analyzed the various behaviours of their subfamilies and iden-
tified that different complexities could be representative of the
different rates of evolution within these genomes. Finally, we
suggest that maybe a higher compressibility and abundance
of inversions present in herpesvirus are associated with viral
genome integration.
Lastly, we evaluated the capability of using complexity mea-
sures to perform viral classification at different taxonomic lev-
els. Notably, results showed that we can automatically and
accurately distinguish between viral genomes at different tax-
onomic levels using the XGBoost classifier with all features (NC
with different configurations, GC-content and SL). However, a
decrease in accuracy when approaching the lowest taxonomic
levels was observed, which can be increased with future entries
to the database. Furthermore, when analysing viral sequences
from environmental samples or integrated genome samples,
the length of the original viral genome is often not known.
Therefore, we computed the accuracy of a model that does not
include this feature. Although we obtain a lower accuracy and
F1-score, the results indicate that the method is still reliable for
fast and efficient viral taxonomic identification in these scenar-
ios.

Finally, despite the high accuracy results obtained, further im-
provement of the results may be possible in the classification
by adding the transcribed viral proteome information.

Conclusion

This manuscript shows that the efficient approximation of the
Kolmogorov complexities of viral sequences as measures that
quantify the absence of redundancy have a profound impact on
genomes identification, classification, and organization.
For computing an upper bound of the sequence complexity, we
benchmark a specific data compressor (GeCo3), after optimiza-
tion, against other approaches. Specifically, GeCo3 was com-
pared with high compression ratio general-purpose data com-
pressors (PAQ and cmix) and a measure that combines small
algorithmic programs and Shannon entropy (BDM). Unlike the
other approaches, we show that GeCo3 can efficiently address
and quantify regions properly described by simple algorith-
mic sources, namely inverted repeats (exact and approximate),
among other characteristics.
Using an optimized compression level of GeCo3 in an extensive
viral dataset, we provide a comprehensive landscape of the viral
genome’s complexity, comparing the viral genomes at several
taxonomic levels while identifying the genome regarding the
lowest and highest proportion of complexity. Specifically, on
average, dsDNA viruses are the most redundant (less complex)
according to their size, and ssDNA viruses are the less redun-
dant. Contrarily, dsRNA viruses show a lower redundancy rel-
ative to ssRNA viruses.
We perform an in-depth analysis of the human herpesvirus re-
garding their genome complexity and abundance of IRs. We
suggest that a higher compressibility and abundance of inver-
sions in herpesvirus may be associated with viral genome inte-
gration.
We describe and use minimal bi-directional complexity profiles
of one sequence of each virus to visualize the distribution of
complexity of these sequences locally. These profiles can de-
scribe actual regions detected in the genome with other meth-
ods, proving the description capability of data compression at
a structural level.
We reveal the importance of efficient data compression in
genome classification tasks, explicitly showing that the com-
plexity, when combined with simple measures (GC-content
and size), is efficient in accurately distinguishing between vi-
ral genomes at different taxonomic levels without using direct
comparisons between sequences.
The methods and results presented in this work provide new
frontiers for studying viral genomes’ complexity while magni-
fying the importance of developing efficient data compression
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methods for automatic and accurate viral analysis.

Availability of source code and requirements

• Project name: C.A.N.V.A.S. (Complexity ANalysis of VirAl
Sequences)

• Project home page: https://github.com/jorgeMFS/canvas
• Operating system(s): Linux
• Programming language: Bash; Python.
• Other requirements: Python v3.6; Conda v4.3.27.
• License: MIT License.
• RRID:SCR_022552.
• biotools:canvas1.

The reproduction guidelines are available in the Reproducibility
section of the Supplementary Material.

