Supplementary Information

A fast and interpretable deep learning approach for accurate electrostatics-driven pK_a predictions

Pedro B.P.S. Reis,[∗],† Marco Bertolini,‡ Floriane Montanari,‡ Walter Rocchia,¶

Miguel Machuqueiro,^{*,†} and Djork-Arné Clevert^{*,‡}

†BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal ‡Bayer A.G., Machine Learning Research, Berlin, Germany ¶CONCEPT Lab, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 - Genova, Italy

E-mail: pdreis@ciencias.ulisboa.pt; machuque@ciencias.ulisboa.pt; djork-arne.clevert@bayer.com

List of Figures

List of Tables

Results

1351	1a2p	1a6m	1a91	1a93	1ans	1 _{b2v}	1 _{bcx}
1beo	1bhc	1 _{bi6}	1bni	1bpi	1bus	1 _{bvi}	1cdc
1d0d	1div	1duk	1 _{dur}	1eh6	1epg	<i>lera</i>	1ert
1eru	1ex3	1ey0	1fks	1fna	1 goa	1 gs 9	1h4g
1hho	1 _{hng}	1 _{hpx}	1 _{hrc}	1i0v	1igd	<i>ligy</i>	1 jbb
1kxi	1154	1lni	1 ys	11z1	1 _{mbc}	1 _{nfn}	lnzp
1p5f	1 _{pnt}	1poh	1 _{ppf}	1 _{ppo}	1ptd	1qh7	1qlp
<i>l</i> rga	1 _{rgg}	1 sap	1stg	1stn	1 _{trs}	1 _{trw}	1ubq
1wla	1xnb	1ymb	1 yph	1 ypi	1 ypt	2bca	2bus
2cpl	2 _h	2igd	$2 \mathrm{lzm}$	2 lzt	20 _{VO}	2sni	2 tga
$2\text{tr}x$	2zta	3ebx	3egf	3fx5	3icb	3nbs	3 _{rn3}
3 _{sin}	3ssi	4icb	4 lzt	4ma9	4mbn	4pti	6 gst
6lyz							

Table S1: PDB identification codes of the proteins in experimental test set.

Table S2: Performance comparison between the Null model (RMSE) and pKAI (RMSE; percentage of errors below 0.5 pH units). Information about the distribution of residue pK_a shifts (ΔpK_a) and relative solvent accessible surface area (SASA_r) in the test data is also shown. The Null model was calculated with $\Delta \text{p}K_{\text{a}}$ equal to zero.

Residue	Abundance	Null	pKAI	Error		Δ p K_a		$SASA_r$
	$(\%)$	RMSE	RMSE	$0.5~(\%)$ \lt	Avg	Stdev	Avg	Stdev
GLU	24.9	1.42	0.44	84.7	-0.7	1.2	0.43	0.24
LYS	22.5	1.04	0.32	92.1	0.6	0.9	0.47	0.23
ASP	21.9	1.74	0.50	80.5	-1.0	1.4	0.40	0.26
TYR	13.9	3.14	0.69	67.5	2.4	2.1	0.19	0.20
HIS	9.4	1.92	0.67	73.1	-1.0	1.6	0.29	0.25
CYS	3.9	3.30	0.82	56.6	2.8	1.8	0.11	0.17
NTR	1.7	0.74	0.28	94.2	-0.3	0.7	0.75	0.27
CTR	1.8	0.88	0.35	92.5	-0.2	0.9	0.74	0.27
All	100.0	(1.24^a) 1.89	(0.31^a) 0.52	81.2	0.0	1.9	0.38	0.27

^a Mean Absolute Error (MAE)

Table S3: Execution time comparison between PypKa and pKAI. This benchmark was executed on a machine with a single Intel Xeon E5-2620 processor.

Protein	Number of		Execution Time (s)	Speedup	Time per $/$ titratable (s) residue		
	titratable residues	Pv _p Ka	pKAI	Factor	Pv _p Ka	pKAI	
4LZT	129/21	26.5	0.8	$33\times$	'1.26 0.21/	0.006/0.038	
4K5C	341/100	92.0	1.2	$76\times$	0.27/0.92	0.004/0.012	
7C8J	902/249	2898.2	2.3	$1260\times$	3.21/11.64	0.003/0.009	

Table S4: Experimental pK_a benchmark of several methods on a data set of 736 residues from 97 proteins. For each method, we report their RMSE, the mean absolute error (MAE), the 0.9 quantile, the error percentage below 0.5 pK units, and the coefficient of determination $(R²)$. The null model values have been taken from.^{1,2}

	RMSE	MAE	Quantile 0.9	Error $< 0.5 \ (\%)$	R^2
Null	1.09	0.72	1.51	52.3	0.84
PypKA	1.07	0.71	1.48	52.6	0.85
PROPKA	1.11	0.73	1.58	51.1	0.84
pKAI	1.15	0.75	1.66	49.3	0.82
$pKAI+$	0.98	0.64	1.37	55.0	0.87

Table S5: Comparison between Null model and pKAI+ RMSE values. The Null model is defined as the pK_a values of the residues in water taken from Reference 1.

