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1. Additional details on computing Step 2

In the `th iteration, first consider the estimation of ηim(b), while treating the other parameters

as fixed. The relevant minimization problem can be rewritten as:

κ

2
‖δ(`)

im(b) − ηim(b)‖2 + p2(‖ηim(b)‖, λ2).

The closed-form solution under SCAD with γ > 2 is:

η
(`)
im(b) =


S(δ

(`)
im(b), λ2/κ) if ‖δ(`)

im(b)‖ 6 λ2 + λ2/κ

S
(
δ
(`)
im(b)

,γλ2/((γ−1)κ)
)

1−1/((γ−1)κ)
if λ2 + λ2/κ < ‖δ(`)

im(b)‖ 6 γλ2

δ
(`)
im(b) if ‖δ(`)

im(b)‖ > γλ2.

We then consider θ(b), and the minimization has a quadratic form:

θ(b) = arg min

1

2

∥∥Y −X(b)θ(b)

∥∥2
+
κ

2

∥∥∥∥∥Aθ(b) − η(`)
(b) +

v
(`−1)
(b)

κ

∥∥∥∥∥
2

+

∥∥∥∥∥θ(b) − µ(`−1)
(b) +

v̄
(`−1)
(b)

κ

∥∥∥∥∥
2
 ,

which leads to the closed-form solution in (9).

For the update of µ(b), we have the objective function:

κ

2
‖ξ(`)

(b) − µ(b)‖2 +
n∑
i=1

|Ab|∑
j=1

p1(|µji(b)|, λ1),

which has a closed-form solution as in (10).

2. Proof of Corollary 1

From (11),

v̄
(`)
(b) = v̄

(`−1)
(b) + κ(θ

(`)
(b) − µ

(`)
(b))

= κ(ξ
(`)
(b) − µ

(`)
(b)).

With γ > 2,

∣∣∣v̄j(`)i(b)

∣∣∣ =



κ
∣∣∣ξj(`)i(b)

∣∣∣ if |ξj(`)i(b) | 6 λ1/κ

λ1 if λ1/κ < |ξj(`)i(b) | 6 λ1 + λ1/κ

κγλ1−κ
∣∣∣ξj(`)i(b)

∣∣∣
(γ−1)κ−1

if λ1 + λ1/κ < |ξj(`)i(b) | 6 γλ1

0 if |ξj(`)i(b) | > γλ1.
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So |v̄j(`)i(b) | 6 λ1. As for v
(`)
im(b),

v
(`)
im(b) = κδ

(`)
im(b) − κη

(`)
im(b),

v
(`)
im(b) =



κδ
(`)
im(b) if ‖δ(`)

im(b)‖ 6 λ2/κ

λ2

‖δ(`)
im(b)

‖
δ

(`)
im(b) if λ2/κ < ‖δ(`)

im(b)‖ 6 λ2 + λ2/κ γκλ2

‖δ(`)
im(b)

‖
−κ

δ(`)
im(b)

(γ−1)κ−1
if λ2 + λ2/κ < ‖δ(`)

im(b)‖ 6 γλ2

0 if ‖δ(`)
im(b)‖ > γλ2.

So ‖v(`)
im(b)‖ 6 λ2. With the update (11), we can conclude that:

Tn(θ
(`)
(b),µ

(`)
(b),η

(`)
(b),v

(`)
(b), v̄

(`)
(b))− Tn(θ

(`)
(b),µ

(`)
(b),η

(`)
(b),v

(`−1)
(b) , v̄

(`−1)
(b) )

=
1

κ
‖v(`)

(b) − v
(`−1)
(b) ‖+

1

κ
‖v̄(`)

(b) − v̄
(`−1)
(b) ‖. (A.1)

With the definitions of µ
(`)
(b) and η

(`)
(b),

Tn(θ
(`)
(b),µ

(`)
(b),η

(`)
(b),v

(`−1)
(b) , v̄

(`−1)
(b) )− Tn(θ

(`)
(b),µ

(`−1)
(b) ,η

(`−1)
(b) ,v

(`−1)
(b) , v̄

(`−1)
(b) ) 6 0. (A.2)

Moreover, since the Hessian matrix XT
(b)X(b) + κATA + κIn|Ab| is positive definite, and since

Tn(θ(b),µ
(`−1)
(b) ,η

(`−1)
(b) ,v

(`−1)
(b) , v̄

(`−1)
(b) ) is strongly convex with respect to θ(b), there exists a

constant c > 0 such that:

Tn(θ
(`)
(b),µ

(`−1)
(b) ,η

(`−1)
(b) ,v

(`−1)
(b) , v̄

(`−1)
(b) )− Tn(θ

(`−1)
(b) ,µ

(`−1)
(b) ,η

(`−1)
(b) ,v

(`−1)
(b) , v̄

(`−1)
(b) )

6 − c
2
‖θ(`)

(b) − θ
(`−1)
(b) ‖. (A.3)

Combining (A.1), (A.2), and (A.3), we have:

Tn(θ
(`)
(b),µ

(`)
(b),η

(`)
(b),v

(`)
(b), v̄

(`)
(b))− Tn(θ

(`−1)
(b) ,µ

(`−1)
(b) ,η

(`−1)
(b) ,v

(`−1)
(b) , v̄

(`−1)
(b) )

6 − c
2
‖θ(`)

(b) − θ
(`−1)
(b) ‖+

1

κ
‖v(`)

(b) − v
(`−1)
(b) ‖+

1

κ
‖v̄(`)

(b) − v̄
(`−1)
(b) ‖. (A.4)