Availability of supporting data and materials

Website

The website of this paper is available at
https://asilab.github.io/canvas/. This site showcases, among
other things, the pipeline of this study, the compressor’s
model selection, the detection of inverted repeats in synthetic
genomic sequences, the viral genome characterization with
regards to genome and type of taxonomic group, and the
computed cladograms with a magnifier to allow a better
observation of the normalized complexity results with illus-
trative examples of viruses. Snapshots of our code and other
data further supporting this work are openly available in the
GigaScience respository, GigaDB [126].
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Supplementary Material

Here, we depict the supplementary material of the article. The supplementary material is described in five main sections: Com-
pression Model Benchmark, Viral Genome Analysis, Classification, Software and Hardware recommendations, and Reproducibility.
The Compression Model Benchmark, Viral Genome Analysis and Classification sections have auxiliary material to their corre-
sponding sections of the main article. On the other hand, the Software and Hardware recommendations section defines minimum
requirements, and the Reproducibility section describes how to reproduce the results obtained in this article.

Viruses Microbiology Additional Information.

Viruses can exist outside of their host in the form of independent particles named virions composed of the genetic material (DNA
or RNA) enclosed by the capsid. This protein shell protects the viral genome, and at the same time, it is extracellular and promotes
its entry into the host cells [1].
Most of the viruses possess capsids with helical (Figure S1 A) or icosahedral (Figure S1 B) arrangements [2, 3]. Different viruses,
like bacteriophages, have developed other structures composed of elongated capsids attached to a cylindrical tailed sheet (Figure
S1 C) [4]. Others have an outer lipid bilayer named viral envelope (Figure S1 D), which is constituted by a modified form of the
host’s cell membranes. Viroids have naked genomes without any protective layer. Like viruses, they use the host’s machinery to
replicate, but their genomes do not encode proteins [5]. Furthermore, some viruses are dependent on another virus species in the
host cell to be transmitted to new cells. They were named ’satellites’ and may represent evolutionary intermediates of viroids and
viruses [6, 7]. Regarding mutability, the viral and viroid realm is the most mutable [8] of the realms.

Figure S1. Illustrations of types of virus morphology. Virus (A) is a helical virus, where the capsoid has a helical shape that envelops the genomic material, virus
(B) is icosahedral following cubic symmetry, (C) depicts a complex virus, namely a bacteriophage with a prolate capsid protecting the genomic material, and (D)
is virus covered by a viral envelop.

Viral genomes can be of double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), double-stranded RNA (dsRNA) or single-
stranded RNA (ssRNA) nature, being linear or circular molecules [9]. The ssRNA viruses can be further classified as positive- or
negative-ssRNA, depending on the sense of their RNA strand. These features determine the viral replication and mRNA synthesis
pathways. For instance, (+)-ssRNA is directly translated into proteins by the host cell’s ribosomes, acting as mRNA. On the other
hand, (-)-ssRNA needs to be converted to a (+)-ssRNA by an RNA-dependent RNA polymerase (RdRp) before translation. RdRp
also transcribes dsRNA to mRNA (using the negative strand as a template), and it is indispensable for the replication of RNA viral
genomes. Finally, ssDNA and dsDNA usually use the host’s DNA-dependent RNA polymerase to form mRNA. However, before this
process, ssDNA is converted to a dsDNA by a DNA polymerase upon cell invasion [10], which is also the enzyme involved in the
replication of DNA viruses. The RdRps have a high error rate due to their low proofreading activity and, therefore, replication of
RNA viruses is much more prone to mutation than that of DNA viruses [11].

Data compressors and Level selection benchmark

Herein, it is depicted the supplementary material to the Data compressors and Level selection benchmark.
Figure S2 shows the compression-time and compression-ratio of various Human Herpesviruses genome sequences between cmix
and GeCo3 compression.
Table S1 describes the parameters used in the six custom build levels. The flag “tm” is the template of a target context model, the
flag “lr” defines the learning rate, and the flag “hs” defines the number of hidden nodes for the neural network.

