
Bioinformatics protocols for quality control and genome assembly
All original scripts are available athttp://www.ib.usp.br/grant/anfibios/researchSoftware.html and at https://gitlab.com/MachadoDJ
under

the GNU General Public License version 3.0 (GPL-3.0).

Trimmomatic

We used Trimmomatic v0.38 to remove the adapters and low-quality bases at the ends of each read.

Variables:

TRIMMOMATIC_JAR : Path to Trimmomatic

FILE1 : Path to the first paired-end sequence file

FILE2 : Path to the first paired-end sequence file

Main Bash command:

NxTrim

Long insert size reads were processed in NxTrim v0.3.0-alpha using default parameters to separate reads into four different
categories according to the adapter position: mate pairs, unknown (which are mostly mate pairs), paired-end, and single-end
sequence reads.

NxTrim v0.3.0-alpha converts raw NMP reads into four "virtual libraries":

MP: a set of known mate pairs having an outward-facing relative orientation and an effective genomic distance (EGD) whose
distribution mirrors the size distribution of the circularized DNA

Unknown: A set of read pairs for which the adapter could not be found within either read

PE: a set of paired-end reads, having an inward-facing relative orientation and an EGD whose distribution mirrors the size
distribution of the sequenced templates

SE: a set of single reads

Variables:

FILE1 : Path to the first paired-end sequence file

java -jar ${TRIMMOMATIC_JAR} \
    PE -phred33 \
    ${FILE1} ${FILE2} \
    trimmed_1_paired.fastq.gz trimmed_1_se.fastq.gz \
    trimmed_2_paired.fastq.gz trimmed_2_se.fastq.gz \
    ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10 \
    LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36

1
2
3
4
5
6
7

http://www.ib.usp.br/grant/anfibios/researchSoftware.html
https://gitlab.com/MachadoDJ


FILE2 : Path to the first paired-end sequence file

Main Bash command:

HTQC toolkit

We employed the HTQC toolkit v0.90.8 to produce quality stats per tile (using ht-stat ) and perform final read trimming and
filtering (with ht-trim  and ht-filter , respectively).

Variables:

PE1 : Path to the first input file of paired-end reads

PE2 : Path to the second input file of paired-end reads

SE1 : Path to the first input file of single-end reads

SE2 : Path to the first input file of single-end reads

Main Bash commands:

nxtrim --separate -1 ${FILE1} -2 ${FILE2} -O nxtrimmed1

function part1 {
# STATS:
ht-stat -P -t 32 -z -i ${PE1} ${PE2} -o htstatpe > htstatpe_htqc.txt
wait
python2 selectTilesHTQC.py -d htstatpe > htstatpe_tiles.txt
wait
ht-stat -S -t 32 -z -i ${SE1} -o htstatse1 > htstatse1_htqc.txt
wait
python2 selectTilesHTQC.py -d htstatse1 > htstatse1_tiles.txt
wait
ht-stat -S -t 32 -z -i ${SE2} -o htstatse2 > htstatse2_htqc.txt
wait
python2 selectTilesHTQC.py -d htstatse2 > htstatse2_tiles.txt
wait
# TRIM:
ht-trim -z -i ${PE1} -o trimmed_pe1.fastq.gz &
ht-trim -z -i ${PE2} -o trimmed_pe2.fastq.gz &
ht-trim -z -i ${SE1} -o trimmed_se1.fastq.gz &
ht-trim -z -i ${SE2} -o trimmed_se2.fastq.gz
wait
}

function part2 {
# SIEVE:
ht-filter -P --filter length -z -i trimmed_pe1.fastq.gz trimmed_pe2.fastq.gz -o filteredpe &
ht-filter -S --filter length -z -i trimmed_se1.fastq.gz -o filteredse1 &
ht-filter -S --filter length -z -i trimmed_se2.fastq.gz -o filteredse2
wait
}

part1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31



FastUniq

We used FastUniq v1.1 to remove duplicates introduced by PCR amplification from paired short reads.

Description of input files ( files.txt ):

Main Bash command:

ABySS

Main Bash script:

Notes:

pe : paired-end reads (short insert size)

mate : mate paired-end reads (long insert size)

single : single-end reads (resulting from quality control)

Pilon

Pilon v1.2.3 is a software tool that can be used to automatically improve draft assemblies and find variation among strains,
including large event detection.