Since
{
µ

(`)
(b),η

(`)
(b)

}∞
`=1

are bounded, together with that
{

v
(`)
(b), v̄

(`)
(b)

}∞
`=1

are bounded, θ
(`)
(b) is also

bounded. So T (`) and
{
θ

(`)
(b),µ

(`)
(b),η

(`)
(b)v

(`)
(b), v̄

(`)
(b)

}∞
`=1

are bounded, where T (`) = Tn(θ
(`)
(b),µ

(`)
(b),η

(`)
(b),

v
(`)
(b), v̄

(`)
(b)). Further denote y(`) = c

2
‖θ(`)

(b)−θ
(`−1)
(b) ‖ and z(`) = 1

κ
‖v(`)

(b)−v
(`−1)
(b) ‖+ 1

κ
‖v̄(`)

(b)− v̄
(`−1)
(b) ‖.
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Since T (`) is bounded, there exists a subsequence {T (`j)} such that:

lim
`j→∞

T (`j) = lim inf
`→∞

T (`). (A.5)

By (A.4) and lim`→∞ z
(`) → 0, we have:

lim inf
`j→∞

y(`j) 6 lim inf
`j→∞

(T (`j−1) − T (`j) + z(`j))

= lim inf
`→∞

T (`) − lim inf
`j→∞

T (`j+1) 6 0.

As y(`j) > 0, lim inf`j→∞ y
(`j) = 0, which means that ‖θ(`j)

(b) − θ
(`j−1)

(b) ‖ = 0. Together with

lim inf`j→∞ z
(`j) = 0, we have:

lim inf
`j→∞

‖µ(`j)

(b) − µ
(`j−1)

(b) ‖+ ‖η̄(`j)

(b) − η̄
(`j−1)

(b) ‖ = 0.

So the sequence
{
θ

(`)
(b),µ

(`)
(b),η

(`)
(b)v

(`)
(b), v̄

(`)
(b)

}∞
`=1

has a subsequence
{
θ

(`j)

(b) ,µ
(`j)

(b) ,η
(`j)

(b) v
(`j)

(b) , v̄
(`j)

(b)

}∞
`j=1

,

which converges to a point
{
θ#

(b),µ
#
(b),η

#
(b)v

#
(b), v̄

#
(b)

}
. Combining with (11), we have: Aθ#

(b) − η
#
(b) = 0

θ#
(b) − µ

#
(b) = 0.

(A.6)

Further, the procedure satisfies the following optimality conditions:
XT

(b)(−y + X(b)θ
(`)
(b)) + κAT{Aθ(`)

(b) − η
(`)
(b) + κ−1v

(`−1)
(b) }+ κ{θ(`)

(b) − µ
(`−1)
(b) + κ−1v̄

(`−1)
(b) } = 0

0 ∈ −κ{θj(`)i(b) − µ
j(`)
i(b) + κ−1v̄

j(`−1)
i(b) }+

∂p1(|µj
i(b)
|,λ1)

∂µj
i(b)

|
µj
i(b)

=µ
j(`)
i(b)

0 ∈ −κ{Aθ(`−1)
(b) − η(`)

(b) + κ−1v
(`−1)
(b) }+

∂p2(‖ηim(b)‖,λ2)

∂ηim(b)
|
ηim(b)=η

(`)
im(b)

.

(A.7)

Hence, 
XT

(b)(−y + X(b)θ
#
(b)) + ATv#

(b) + v̄#
(b) = 0

0 ∈ −v̄j#i(b) +
∂p1(|µj

i(b)
|,λ1)

∂µj
i(b)

|µj
i(b)

=µj#
i(b)

0 ∈ −v#
im(b) +

∂p2(‖ηim(b)‖,λ2)

∂ηim(b)
|ηim(b)=η

#
im(b)

.

(A.8)

Therefore,
{
θ#

(b),µ
#
(b),η

#
(b)v

#
(b), v̄

#
(b)

}
is a KKT point of (5).
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3. Conditions

To establish the theoretical results described in the main text, we first assume the following

conditions.

C1 Cnk(b) = 1
|Gk|
∑

i∈Gk xi(b)x
T
i(b) → Ck(b), for k = 1, . . . , K and b = 1, . . . , Bn, where Ck(b) is

a nonnegative definite matrix and supi supb ‖xi(b)‖ 6 C
√
|A1| log(nBn).

C2 (i) p
′
1(t), the derivative of p1(t), exists and is bounded. lim inft→0+ p

′
1(t) > 0. There are

constants c and C such that, when t1, t2 > cλ1, λ1|p
′′
1(t1)− p′′1(t2)| 6 C|t1 − t2|, where p

′′
1(·)

is the second order derivative of p1(t). (ii) p2(t) is a symmetric, non-decreasing, and concave

on [0,∞). It is constant for t > aλ2 for some constant a > 0, and p2(0) = 0. p
′
2(t) exists and

is continuous except for a finite number of values of t and p
′
2(0+) = 1.

C3 ε(b) = (ε1(b), . . . , εn(b))
T is sub-Gaussian, that is, P (|aTε(b)| > ‖a‖x) 6 2 exp(−cx2) for

any vector a ∈ Rn and x > 0, where 0 < c <∞.

C4 For each k and b, Ak,b, the parameter space of α∗k(b), is compact, and
⋃K
k=1

⋃Bn
b=1Ak,b is

bounded, as n→∞.