Table S1. Depiction of the parameters used in the six custom levels.
Level Values

1 -tm 1:1:0:0:0.7/0:0:0 -tm 12:20:1:1:0.97/1:1:0.97
2 -tm 1:1:0:0:0.7/0:0:0 -tm 12:20:1:1:0.97/2:1:0.97
3 -tm 1:1:0:0:0.7/0:0:0 -tm 12:50:1:1:0.97/0:0:0.97
4 -tm 1:1:0:0:0.7/0:0:0 -tm 12:20:1:1:0.97/0:0:0.97 -lr 0.05 -hs 40
5 -tm 1:1:0:0:0.7/0:0:0 -tm 12:20:1:1:0.97/0:0:0.97 -lr 0.15 -hs 40
6 -tm 1:1:0:0:0.7/0:0:0 -tm 12:20:1:1:0.97/0:0:0.97 -lr 0.3 -hs 40

Table S2 describes the parameters used in the template of a target context model. The template has the flag “tm” and follows the
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Figure S2. Comparison between cmix and GeCo3 when applied to various Human Herpesviruses regarding computational time and compression ratio obtained
(NC).

model “[NB_C]:[NB_D]:[NB_I]:[NB_H]:[NB_G]/[NB_S]:[NB_E]:[NB_A]”.

Table S2. Depiction of the parameters used in the template of a target context model.
Parameter Values Description

[NB_C] integer [1;20] Order size of the regular context model. The higher the value of the regular context model, the
more RAM it uses but, usually, are related to a better compression score.

[NB_D] integer [1;5000] Denominator to build alpha, which is a parameter estimator. Alpha is given by 1/[NB_D]. Higher
values are usually used with higher [NB_C] and are related to sure bets. When [NB_D] is one, the
probabilities assume a Laplacian distribution.

[NB_I] integer {0,1,2} Number to define if a sub-program that addresses the specific properties of DNA sequences (in-
verted repeats) is used or not. The number 2 turns ON this sub-program without the regular
context model (only inverted repeats). The number 1 turns ON the sub-program using at the
same time the regular context model. The number 0 does not contemplate its use (inverted re-
peats OFF). This sub-program increases the necessary time to compress, but it does not affect the
RAM.

[NB_H] integer [1;254] Size of the cache-hash for deeper context models, namely for [NB_C] >14. When the [NB_C] <=
14 use, for example, 1 as a default. The RAM is highly dependent of this value (higher value stand
for higher RAM).

[NB_G] real [0;1) Real number to define gamma. This value represents the decaying forgetting factor of the regular
context model in the definition.

[NB_S] integer [0;20] The maximum number of editions allowed to use a substitutional tolerant model with the same
memory model of the regular context model with an order size equal to [NB_C]. The value 0 stands
for turning the tolerant context model off. When the model is on, it pauses when the number of
editions is higher than [NB_C]. When it is turned on when a full match of size [NB_C] is seen
again, this is a probabilistic-algorithmic model advantageous to handle the high substitutional
nature of genomic sequences. When [NB_S] >0, the compressor used more processing time but
used the same RAM and, usually, achieved a substantial higher compression ratio. The impact of
this model is usually only noticed for [NB_C] >= 14.

[NB_E] integer [1;5000] Denominator to build alpha for substitutional tolerant context model. It is analogous to [NB_D].
However, it is only used in the probabilistic model for computing the statistics of the substitutional
tolerant context model.

[NB_A] real [0;1) Real number to define gamma. This value represents the decaying forgetting factor of the substi-
tutional tolerant context model in the definition. Its definition and use are analogous to [NB_G].

Viral Genome Analysis

We present the supplementary material discussed in the Viral Genome Analysis of this main article. Table S3 depicts the genome
types ordered by the highest normalized compression (NC), normalized compression capacity (NCC) and difference. NCC is computed
by NCC = 1–NCIR2 > 0, and the difference as difference = NCIR0 –NCIR1 . Furthermore, the Table shows the genomes’ average Sequence
Length (SL) and GC-Content (GC).
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Table S4 depicts the top Normalized Compression (NC) values by taxonomic group. Three main groups separate the Table. The
first represents the highest 10 NC values using standard settings NC (best performing model); the second group shows the top 10
lowest NC values obtained using the IR2 subprogram. Finally, the third group shows the top 10 highest values of the difference
between NC using IR0 and IR1 subprograms.
Tables S5,S6,and S7 organize the top taxa (by taxonomic group) regarding their normalized compression (NC), normalized com-
pression capacity (NCC) and difference. The tables also shows the genomes’ average Sequence Length and GC-Content.
Finally, Figure S3 depicts the cladogram with average NC difference (NCIR0 – NCIR1 > 0) for each viral taxonomic group up to the
viral genus. The colour red depicting the highest NC difference, and the blue the lowest.