Pilon requires a FASTA file of the genome as input along with one or more BAM files of reads aligned to the input FASTA file. Pilon
uses read alignment analysis to identify inconsistencies between the input genome and the evidence in the reads.

The initial step is to create the aligned BAM file from your raw reads. To create the aligned file we used Bowtie2 v2.2.9.

The file genome.fasta  is the whole genome file or the scaffolds that are being aligned to.

The word aligned  is the prefix on the index files that will be created.

-x : is the prefix for the index files of the genome/scaffolds

-U : unaligned reads

part1
part2

31
32

filteredpe_1.fastq
filteredpe_2.fastq

1
2

fastuniq -i files.txt -t q -o fastuniq_pair1.fastq -p fastuniq_pair2.fastq -c 01

for KMER in {23..61..2} ; do
    abyss-pe -C k${KMER} k=${KMER} np=8 name=xb_k${KMER} lib='pea' mp='mpb' \
    pea='pe1.fastq pe2.fastq' \
    mpb='mate1.fastq mate2.fastq' \
    se='single.fastq'
done

1
2
3
4
5
6

bowtie2-build -f genome.fasta aligned
bowtie2 -f -x aligned raw_reads.fasta -S output.sam

1
2



-S : output in SAM format

The SAM output file needs to be comverted convert to BAM, sorted, and then indexed (the index file is necessary for Pilon to
work). To do this, we used samtools v1.6.

Finally, to execute Pilon:

MaSuRCA

Preparing the configuration file

The following is the commented template for creating the MaSuRCA configuration file that we used to create
masurca_config.txt :

samtools view -S -b aligned_output.sam > aligned_output.bam
samtools sort aligned_output.bam -o sorted_output.bam
samtools index sorted_output.bam

1
2
3

java -jar pilon-1.23.jar --genome genome.fasta --bam sorted_output.bam --output pilon.out1

DATA

#################
## Paired end ###
#################

# pair ends (forward and reverse) must be listed in the same PE variable.
PE= pa 300 35 /path/to/forward.fastq /path/to/reverse.fastq

### If you have multiple paired-end sequences then add them as shown below ###
PE= pb 300 35 /path/to/forward.fastq /path/to/reverse.fastq
PE= pc 300 35 /path/to/forward.fastq /path/to/reverse.fastq
PE= pd 300 35 /path/to/forward.fastq /path/to/reverse.fastq

#################################
## Jumping Pairs (mate paired) ##
#################################

# mate paired (forward and reverse) must be listed in the same JUMP variable.
JUMP= ma 3000 500 /path/to/forward.fastq /path/to/reverse.fastq

### If you have multiple mate-pair sequences then add them as shown below ###
JUMP= mb 5000 750 /path/to/forward.fastq /path/to/reverse.fastq
JUMP= mc 8000 1000 /path/to/forward.fastq /path/to/reverse.fastq
JUMP= md 10000 1500 /path/to/forward.fastq /path/to/reverse.fastq

############
## PacBio ##
############

PACBIO= /path/to/pacbio/data.fasta

END

PARAMETERS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36



# GRAPH_KMER_SIZE is k-mer size for deBruijn graph values between 25 and 101 are supported, auto will compute the optimal size based on the read data and GC content
GRAPH_KMER_SIZE=auto

# Set USE_LINKING_MATES to 1 for Illumina-only assemblies and to 0 if you have 2x or more long (Sanger, 454) reads
USE_LINKING_MATES=0

#ILLUMINA ONLY. Set this to 1 to use SOAPdenovo contigging/scaffolding module.  Assembly will be worse but will run faster. Useful for very large (>=8Gbp) genomes from Illumina-only data
SOAP_ASSEMBLY=0

# Hybrid Illumina paired end + Nanopore/PacBio assembly ONLY.  Set this to 1 to use Flye assembler for final assembly of corrected mega-reads.  A lot faster than CABOG, at the expense of some contiguity. Works well even when MEGA_READS_ONE_PASS is set to 1.  DO NOT use if you have less than 15x coverage by long reads.