C5 Consider ω = (ω1, . . . , ωB)T ∈ Ωn = {ω : 0 6 ωb 6 1 and
∑B

b=1 ωb = 1}. If submodel b∗

is fitted and
∑

b∈M ωb 6= 0, then
∑n

i=1

(∑
b ωbx

T
i(b)θ

∗
i(b) − xT

i(b∗)θ
∗
i(b∗)

)2

> 0.

C6 (i) λ1|Gmax|1/2 = O(1); (ii) b−1
n |Gmin|−1/2|A1|1/2 = o(1), and (iii) |Gmin|−1/2|A1|3/2 log(nBn) =

o(1).

Condition C1 bounds Cnk(b) and ‖xi(b)‖. SCAD and several other penalties satisfy Condition

C2. The sub-Gaussian assumption in Condition C3 is common in high-dimensional regression.

Conditions C1, C2(i), C3, and C6(i) ensure consistency of the oracle estimators defined below.

Denote B =
(
X(1)G1α

∗
(1), . . . ,X(Bn)GBnα

∗
(Bn)

)
. If rank(B) = Bn − sn + 1, Condition C5 is

satisfied, where sn is the number of fitted candidate submodels (in the whole candidate

submodel set). Further, Condition C6 also gives the divergence rate that the sample size,

candidate submodel size, and maximum covariates’ dimension of each candidate submodel
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need to satisfy. In particular, if we consider a fixed K, since |Gmin| 6 n/K, Condition C6

is satisfied by choosing Bn = O(n) and |A1| = o(n1/3(log n)−2/3). As such, |A1| and Bn are

allowed to diverge with n. Or if we consider a fixed |A1|, Condition C6 is satisfied by choosing

K1/2 log(nBn) = o(n1/2). It is also noted that, as in a large number of high-dimensional

regression studies, we consider non-random covariates. Otherwise, additional conditions on

covariate distributions and significantly different theoretical developments would be needed.

4. Proof of Theorem 1

Some published studies such as Ma and Huang (2017) and a few others consider the simpler

scenario with a low dimensionality and no sparsity. As such, when our analysis can be reduced

to such a scenario, some of the existing theoretical developments can be borrowed. In what

follows, we provide references to Ma and Huang (2017) and others when taking advantage of

the existing results. However, our theoretical development is considerably more challenging

and demands new investigation with the higher dimensionality (and hence the demand for, for

example, analyzing the relationship between sample size and number of covariates), presence

of sparsity (and hence the additional sparsity penalty), and model averaging (and hence the

demand for analyzing each submodel separately and then assembling multiple submodels).

Under Conditions C1 and C2(i), as λ1 = O(|Gk|−1/2), it can be proved following Fan and

Peng (2004) that there exists a local minimizer α̂or
k(b) of the objective function (13) satisfying

‖α̂or
k(b) −α∗k(b)‖ = Op(|Gk|−1/2|Ab|1/2). (A.9)

It should be noted that the “true” subgrouping structure may vary across candidates sub-

models, depending on the covariates in each submodel. So the “true” subgroup size of each

submodel Kb may also differ. Similar to in Ma and Huang (2017), define

Fn(θ(b), λ1) =
1

2
‖Y −X(b)θ(b)‖2+λ1

n∑
i=1

|Ab|∑
j=1

p1(|θji(b)|), Pn(θ(b), λ2) = λ2

∑
i<m

p2(‖θi(b)−θm(b)‖).

Then Qn(θ(b), λ1, λ2) = Fn(θ(b), λ1) + Pn(θ(b), λ2). Define T : CbG → RKb|Ab| as a mapping,
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under which T (θ(b)) is the Kb|Ab|-vector consisting of Kb vectors with dimension |Ab|, and its

kth vector component equals the common value of θi(b) for i ∈ Gk, and T ? : Rn|Ab| → RKb|Ab|

as another mapping, under which T ?(θ(b)) = {|Gk|−1
∑

i∈Gk θ
T
i(b), k = 1, . . . , Kb}T.

Consider the neighborhood of θ∗(b):

Θ = {θ(b) ∈ Rn|Ab| : sup
i
‖θi(b) − θ∗i(b)‖ 6 φn},

where φn = C
√
|Ab|
|Gmin| . By (A.9), for any ε > 0, there exists an event E1 under which

supi ‖θ̂
or

i(b) − θ∗i(b)‖ 6 φn and P (Ec
1) 6 ε. Hence, θ̂

or

(b) ∈ Θ under E1. For any θ(b) ∈ Rn|Ab|, let

θ?(b) =
{(
θ1?
i(b), . . . , θ

|Ab|?
i(b)

)
, i = 1, . . . , n

}T

= T −1(T ?(θ(b))).

We will show that θ̂
or

(b) is a strictly local minimizer of objective function (4) with prob-

ability approaching 1 through the following steps: (i) Under event E1, Qn(θ?(b), λ1, λ2) >

Qn(θ̂
or

(b), λ1, λ2) for any θ(b) ∈ Θ and θ?(b) 6= θ̂
or

(b). (ii) There is an event E2 such that

P (Ec
2) 6 ε. Under E1 ∩ E2, there is a neighborhood of θ̂

or

(b), denoted as Θn, such that

Qn(θ(b), λ1, λ2) > Qn(θ?(b), λ1, λ2) for any θ?(b) ∈ Θn ∩Θ for sufficiently small ε.