Table S3. Depiction of the genome type by the highest normalized compression (NC), normalized compression capacity (NCC) and difference.
NCC is computed by NCC = 1 – NCIR2 > 0, and the difference as difference = NCIR0 – NCIR1 . Furthermore, the Table shows the genomes’ averageSequence Length (SL) and GC-Content (GC).

Normalized Compression Inverted Repeats Difference

Genome NC SL GC Genome NCC SL GC Genome difference SL GC

ssDNA 1.065 3282 0.447 dsDNA 0.029 84721 0.485 ssDNA 0.006 4672 0.435
mixedDNA 1.050 3258 0.491 ssDNA 0.026 5981 0.389 dsDNA 0.006 80636 0.470
dsRNA 1.047 8377 0.456 ssRNA 0.015 13425 0.393 mixedDNA 0.002 3311 0.434
ssRNA 1.013 9564 0.437 dsRNA 0.015 19911 0.396 dsRNA 0.001 6186 0.431
dsDNA 0.977 70353 0.481 ssRNA 0.001 10197 0.433
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Table S5. Depiction of the taxonomic groups with the highest NC values. The Table shows each group’s average Normalized Compression,Sequence Length and GC-Content.
Taxonomic Group Taxonomic Name Normalized Compression Sequence Length GC-Content

Super-Realm Viruses 1.007 36067 0.460

Realm

Ribozyviria 1.080 1682 0.588
Monodnaviria 1.046 4380 0.450
Riboviria 1.016 9332 0.438
Duplodnaviria 0.972 78102 0.500
Varidnaviria 0.957 109560 0.448
Adnaviria 0.948 33068 0.353

Kingdom

Shotokuvirae 1.049 4200 0.447
Sangervirae 1.026 5518 0.435
Orthornavirae 1.018 9472 0.438
Pararnavirae 0.995 7787 0.433
Loebvirae 0.994 7332 0.483
Trapavirae 0.993 10151 0.564
Heunggongvirae 0.972 78102 0.500
Bamfordvirae 0.957 112955 0.441
Helvetiavirae 0.949 24833 0.665
Zilligvirae 0.948 33068 0.353

Phylum

Lenarviricota 1.094 2654 0.476
Cressdnaviricota 1.067 3134 0.453
Duplornaviricota 1.045 9418 0.456
Phixviricota 1.026 5518 0.435
Kitrinoviricota 1.018 8548 0.474
Cossaviricota 1.013 6260 0.436
Pisuviricota 1.012 10580 0.442
Negarnaviricota 1.012 9620 0.397
Artverviricota 0.995 7787 0.433
Hofneiviricota 0.994 7332 0.483

Class

Miaviricetes 1.151 1792 0.514
Arfiviricetes 1.085 2557 0.464
Chunqiuviricetes 1.075 3870 0.503
Magsaviricetes 1.073 3730 0.513
Amabiliviricetes 1.072 2703 0.586
Duplopiviricetes 1.066 3298 0.467
Allassoviricetes 1.063 3753 0.493
Repensiviricetes 1.063 3281 0.451
Yunchangviricetes 1.061 3987 0.358
Insthoviricetes 1.054 5784 0.425

Order

Ourlivirales 1.151 1792 0.514
Cirlivirales 1.103 1864 0.471
Cremevirales 1.078 2572 0.478
Muvirales 1.075 3870 0.503
Nodamuvirales 1.073 3730 0.513
Wolframvirales 1.072 2703 0.586
Durnavirales 1.066 3298 0.467
Levivirales 1.063 3753 0.493
Geplafuvirales 1.063 3281 0.451
Goujianvirales 1.061 3987 0.358