# FLYE_ASSEMBLY=0

# Set this to 1 if your Illumina jumping library reads are shorter than 100bp
EXTEND_JUMP_READS=0

# Specifies whether to run the assembly on the grid
USE_GRID=0

# Specifies grid engine to use SGE or SLURM

# GRID_ENGINE=SGE

# Specifies queue (for SGE) or partition (for SLURM) to use when running on the grid MANDATORY

# GRID_QUEUE=all.q

# Batch size in the amount of long read sequence for each batch on the grid

# GRID_BATCH_SIZE=500000000

#set to 0 (default) to do two passes of mega-reads for slower, but higher quality assembly, otherwise set to 1

# MEGA_READS_ONE_PASS=0

# Use at most this much coverage by the longest Pacbio or Nanopore reads, discard the rest of the reads. Can increase this to 30 or 35 if your reads are short (N50<7000bp)
LHE_COVERAGE=25

# LIMIT_JUMP_COVERAGE is useful if you have too many jumping library mates. Typically set it to 60 for bacteria and something large (300) for mammals
LIMIT_JUMP_COVERAGE = 300

# These are the additional parameters to Celera Assembler. Do not worry about performance, number or processors or batch sizes -- these are computed automatically. fFr mammals do not set cgwErrorRate above 0.15!!!
CA_PARAMETERS = ovlMerSize=87 cgwErrorRate=0.1 ovlMemory=7.5GB merOverlapperThreads=8 cgwErrorRate=0.12

# CABOG ASSEMBLY ONLY: whether to attempt to close gaps in scaffolds with Illumina  or long read data
CLOSE_GAPS=1

# Minimum count k-mers used in error correction 1 means all k-mers are used.  one can increase to 2 if coverage >100
KMER_COUNT_THRESHOLD = 1

# Auto-detected number of cpus to use
NUM_THREADS= 64

# This is mandatory jellyfish hash -- a safe value is estimated_genome_size*20
JF_SIZE=180000000000

# This specifies if we do (1) or do not (0) want to trim long runs of homopolymers (e.g. GGGGGGGG) from 3' read ends, use it for high GC genomes

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93



Configuration file

This is a comment-free version of masurca_config.txt :

Executing MaSuRCA on UNC Charlotte's high-memory Lunix cluster

The following PBS execution script was used to run MaSuRCA at UNC Charlotte's 4TB memory machine that is part of the
HammerHead Linux cluster:

Quickmerge

Quickmerge uses a simple concept to improve the contiguity of genome assemblies based on long molecule sequences, often with
dramatic improvement. The program uses information from assemblies made with Illumina short reads and Pacific Biosciences or
Oxford Nanopore long reads to improve assembly contiguity with long reads alone. This is counterintuitive because Illumina short
reads are not typically considered to cover genomic regions, which PacBio and ONP long reads cannot. Read more at

# This specifies if we do (1) or do not (0) want to trim long runs of homopolymers (e.g. GGGGGGGG) from 3' read ends, use it for high GC genomes
DO_HOMOPOLYMER_TRIM=0

END

93
94
95
96

DATA
PE= aa 300 35 25JUNE2016HiSeq_Run_Sample_Ob_PCRFree_UNCC_Janies_ACTTGA_L002_R1_001.fastq.gz 25JUNE2016HiSeq_Run_Sample_Ob_PCRFree_UNCC_Janies_ACTTGA_L002_R2_001.fastq.gz
END
PARAMETERS
GRAPH_KMER_SIZE=auto
USE_LINKING_MATES=1
LIMIT_JUMP_COVERAGE = 300
CA_PARAMETERS = ovlMerSize=87 cgwErrorRate=0.1 ovlMemory=7.5GB merOverlapperThreads=8
KMER_COUNT_THRESHOLD = 2
NUM_THREADS= 64
JF_SIZE=3400000000
DO_HOMOPOLYMER_TRIM=0
END

1
2
3
4
5
6
7
8
9
10
11
12
13

#!/bin/bash

#PBS -l nodes=1:ppn=64
#PBS -l mem=3904gb
#PBS -N masurca.ob
#PBS -j oe
#PBS -q hammerhead
#PBS -l feature=mem_4tb
#PBS -l walltime=700:00:00

IFS=$'\n'
set -eu

umask 007
module load masurca/3.2.7
module list
masurca masurca_config.txt
bash assemble.sh

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18



https://github.com/mahulchak/quickmerge. Also, read more about different strategies on how to use quickmerge at
https://github.com/mahulchak/quickmerge/wiki.