With the assumptions bn > aλ2 and bn � φn and Condition C2, we can establish (i)

similarly as in Ma and Huang (2017). Next, we prove the result in (ii). For a positive sequence

tn, let Θn = {θi(b) : supi ‖θi(b) − θ̂
or

i(b)‖ 6 tn}. For θ(b) ∈ Θn ∩ Θ, by Taylor’s expansion, we

have

Qn(θ(b), λ1, λ2)−Qn(θ?(b), λ1, λ2) = Γ1 + Γ2 + Γ3,

where Γ1 = −(Y −X(b)θ
◦
(b))

TX(b)(θ(b)−θ?(b)), Γ2 = λ1

∑n
i=1

∑|Ab|
j=1{p′1(|θj◦i(b)|)sign(θj◦i(b))}(θ

j
i(b)−

θj?i(b)), Γ3 =
∑n

i=1

∂Pn(θ◦(b))

∂θTi(b)
(θi(b)−θ?i(b)), θ◦(b) =

{(
θ◦1(b)

)T
, . . . ,

(
θ◦n(b)

)T
}T

, θ◦i(b) =
(
θ1◦
n(b), . . . , θ

|Ab|◦
n(b)

)T

and θj◦i(b) = αθji(b) + (1−α)θj?i(b) for some constant α ∈ (0, 1). Following similar steps as in Ma

and Huang (2017), we conclude that:

Γ1 > {−2C|Gmin|−1
√

2c−1|Ab| log n log(nBn)− 2C ′|Gmin|−3/2 log(nBn)|Ab|3/2}

×
Kb∑
k=1

∑
i,j∈Gk,i<m

‖θm(b) − θi(b)‖, (A.10)
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and

Γ3 >
Kb∑
k=1

∑
i,j∈Gk,i<m

λ2p
′
2(4tn)‖θi(b) − θm(b)‖, (A.11)

under Conditions C1–C3. Further,

|Γ2| =

∣∣∣∣∣∣λ1

Kb∑
k=1

|Ab|∑
l=1

∑
i∈Gk

{p′1(|θl◦i(b)|)sign(θl◦i(b))}(θli(b) − θl?i(b))

∣∣∣∣∣∣
=

∣∣∣∣∣∣λ1

Kb∑
k=1

|Ab|∑
l=1

∑
i,m∈Gk

{p′1(|θl◦i(b)|)sign(θl◦i(b))}
(θli(b) − θlm(b))

|Gk|

∣∣∣∣∣∣
=

∣∣∣∣∣∣λ1

Kb∑
k=1

|Ab|∑
l=1

∑
i,m∈Gk

{p′1(|θl◦i(b)|)sign(θl◦i(b))}
(θli(b) − θlm(b))

2|Gk|

+ λ1

Kb∑
k=1

|Ab|∑
l=1

∑
i,m∈Gk

{p′1(|θl◦m(b)|)sign(θl◦m(b))}
(θlm(b) − θli(b))

2|Gk|

∣∣∣∣∣∣
=

∣∣∣∣∣∣λ1

Kb∑
k=1

|Ab|∑
l=1

∑
i,m∈Gk

{p′1(|θl◦i(b)|)sign(θl◦i(b))− p′1(|θl◦m(b)|)sign(θl◦m(b))}
(θli(b) − θlm(b))

2|Gk|

∣∣∣∣∣∣
=

∣∣∣∣∣∣λ1

Kb∑
k=1

|Ab|∑
l=1

∑
i,m∈Gk,i<m

{p′1(|θl◦i(b)|)sign(θl◦i(b))− p′1(|θl◦m(b)|)sign(θl◦m(b))}
(θli(b) − θlm(b))

|Gk|

∣∣∣∣∣∣
6 2λ1

√
|Ab| sup

i
sup
l
|p′1(|θl◦i(b)|)|

Kb∑
k=1

∑
i,m∈Gk,i<m

‖θi(b) − θm(b)‖
|Gmin|

6
2Cλ1

√
|Ab|

|Gmin|

Kb∑
k=1

∑
i,m∈Gk,i<m

‖θi(b) − θm(b)‖. (A.12)

Therefore, with (A.10), (A.11), and (A.12), we have:

Qn(θ(b), λ1, λ2)−Qn(θ?(b), λ1, λ2)

= Γ1 + Γ2 + Γ3

> Γ1 + Γ3 − |Γ2|

> {λ2p
′
2(4tn)− 2C|Gmin|−1

√
2c−1|Ab| log n log(nBn)− 2C ′|Gmin|−3/2 log(nBn)|Ab|3/2

−2Cλ1|Gmin|−1
√
|Ab|}

Kb∑
k=1

∑
i,m∈Gk,i<m

‖θm(b) − θi(b)‖ > 0.
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So we can conclude:

P
(
θ̂(b) = θ̂

or

(b)

)
→ 1, (A.13)

under Condition C6. (A.9) and (A.13) lead to supi ‖θ̂i(b) − θ∗i(b)‖ = Op(
√
|Ab|/|Gmin|).

5. Proof of Theorem 2

First consider the scenario where there is only one submodel b∗ not belonging to M. Note

that εi(b∗) = yi − xT
i(b∗)θ

∗
i(b∗), and εi(b∗) and xi(b∗) are independent. Under Conditions C1 and

C3–C4, for any ω ∈ Ωn:

P

(
1

n

n∑
i=1

(
yi − xT

i(b∗)θ
∗
i(b∗)

)(
xT
i(b∗)θ

∗
i(b∗) −

Bn∑
b=1

ωbx
T
i(b)θ

∗
i(b)

)
> C

√
n−1|A1| log n log(nBn)

)

6 P

(
1

n

n∑
i=1

(
yi − xT

i(b∗)θ
∗
i(b∗)

)(
xT
i(b∗)θ

∗
i(b∗) −

Bn∑
b=1

ωbx
T
i(b)θ

∗
i(b)

)
>

Cn−1

√√√√log n
n∑
i=1

(
xT
i(b∗)θ

∗
i(b∗) −

Bn∑
b=1

ωbxT
i(b)θ

∗
i(b)

)2)
6 2 exp(−C log n) = 2n−C → 0, (A.14)

as n→∞, and C may vary across equations.