Family

Botourmiaviridae 1.151 1792 0.514
Alphasatellitidae 1.143 1296 0.418
Tolecusatellitidae 1.116 1347 0.389
Circoviridae 1.103 1864 0.471
Genomoviridae 1.096 2201 0.517
Nodaviridae 1.080 3368 0.514
Kolmioviridae 1.080 1682 0.588
Smacoviridae 1.078 2572 0.478
Qinviridae 1.075 3870 0.503
Narnaviridae 1.072 2703 0.586

Genus

Clostunsatellite 1.192 1008 0.423
Milvetsatellite 1.186 1022 0.402
Aumaivirus 1.185 1168 0.510
Virtovirus 1.180 1150 0.442
Mivedwarsatellite 1.179 1014 0.402
Babusatellite 1.178 1104 0.437
Fabenesatellite 1.176 1007 0.385
Ourmiavirus 1.167 1605 0.519
Albetovirus 1.167 1221 0.426
Geminialphasatellitinae 1.131 1370 0.418



6 | GigaScience, 2022, Vol. 00, No. 0

Table S6. Depiction of the taxonomic groups with the highest normalized compression capacity (NCC) using only the inverted repeatssubprogram IR2. The top results were obtained by NCC = 1 – NCIR2 > 0. Besides the normalized compression capacity, the Table shows eachgroup’s average Sequence Length and GC-Content.
Group Taxonomic Group NCC = 1 – NCIR2 > 0 Sequence Legth GC-Content

Super-Realm Viruses 0.026 66796 0.462

Realm

Adnaviria 0.052 33068 0.353
Varidnaviria 0.038 110591 0.447
Duplodnaviria 0.028 82677 0.499
Monodnaviria 0.022 6958 0.399
Riboviria 0.015 13682 0.391

Kingdom

Loebvirae 0.053 7371 0.385
Zilligvirae 0.052 33068 0.353
Helvetiavirae 0.050 24833 0.665
Bamfordvirae 0.038 114079 0.440
Heunggongvirae 0.028 82677 0.499
Trapavirae 0.021 12225 0.577
Shotokuvirae 0.016 6184 0.378
Pararnavirae 0.016 9610 0.378
Orthornavirae 0.015 14012 0.393
Sangervirae 0.005 4421 0.321

Phylum

Peploviricota 0.068 168832 0.534
Nucleocytoviricota 0.063 210417 0.389
Hofneiviricota 0.053 7371 0.385
Taleaviricota 0.052 33068 0.353
Dividoviricota 0.050 24833 0.665
Uroviricota 0.026 79042 0.497
Saleviricota 0.021 12225 0.577
Preplasmiviricota 0.017 32147 0.483
Negarnaviricota 0.016 12180 0.376
Cossaviricota 0.016 6128 0.378

Class

Pokkesviricetes 0.072 190762 0.365
Herviviricetes 0.068 168832 0.534
Maveriviricetes 0.066 18227 0.290
Mouviricetes 0.066 8377 0.299
Faserviricetes 0.053 7371 0.385
Tokiviricetes 0.052 33068 0.353
Laserviricetes 0.050 24833 0.665
Megaviricetes 0.046 248459 0.436
Naldaviricetes 0.040 132022 0.410
Milneviricetes 0.029 11079 0.349

Order

Imitervirales 0.109 899501 0.256
Chitovirales 0.091 193551 0.356
Herpesvirales 0.068 168832 0.534
Priklausovirales 0.066 18227 0.290
Polivirales 0.066 8377 0.299
Ligamenvirales 0.055 34464 0.343
Tubulavirales 0.053 7371 0.385
Halopanivirales 0.050 24833 0.665
Pimascovirales 0.043 162587 0.456
Lefavirales 0.040 132022 0.410

Family

Mimiviridae 0.109 899501 0.256
Rudiviridae 0.103 30804 0.299
Poxviridae 0.091 193551 0.356
Malacoherpesviridae 0.091 209479 0.427
Plectroviridae 0.080 7045 0.248
Mononiviridae 0.077 41178 0.275
Herpesviridae 0.074 158421 0.539
Lavidaviridae 0.066 18227 0.290
Bidnaviridae 0.066 8377 0.299
Polydnaviridae 0.055 306235 0.377