Template command line:

$ nohup merge_wrapper.py -pre [OUTPUT PREFIX] [MULTIFASTA BEST ASSEMBLY] [MULTIFASTA FRAGMENTED
ASSEMBLY] >[STDOUT] 2> [STDERR] &

The merge_wrapper.py script comes with quickmerge. It may take several hours to complete.

Assembly stats

Accessing assembly statistics in a multifasta file is easy with the assemblathon_stats.pl  Perl script, which only
requires FAlite.pm  (add its to the PERL5LIB environmental variable, or place it in the same directory as other Perl modules).
The script is availavle at https://github.com/ucdavis-bioinformatics/assemblathon2-analysis.

BUSCO

The completeness of protein-coding gene representation in the assembly was accessed with BUSCO v4.0.6 run in the "genome
mode" against the evolutionary conserved metazoan gene set (metazoaodb10, creation date: 2021-02-17, number of species: 65,
number of BUSCOs: 954) and the conserved eukaryota gene set (eukaryotaodb10, creation date: 2020-09-10, number of species:
70, number of BUSCOs: 255).

Since O. brevispinum is not listed among the available species available for Augustus training, we tested other three species:
Homo sapiens, Drosophila melanogaster, and Strongylocentrotus purpuratus.

This is an example of an Bash execution script:

We also ran BUSCO v4.0.6 on the predicted transcripts extracted from the BRAKER2 annotation using BUSCO's "protein mode."
A table summarizing all BUSCO's results is below.

#!/usr/bin/bash

export AUGUSTUS_CONFIG_PATH="/path/to/AUGUSTUS_33/config/"
export BUSCO_CONFIG_FILE="/path/to/busco/config.ini"

module load busco/4.0.6
cd /path/to/working/directory

busco -i /path/to/assembly.fasta -c 60 -o OutputPrefix -e 1e-03 -m genome
--config config.ini -l /path/to/database

exit

1
2
3
4
5
6
7
8
9
10
11
12

https://github.com/mahulchak/quickmerge
https://github.com/mahulchak/quickmerge/wiki
https://github.com/ucdavis-bioinformatics/assemblathon2-analysis


Database Species Mode Complete

Complete
and

single-
copy

Complete
and

duplicated
Fragmented Missing Total

eukaryota_odb10 Fly Genome 57
(22.35%)

56
(21.96%) 1 (0.39%) 39 (15.29%) 159

(62.35%) 255

eukaryota_odb10 Fly Protein 15
(5.88%)

15
(5.88%) 0 (0.00%) 92 (36.08%) 148

(58.04%) 255

eukaryota_odb10 Human Genome 55
(21.57%)

55
(21.57%) 0 (0.00%) 45 (17.65%) 155

(60.78%) 255

eukaryota_odb10 Human Protein 15
(5.88%)

15
(5.88%) 0 (0.00%) 92 (36.08%) 148

(58.04%) 255

eukaryota_odb10 S.
purpuratus Genome 51

(20.00%)
50
(19.61%) 1 (0.39%) 42 (16.47%) 162

(63.53%) 255

eukaryota_odb10 S.
purpuratus Protein 15

(5.88%)
15
(5.88%) 0 (0.00%) 92 (36.08%) 148

(58.04%) 255

metazoa_odb10 Fly Genome 287
(30.08%)

280
(29.35%) 7 (0.73%) 173

(18.13%)
494
(51.78%) 954

metazoa_odb10 Fly Protein 101
(10.59%)

94
(9.85%) 7 (0.73%) 264

(27.67%)
589
(61.74%) 954

metazoa_odb10 Human Genome 288
(30.19%)

282
(29.56%) 6 (0.63%) 153

(16.04%)
513
(53.77%) 954

metazoa_odb10 Human Protein 101
(10.59%)

94
(9.85%) 7 (0.73%) 264

(27.67%)
589
(61.74%) 954

metazoa_odb10 S.
purpuratus Genome 244

(25.58%)
241
(25.26%) 3 (0.31%) 188

(19.71%)
522
(54.72%) 954

metazoa_odb10 S.
purpuratus Protein 101

(10.59%)
94
(9.85%) 7 (0.73%) 264

(27.67%)
589
(61.74%) 954