Under Condition C4, with the result of Theorem 1 that supi ‖θ̂i(b)− θ∗i(b)‖ = Op

(√
|A1|
|Gmin|

)
(|A1| = . . . = |ABn|) and supi supb ‖xi(b)‖ 6 C

√
|A1| log(nBn), we can conclude that:

1

n

n∑
i=1

(
Bn∑
b=1

ωbx
T
i(b)θ

∗
i(b) −

Bn∑
b=1

ωbx
T
i(b)θ̂i(b)

)2

= Op

(
|A1|2 log(nBn)

|Gmin|

)
, (A.15)

1

n

n∑
i=1

(
yi −

Bn∑
b=1

ωbx
T
i(b)θ

∗
i(b)

)(
Bn∑
b=1

ωbx
T
i(b)θ

∗
i(b) −

Bn∑
b=1

ωbx
T
i(b)θ̂i(b)

)

= Op

(√
|A1|2 log n log(nBn)

|Gmin|

)
, (A.16)
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and

1

n

n∑
i=1

(
xT
i(b∗)θ

∗
i(b∗) −

Bn∑
b=1

ωbx
T
i(b)θ

∗
i(b)

)(
Bn∑
b=1

ωbx
T
i(b)θ

∗
i(b) −

Bn∑
b=1

ωbx
T
i(b)θ̂i(b)

)

= Op

(
|A1| log(nBn)

√
|A1|
|Gmin|

)
, (A.17)

for any ω ∈ Ωn. Further, we rewrite:

L(ω) =
n∑
i=1

(
yi −

Bn∑
b=1

ωbx
T
i(b)θ̂i(b)

)2

=
n∑
i=1

(
yi − xT

i(b∗)θ
∗
i(b∗) + xT

i(b∗)θ
∗
i(b∗) −

Bn∑
b=1

ωbx
T
i(b)θ

∗
i(b)

+
Bn∑
b=1

ωbx
T
i(b)θ

∗
i(b) −

Bn∑
b=1

ωbx
T
i(b)θ̂i(b)

)2

=
n∑
i=1

(
yi − xT

i(b∗)θ
∗
i(b∗)

)2
+

n∑
i=1

(
xT
i(b∗)θ

∗
i(b∗) −

Bn∑
b=1

ωbx
T
i(b)θ

∗
i(b)

)2

+2
n∑
i=1

(
yi − xT

i(b∗)θ
∗
i(b∗)

)(
xT
i(b∗)θ

∗
i(b∗) −

Bn∑
b=1

ωbx
T
i(b)θ

∗
i(b)

)

+
n∑
i=1

(
Bn∑
b=1

ωbx
T
i(b)θ

∗
i(b) −

Bn∑
b=1

ωbx
T
i(b)θ̂i(b)

)2

+2
n∑
i=1

(
yi − xT

i(b∗)θ
∗
i(b∗)

)( Bn∑
b=1

ωbx
T
i(b)θ

∗
i(b) −

Bn∑
b=1

ωbx
T
i(b)θ̂i(b)

)

+2
n∑
i=1

(
xT
i(b∗)θ

∗
i(b∗) −

Bn∑
b=1

ωbx
T
i(b)θ

∗
i(b)

)(
Bn∑
b=1

ωbx
T
i(b)θ

∗
i(b) −

Bn∑
b=1

ωbx
T
i(b)θ̂i(b)

)
.

On the other hand, we also have:

L(eb∗) =
n∑
i=1

(
yi − xT

i(b∗)θ
∗
i(b∗)

)2
+

n∑
i=1

(
xT
i(b∗)θ

∗
i(b∗) − xT

i(b∗)θ̂i(b∗)

)2

+2
n∑
i=1

(
yi − xT

i(b∗)θ
∗
i(b∗)

) (
xT
i(b∗)θ

∗
i(b∗) − xT

i(b∗)θ̂i(b∗)

)
.

Hence, for any ω ∈ Ωn with
∑

b 6=b∗ ωb > 0, under Conditions C5–C6, (A.14)–(A.17) lead to

n−1L(ω) = n−1L(eb∗) + n−1

n∑
i=1

(
xT
i(b∗)θ

∗
i(b∗) −

Bn∑
b=1

ωbx
T
i(b)θ

∗
i(b)

)2

+ op(1),
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where op(1) is uniform in ω ∈ Ωn. This means:

lim
n→∞

P (L(ω) > L(eb∗))→ 1.

Note the fact ω̂ = infω∈Ωn L(ω), which leads to:

lim
n→∞

P

(∑
b6=b∗

ω̂b = 0

)
→ 1.

Thus limn→∞ P (ω̂b∗ = 1)→ 1.

Consider the more general scenario with multiple fitted candidate submodels. Note that

if submodel b∗ /∈ M, we have θ∗i(b∗) = θ0
i(b∗). Further, for any submodel b /∈ M, xT

i(b)θ
∗
i(b) =

xT
i(b∗)θ

∗
i(b∗). So we can view all the fitted submodels as a new fitted submodel named as b?.

Similarly, we can conclude that ω̂ = eb? in probability, which means that

lim
n→∞

P

(∑
b/∈M

ω̂b = 1

)
→ 1.

Thus, we complete the proof of Theorem 2.