Genus

Betaentomopoxvirus 0.174 247441 0.195
Oryzopoxvirus 0.164 185139 0.236
Vespertilionpoxvirus 0.156 176688 0.236
Simplexvirus 0.144 148626 0.694
Cafeteriavirus 0.127 617453 0.233
Mardivirus 0.121 177993 0.509
Cervidpoxvirus 0.115 166259 0.262
Varicellovirus 0.107 139331 0.560
Ostreavirus 0.107 207439 0.387
Vespertiliovirus 0.103 7970 0.228
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Table S7. Depiction of the taxonomic groups with the highest difference of values between NCIR0 – NCIR1 . The Table shows each group’saverage difference = NCIR0 – NCIR1 , Sequence Length and GC-Content.
Taxonomic Group Taxonomic Name NCIR0 – NCIR1 > 0 Sequece Length GC-Content

Super-Realm Viruses 0.004 44293 0.451

Realm

Adnaviria 0.019 35299 0.322
Varidnaviria 0.007 111364 0.443
Duplodnaviria 0.007 78316 0.512
Monodnaviria 0.005 5359 0.436
Ribozyviria 0.002 1682 0.588
Riboviria 0.001 9847 0.431

Kingdom

Zilligvirae 0.019 35299 0.322
Trapavirae 0.009 16113 0.503
Bamfordvirae 0.007 114249 0.437
Heunggongvirae 0.007 78316 0.512
Shotokuvirae 0.005 5124 0.434
Helvetiavirae 0.004 27439 0.664
Loebvirae 0.002 8519 0.453
Sangervirae 0.001 4552 0.426
Orthornavirae 0.001 10049 0.430
Pararnavirae 0.001 8050 0.435

Phylum

Peploviricota 0.050 159507 0.557
Taleaviricota 0.019 35299 0.322
Nucleocytoviricota 0.013 210797 0.381
Saleviricota 0.009 16113 0.503
Cossaviricota 0.007 5450 0.433
Dividoviricota 0.004 27439 0.664
Hofneiviricota 0.002 8519 0.453
Cressdnaviricota 0.002 4539 0.438
Preplasmiviricota 0.002 32788 0.483
Duplornaviricota 0.001 8140 0.389

Class

Herviviricetes 0.050 159507 0.557
Mouviricetes 0.029 8377 0.299
Tokiviricetes 0.019 35299 0.322
Pokkesviricetes 0.017 193309 0.354
Quintoviricetes 0.011 5164 0.446
Huolimaviricetes 0.009 16113 0.503
Megaviricetes 0.005 247791 0.441
Laserviricetes 0.004 27439 0.664
Arfiviricetes 0.004 5459 0.432
Faserviricetes 0.002 8519 0.453

Order

Herpesvirales 0.050 159507 0.557
Polivirales 0.029 8377 0.299
Chitovirales 0.022 196072 0.341
Ligamenvirales 0.019 35299 0.322
Piccovirales 0.011 5164 0.446
Haloruvirales 0.009 16113 0.503
Cirlivirales 0.008 2114 0.476
Pimascovirales 0.005 169619 0.458
Algavirales 0.005 339710 0.413
Kalamavirales 0.004 15181 0.459

Family

Malacoherpesviridae 0.062 209479 0.427
Herpesviridae 0.050 155406 0.564
Rudiviridae 0.035 30804 0.299
Bidnaviridae 0.029 8377 0.299
Poxviridae 0.022 196072 0.341
Polydnaviridae 0.019 306235 0.377
Ampullaviridae 0.012 23814 0.346
Nudiviridae 0.012 127615 0.416
Parvoviridae 0.011 5164 0.446
Ascoviridae 0.010 172411 0.453

Genus

Mardivirus 0.103 177993 0.509
Ostreavirus 0.072 207439 0.387
Iltovirus 0.070 155856 0.546
Leporipoxvirus 0.066 160815 0.415
Simplexvirus 0.061 148626 0.694
Varicellovirus 0.061 139331 0.560
Aurivirus 0.052 211518 0.468
Oryzopoxvirus 0.050 185139 0.236
Vespertilionpoxvirus 0.046 176688 0.236
Entnonagintavirus 0.036 29564 0.558
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Figure S3. Cladogram showing average difference (NCIR0 – NCIR1 > 0).The colour red depicts the branches where on average, the genome possesses more inverted
repetitions than internal repetitions (higher difference), whereas the blue colour represents the branches with fewer inverted repetitions than internal repetitions
(smaller difference).