Residue	Abundance	Null	$pKAI+$	Error		Δ p K_a		$SASA_r$
	$(\%)$	RMSE	RMSE	$0.5~(\%)$	Avg	Stdev	Avg	Stdev
GLU	29.6	0.77	0.81	58.3	-0.5	0.9	0.45	0.24
LYS	14.4	0.74	0.68	60.4	0.3	0.6	0.55	0.21
ASP	29.2	1.30	1.08	59.5	-0.6	0.9	0.45	0.25
TYR	2.4	1.23	0.95	38.9	0.5	0.7	0.33	0.25
HIS	19.4	1.14	0.97	42.0	-0.5	1.1	0.39	0.22
CYS	1.2	3.39	3.43	0.0	-0.1	1.5	0.11	0.09
NTR	1.5	0.59	0.47	63.6	-0.3	0.8	0.74	0.20
CTR	2.2	0.41	0.56	75.0	-0.1	0.7	0.77	0.23
TOTAL	100.0	1.09	0.98	55.0	-0.4	1.0	0.46	0.25

^a Mean Absolute Error (MAE)

Atom Name	Residue	Atom Classes
N	Main Chain	N
\overline{O}	Main Chain	$\overline{\mathrm{O}}$
NE2	GLN	N_AMIDE
ND ₂	ASN	N_AMIDE
OE1	GLN	\overline{O} AMIDE
OD1	ASN	O_AMIDE
$\overline{\text{NE}}$	\rm{ARG}	NE_ARG
NH1/NH2	\rm{ARG}	NH_ARG
NZ	LYS	NZ_LYS
N	NTR	NZ_LYS
OXT	CTR	O _{-COOH}
OD1/OD2	ASP	O_COOH
OE1/OE2	GLU	O_COOH
$\overline{\text{OG}}$	SER	OG_SER
OG1	THR	OG1_THR
ND1	HIS	ND1_HIS
NE2	HIS	NE2_HIS
NE1	TRP	NE1_TRP
OH	TYR	OH_TYR
SG	CYS	SG_CYS
SD	Methionine	SD_MET

Table S6: One hot encoding classes of all atoms used.

Table S7: RMSE improvement by adding a solvent exposure-related extra feature to the input layer. Different ways of measuring solvent exposure were tested: Half-sphere exposure (HSE), Coordination Number, Residue Depth, and relative solvent accessible surface area $(SASA_r)$. HSE is a 2D measure and be subdivided into an upper (side chain facing, HSE^{up}) and lower sphere (backbone facing, HSE^{down}) half-spheres. Furthermore, two residues can be used as reference C_{α} (HSE_{α}) and C_{β} (HSE_{β}). Residue depth is the average distance of all residue's atoms to the molecular surface, and Residue Depth_{C α} is the atom depth of C_{α} .

Figure S1: Performance of pKAI+ with different regularization weights on 5 folds of the experimental test set.

Figure S2: RMSE variation versus the magnitude of the p K_a shift (ΔpK_a). The calculations were performed for pKAI and Null model using the PypKa predictions as reference.

Figure S3: pKAI+ performance at predicting experimental pK_a values dependency on the magnitude of solvent exposure (SASA) of the residues.

Figure S4: Accuracy of several methods at predicting the most representative protonation states derived from experimental $\mathrm{p}K_\mathrm{a}$ values.

Figure S5: pKAI accuracy at predicting PypKa-derived protonation states.

Figure S6: Impact of changing the distance of the closest atom on pKAI's predictions for: residue GLU-154 from structure 6FT4 (A); residue LYS-118 from structure 2HRK (C); residue TYR-98 from structure 6FT4 (C); residue LYS-55 from structure 2BJU (D). For reference, we have included PypKa's predictions of the same residue in the state presented in the experimental structure and in an modified structure in which the closest atom is absent.

References

- (1) Thurlkill, R. L.; Grimsley, G. R.; Scholtz, J. M.; Pace, C. N. pK values of the ionizable groups of proteins. Protein Sci. 2006, 15, 1214–1218.
- (2) Grimsley, G. R.; Scholtz, J. M.; Pace, C. N. A summary of the measured pK values of the ionizable groups in folded proteins. Protein Sci. 2009, 18, 247–251.