5.1 Remarks

With Theorems 1 and 2, we have

sup
i
‖θ̂i(b) − θ∗i(b)‖ = Op(

√
|A1|/|Gmin|),

and

lim
n→∞

P (ω̂ ∈ Ω∗)→ 1.

Note that for any submodel b that does not belong toM, πT
b θ
∗
i(b) = θ0

i . With Theorem 2,

there exists an event E =
{∑Bn

b=1 ω̂bπ
T
b θ
∗
i(b) = θ0

i

}
which satisfies limn→∞ P (Ec)→ 0. Thus,

sup
i
‖θ̂iω̂ − θ0

i ‖

= sup
i

∥∥∥∥∥
Bn∑
b=1

ω̂bπ
T
b θ̂i(b) −

Bn∑
b=1

ω̂bπ
T
b θ
∗
i(b) +

Bn∑
b=1

ω̂bπ
T
b θ
∗
i(b) − θ0

i

∥∥∥∥∥
= sup

i
sup
b
‖θ̂i(b) − θ∗i(b)‖

=Op(
√
|A1|/|Gmin|).
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[Table 1 about here.]

[Figure 1 about here.]

[Figure 2 about here.]
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6. Additional simulation

We conduct additional simulation to more comprehensively examine performance of the

proposed approach.

(i) Consider Simulation 1 with K = 2, ρ = 0.3, β = 2, and pr=(0.5, 0.5). Consider the

sequence with p =20, 40, 60, 80, 100. With the proposed approach, Bn is set as 2, 4, 6,

8, 10, correspondingly. We consider the direct application of double penalization without

model averaging – this approach is referred to as “DP”. Analysis is conducted on a server

with 20 CPUs and 18G capacity per CPU. In Table A2, we present the mean, median,

and SD of K̂, as well as the percentage of K̂ equal to the true number of subgroups. In

addition, we also evaluate computer time. It is observed that when p =20 and 40, the

DP approach has satisfactory performance. However, with a larger p, it cannot effectively

identify the subgrouping structure. Its computer time increases very fast, compared to a

much modest increase of the proposed approach. We acknowledge that, with more efficient

coding, computer time of both approaches can be reduced. However, since the computation

of the proposed approach is built on that of DP, similar trends would be expected. We further

compare Accuracy, MSE, as well as TP and FP rates in Table A3, where we observe patterns

similar to those in Table 2. This set of simulation re-establishes the advantage over DP and

necessity of model averaging. In addition, with the proposed approach, as the analysis of a

submodel is just an application of the DP approach, this simulation also suggests that the

sizes of submodels should be kept moderate.

[Table 2 about here.]

[Table 3 about here.]

(ii) Consider settings similar to those above, with the difference that p =200, 400, and

600. Note that here the data dimensions are larger than the sample size and much larger

than in some of the existing studies. With the proposed approach, Bn is set as 20, 40,
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and 60, correspondingly. The identified number of subgroups is evaluated in Table A4. The

subgrouping, estimation, and identification results are evaluated in Table A5. Here it is noted

that when p is above 200, the fmrs software returns error messages. Thus, the KC approach

is not included in comparison. The overall findings are similar to those above: the proposed

approach can properly identify the number of subgroups, and it has performance superior to

the Fitted and Underfitted approaches.

[Table 4 about here.]

[Table 5 about here.]

(iii) With the proposed approach, the random errors have been assumed to be sub-Gaussian.

This assumption is common in high-dimensional regression studies and facilitates statistical

developments. Here we use simulation to examine performance of the proposed approach

when this assumption is violated. In particular, we consider Simulation 1 with Bn = 10 and

various ρ and β values. Different from those above, the random errors are generated from

a t distribution with degree of freedom 2. The results are presented in Tables A6 and A7.

As expected, with heavier tailors, the results are inferior to those with normal errors. In

particular, when the signal level is low, the proposed approach cannot effectively identify

subgroups and important covariates. However, when the signal level is high, it can still have

satisfactory performance, with patterns similar to those previously observed. It is noted that

the proposed approach is not designed to be robust. When heavy-tailed distributions are

present, robust goodness-of-fit measures would be needed. Such an exploration is beyond the

scope of this study.

[Table 6 about here.]

[Table 7 about here.]

(iv) To evaluate the sensitivity of the analysis results to tuning parameter selection, we
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consider Simulation 1 with K = 2, Bn = 10, ρ = 0.3, α = 2 and pr = (0.5, 0.5). For each

simulated replicate, we first find the optimal tunings using the BIC. Then we fix one tuning

parameter at its optimal value and increase/decrease the value of the other tuning to the

next value in our grid search. With 100 replicates, the results are presented in Table A8.

For example, the row with λ1 “Increased” and λ2 “Fixed” means that, for each replicate,

the value of λ1 is increased from its optimal, and the value of λ2 is fixed at its optimal. The

summary results are close to their counterparts in Tables 1 and 2, suggesting reasonable

stability.