Classification

Herein, we show the supplementary classification tables that are discussed in the classification subsection of this article.
Figure S4 represents the number of samples (genome sequences) per viral genus.
Table S8 and Table S9 show the values obtained using different classifiers for accuracy and F1-score, respectively. In both cases,
the XGBoost classifier had the best performance.
Table S10 displays the XGBoost classifier F1-score results when using different sets of features. With the notable exception of the
type of genome classification, the best results were obtained using all features.

Table S8. Accuracy (ACC) results obtained for viral taxonomic classification tasks regarding genome type, realm, kingdom, phylum, class,order, family, and genus. The classifiers used were Linear Discriminant Analysis (LDA), Gaussian Naive Bayes (GNB), K-Nearest Neighbors(KNN), Support Vector Machine (SVM), and XGBoost classifier (XGB).
Classification N. Classes N. Samples ACCLDA ACCGNB ACCSVM ACCKNN ACCXGB

Genome 5 6089 67.32 74.14 72.41 84.4 87.25
Realm 5 5799 75.95 80.95 81.38 88.71 92.57
Kingdom 10 5788 73.49 78.76 78.41 85.49 90.96
Phylum 17 5778 61.59 56.75 55.88 71.28 83.41
Class 34 5845 51.15 52.95 47.56 63.47 80.23
Order 48 5838 48.89 55.65 48.89 60.62 79.62
Family 102 5990 36.64 43.24 27.05 42.99 74.46
Genus 360 4673 44.6 36.79 18.82 17.65 68.71
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Figure S4. Frequency of genome sequences per viral genus.

Table S9. F1-score (F1) results obtained for viral taxonomic classification tasks regarding genome type, realm, kingdom, phylum, class,order, family, and genus. The classifiers used were Linear Discriminant Analysis (LDA), Gaussian Naive Bayes (GNB), K-Nearest Neighbors(KNN), Support Vector Machine (SVM), and XGBoost classifier (XGB).
Classification N. Classes N. Samples F1LDA F1GNB F1SVM F1KNN F1XGB

Genome 5 6089 0.6549 0.736 0.6989 0.836 0.8662
Realm 5 5799 0.7496 0.8001 0.7949 0.8817 0.9234
Kingdom 10 5788 0.7238 0.7640 0.7512 0.8410 0.9039
Phylum 17 5778 0.5824 0.5226 0.4435 0.6891 0.8299
Class 34 5845 0.4780 0.4562 0.3803 0.5896 0.7963
Order 48 5838 0.4435 0.4798 0.3832 0.5462 0.7884
Family 102 5990 0.3042 0.3517 0.1681 0.3429 0.7323
Genus 360 4673 0.3600 0.2956 0.0682 0.0621 0.6561

Table S10. F1-score (F1) obtained for the viral taxonomic classification task regarding genome type, realm, kingdom, phylum, class, order,family, and genus. The features used were the genome’s sequence length (SL), the GC-content (GC) and the Normalized Compression (NC)values for the best model, the same model with IR configuration to 0, 1 and 2.
Classification N. Classes N. Samples F1NC F1NC+GC F1NC+SL+GC F1All without SQ F1AllFeatures