[Table 8 about here.]
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(a) K = 2, Bn = 10
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(b) K = 2, Bn = 5
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(c) K = 3, Bn = 10

Figure A1: Simulation: average weights of the Bn candidate models. (a) and (b):
pr=(0.5, 0.5) on the left and pr=(0.3, 0.7) on the right. (c): pr=(1/3, 1/3, 1/3)
on the left and pr=(0.3, 0.3, 0.4) on the right.
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Figure A2: Data analysis: pipeline for extracting imaging features.
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Table A1: Simulation 2 and 3: accuracy rate of correctly identifying subgroup
membership (Accuracy), estimation mean squared error, and TP and FP rates.

pr=
(

1
3
, 1

3
, 1

3

)
pr= (0.3, 0.3, 0.4)

K ρ β Index Proposed Oracle KC True Fitted Underfitted Proposed Oracle KC True Fitted Underfitted

3 0 2 Accuracy 0.829 0.406 0.861 0.720 0.542 0.852 0.522 0.869 0.759 0.544
MSE 8.123 0.221 74.901 12.031 36.948 89.083 10.053 0.228 74.562 13.234 82.962 77.901
TP 1 1 0.983 1 1 0.475
FP 0.359 0.015 0.930 0.394 0.017 0.208

0.3 2 Accuracy 0.906 0.51 0.890 0.744 0.557 0.904 0.514 0.869 0.745 0.548
MSE 5.156 0.230 78.021 8.625 65.912 95.319 7.233 0.227 75.584 25.129 102.875 98.346
TP 1 1 0.419 1 1 0.442
FP 0.430 0.015 0.230 0.474 0.017 0.243

0.7 2 Accuracy 0.930 0.442 0.896 0.750 0.597 0.909 0.435 0.896 0.810 0.566
MSE 3.646 0.359 92.502 54.346 235.571 157.144 4.859 0.346 91.819 93.420 95.073 218.966
TP 1 1 0.973 0.998 1 0.980
FP 0.489 0.017 0.966 0.54 0.018 0.964

pr= (0.5, 0.5) pr= (0.3, 0.7)
Proposed Oracle KC True Fitted Underfitted Proposed Oracle KC True Fitted Underfitted

2 0 1 Accuracy 0.766 0.503 0.793 0.746 0.506 0.759 0.559 0.849 0.806 0.527
MSE 0.661 0.035 4.963 0.575 2.920 5.693 1.807 0.058 5.083 1.283 0.647 5.920
TP 0.935 1 0.398 0.870 1 0.488
FP 0.008 0.011 0.178 0.009 0.021 0.164

2 Accuracy 0.890 0.503 0.891 0.840 0.508 0.924 0.550 0.913 0.892 0.530
MSE 0.340 0.058 19.520 1.063 4.440 21.922 0.459 0.065 20.166 1.336 2.157 21.748
TP 1 1 0.438 1 1 0.515
FP 0.003 0.011 0.205 0.007 0.014 0.202

0.3 1 Accuracy 0.826 0.503 0.837 0.734 0.520 0.830 0.543 0.892 0.861 0.545
MSE 0.322 0.043 5.318 0.646 3.630 6.650 1.168 0.059 5.377 0.070 0.952 6.662
TP 0.980 1 0.285 0.898 1 0.405
FP 0.006 0.011 0.184 0.008 0.017 0.214

2 Accuracy 0.925 0.499 0.911 0.876 0.516 0.924 0.566 0.937 0.896 0.544
MSE 0.193 0.059 19.436 11.352 11.379 26.920 0.294 0.076 19.915 0.074 5.102 26.14
TP 1 1 0.360 1 1 0.492
FP 0.003 0.011 0.219 0.005 0.014 0.209

0.7 1 Accuracy 0.764 0.507 0.884 0.844 0.631 0.799 0.563 0.918 0.899 0.669
MSE 1.619 0.084 5.833 5.878 3.349 13.486 1.89 0.112 5.704 0.152 0.534 10.591
TP 0.754 1 0.285 0.800 1 0.350
FP 0.030 0.015 0.207 0.02 0.017 0.21

2 Accuracy 0.936 0.507 0.930 0.891 0.620 0.954 0.534 0.955 0.907 0.679
MSE 0.185 0.105 22.925 1.491 7.799 36.316 0.297 0.163 23.076 24.099 222.613 138.869
TP 1 1 0.332 1 1 0.382
FP 0.016 0.011 0.265 0.022 0.016 0.281
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Table A2: Simulation: mean, median, standard deviation (SD) of K̂, percentage

(per) of K̂ equal to the true number of subgroups, and computer time (minutes),
with p = 20, 40, 60, 80, 100.

p Bn method mean median SD per time

20 2 Proposed 2 2 0 1 9.2
DP 2 2 0 1 11.5

40 4 Proposed 2 2 0 1 12.3
DP 2 2 0 1 169.8

60 6 Proposed 2 2 0 1 14.5
DP 1.25 1 0.50 0.25 176.0

80 8 Proposed 2 2 0 1 40.8
DP 1.50 1.5 0.71 0.50 789.6

100 10 Proposed 2 2 0 1 48.0
DP 1 1 0 0 915.7
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Table A3: Simulation: accuracy rate of correctly identifying subgroup mem-
berships (Accuracy), mean squared error, TP and FP rates, with p =
20, 40, 60, 80, 100.

p Bn Index Proposed DP Oracle KC True Fitted Underfitted

20 2 Accuracy 0.928 0.895 0.697 0.920 0.870 0.521
MSE 0.471 0.410 0.065 11.916 0.047 2.995 25.774
TP 1 1 1 0.968
FP 0.011 0.024 0.032 0.589

40 4 Accuracy 0.923 0.705 0.545 0.906 0.853 0.519
MSE 0.517 1.203 0.067 24.613 1.707 1.846 26.151
TP 1 1 1 0.614
FP 0.020 0.240 0.022 0.485

60 6 Accuracy 0.927 0.499 0.503 0.933 0.937 0.515
MSE 0.572 27.175 0.056 29.869 0.053 0.546 25.919
TP 1 1 1 0.969
FP 0 0.980 0.029 0.982