Genome 5 6089 0.7490 0.7988 0.8649 0.8051 0.8662
Realm 5 5799 0.7726 0.8401 0.9200 0.8569 0.9234
Kingdom 10 5788 0.7518 0.8131 0.9026 0.8295 0.9039
Phylum 17 5778 0.6234 0.6926 0.8194 0.7188 0.8299
Class 34 5845 0.5742 0.6404 0.7844 0.6705 0.7963
Order 48 5838 0.5568 0.6292 0.7736 0.6598 0.7884
Family 102 5990 0.4112 0.5187 0.7118 0.5636 0.7323
Genus 360 4673 0.3248 0.4661 0.6417 0.5089 0.6561

Software and Hardware recommendations

The experiences of the manuscript can be replicated using a laptop, desktop, or server computer running Arch linux or Linux
Ubuntu (for example, 18.04 LTS or higher) with GCC (https://gcc.gnu.org), git and git LFS, Conda (https://docs.conda.io) and
python version 3.6. The hardware must contain at least 8 GB of RAM and a 100 GB disk.

https://gcc.gnu.org
https://docs.conda.io
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Reproducibility

Creating Project and intalling tools
The descriptions of reproducion is depicted bellow, for more detail see https://github.com/jorgeMFS/canvas. Install Git LFS:

1 mkdir -p gitLFS
2 cd gitLFS /
3 wget https :// github .com/git -lfs/git -lfs/ releases / download /v2 .9.0/ git -lfs -linux -amd64 -v2 .9.0. tar.gz
4 tar -xf git -lfs -linux -amd64 -v2 .9.0. tar.gz
5 chmod 755 install .sh
6 sudo ./ install .sh

Get CANVAS project, create the docker and run it:
1 git clone https :// github .com/ jorgeMFS / canvas .git
2 cd canvas
3 docker - compose build
4 docker - compose up -d && docker exec -it canvas bash && docker - compose down

Inside the docker, give run permissions to the files and install tools using :
1 chmod +x *. sh
2 bash Make.sh;

Replication of the Results
The code was created in order to allow independent replication and reproduction of each step, this was done due to the extensive
processing time required to filter and rearrange viral DB and extract the features and taxonomic information of each viral sequence.
If you wish to rebuild database and feature reports extracted, see the Database reconstruction subsection.
To obtain the Human Herpesvirus, plot run:

1 cd python || exit;
2 python compare_cmix_hhv .py

To obtain the Compression Benchmark plots, run:
1 cd python || exit;
2 python select_best_nc_model .py;

To perform the synthetic sequence test, run:
1 cd scripts || exit;
2 bash Stx_seq_test .sh;

To perform classification, run the following code:
1 cd python || exit;
2 python prepare_classification .py; # recreate classification dataset
3 python classifier .py; # perform classifications

To perform the complete IR analysis and create:

• boxplots;
• 2d scatter plots;
• 3d scatter plots;
• top taxonomic group lists;
• Occurrence of each Genus.

Execute this code:
1 cd python || exit;
2 python ir_analysis .py; # Performs complete IR analysis

To perform the Human Herpesvirus analysis and obtain the plots, run:
1 cd scripts || exit;
2 bash Herpesvirales .sh;

https://github.com/jorgeMFS/canvas
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Database reconstruction
To run the pipeline and obtain all the Reports in the folder reports, use the following commands. Note that if you wish to recreate
the features reports, you must perform the database reconstruction task first.
If you wish to reconstruct the viral database, run the following script:

1 cd scripts || exit;
2 bash Build_DB .sh;

To create the features for analysis and classification (very time consuming, can take several days), run:
1 cd scripts || exit;
2 bash Process_features .sh;

To recreate the compression reports used for benchmark (very time consuming, can take several hours), run:
1 cd scripts || exit;
2 bash Compress .sh;

Cladograms
The Cladograms require GUI application. As such, the reproduction of the cladograms has to be performed outside of the docker
on the Ubuntu system on the /canvas folder:

1 chmod +x *. sh
2 bash so_dependencies .sh # install Ubuntu system dependencies required for the script to run and Anaconda
3 conda create -n canvas python =3.6
4 conda activate canvas
5 bash Make.sh # install python libs
6 bash Install_programs .sh # install tools using conda

Afterwards, to obtain the Cladogram plots, run:
1 cd python || exit;
2 python phylo_tree .py;
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