80 8 Accuracy 0.913 0.498 0.496 0.895 0.913 0.542
MSE 0.470 25.850 0.059 26.041 0.045 0.050 18.494
TP 1 1 1 0.500
FP 0 0.940 0.013 0.566

100 10 Accuracy 0.914 0.496 0.495 0.922 0.886 0.495
MSE 0.577 23.509 0.026 31.438 0.035 1.045 28.642
TP 1 1 1 0.375
FP 0.003 0.980 0.010 0.427
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Table A4: Simulation: mean, median, standard deviation (SD) of K̂, and percent-

age (per) of K̂ equal to the true number of subgroups, with p = 200, 400, 600.

p Bn mean median SD per

200 20 2 2 0 1
400 40 2.02 2 0.141 0.98
600 60 1.98 2 0.141 0.98
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Table A5: Simulation: accuracy rate of correctly identifying subgroup member-
ships (Accuracy), mean squared error, TP and FP rates, with p = 200, 400, 600.

p Bn Index Proposed Oracle True Fitted Underfitted

200 20 Accuracy 0.907 0.913 0.821 0.543
MSE 0.516 0.315 0.357 3.448 28.611
TP 1.000 1.000
FP 0.029 0.018

400 40 Accuracy 0.851 0.835 0.796 0.519
MSE 0.868 0.449 0.209 5.610 19.753
TP 1.000 1.000
FP 0.052 0.011

600 60 Accuracy 0.807 0.830 0.805 0.541
MSE 0.952 0.562 0.603 3.742 27.670
TP 1.000 1.000
FP 0.067 0.009
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Table A6: Simulation: mean, median, standard deviation (SD) of K̂, and percent-

age (per) of K̂ equal to the true number of subgroups, with the random errors
generated from a t distribution.

ρ β mean median SD per mean median SD per

pr= (0.5, 0.5) pr= (0.3, 0.7)
0 1 1.25 1 0.50 0.25 1.25 1 0.46 0.25

2 2 2 0 1.00 2 2 0 1
0.3 1 1.44 1 0.54 0.40 1.32 1 0.47 0.32

2 2.02 2 0.25 0.94 2 2 0 1
0.7 1 1.50 1 0.58 0.50 2 2 1 0.57

2 2.02 2 0.16 0.98 2 2 0 1
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Table A7: Simulation: accuracy rate of correctly identifying subgroup member-
ships (Accuracy), mean squared error, TP and FP rates, with the random errors
generated from a t distribution.

pr= (0.5, 0.5) pr= (0.3, 0.7)
ρ β Index Proposed Oracle KC True Fitted Underfitted Proposed Oracle KC True Fitted Underfitted

0 1 Accuracy 0.498 0.497 0.694 0.659 0.507 0.608 0.531 0.702 0.694 0.526
MSE 5 0.430 7.494 0.364 0.472 7.964 5.082 0.968 6.588 1.190 4.517 7.282
TP 0 1 0.250 0.797 0.938 0.516
FP 0.065 0.034 0.271 0.042 0.030 0.288

2 Accuracy 0.805 0.500 0.810 0.751 0.514 0.842 0.549 0.843 0.799 0.555
MSE 1.376 0.291 29.328 1.290 5.627 27.198 1.831 0.324 27.319 1.497 8.502 27.435
TP 1 1 0.295 1 1 0.492
FP 0.054 0.015 0.238 0.077 0.022 0.253

0.3 1 Accuracy 0.521 0.501 0.724 0.644 0.516 0.585 0.545 0.779 0.719 0.551
MSE 5.068 0.399 7.794 3.082 5.066 9.619 6.096 0.751 7.177 1.141 14.549 14.243
TP 0.245 0.995 0.252 0.570 0.965 0.348
FP 0.087 0.023 0.218 0.066 0.032 0.198

2 Accuracy 0.826 0.503 0.831 0.788 0.549 0.868 0.533 0.866 0.850 0.579
MSE 1.901 0.332 29.023 6.403 16.981 26.417 1.819 0.581 29.425 4.582 1.871 33.600
TP 0.980 1 0.300 1 0.998 0.430
FP 0.204 0.014 0.260 0.179 0.017 0.258

0.7 1 Accuracy 0.504 0.501 0.794 0.754 0.614 0.602 0.549 0.814 0.787 0.661
MSE 5.962 0.926 7.482 1.363 28.818 8.638 7.257 2.662 6.983 2.728 4.322 11.748
TP 0.375 0.969 0.250 0.500 0.857 0.357
FP 0.099 0.035 0.293 0.099 0.027 0.302

2 Accuracy 0.862 0.505 0.879 0.838 0.658 0.888 0.525 0.886 0.869 0.694
MSE 2.575 0.801 29.849 1.029 17.209 133.790 3.102 2.628 30.145 150.783 5.803 38.736
TP 1 1 0.375 1 0.965 0.410
FP 0.333 0.018 0.326 0.342 0.021 0.311



25

Table A8: Mean, median, standard deviation (SD) of K̂, percentage (per) of K̂
equal to the true number of subgroups. Accuracy rate of correctly identifying
subgroup memberships (Accuracy), mean squared error, and TP and FP rates.

K
λ1 λ2 mean median SD per Accuracy MSE TP FP

Increased Fixed 1.98 2 0.141 0.98 0.908 0.748 0.972 0.004
Fixed Increased 1.75 2 0.439 0.80 0.904 1.108 1 0.005

Decreased Fixed 2 2 0 1 0.919 0.573 1 0.163
Fixed Decreased 2.12 2 0.328 0.88 0.880 0.940 1 0.059


