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Appendix Tables  

 

Appendix Table A1.  

 

Transition start End of transition 

  H A C CA D DA DC DCA Dead  

H 27,954 1,867 2,227 434 755 60 96 30 680 

A 1,308 2,062 152 371 42 79 10* 25 504 

C 0 0 14,501 2,346 0 0 522 108 1,431 

CA 0 0 1,346 3,710 0 0 59 193 1,968 

D 0 0 0 0 4,182 471 471 123 169 

DA 0 0 0 0 315 595 60 152 181 

DC 0 0 0 0 0 0 3,540 976 581 

DCA 0 0 0 0 0 0 615 1,968 907 

Dead 0 0 0 0 0 0 0 0 ALL 

 

Note: States include being healthy (H), being diabetic (D), having at least one chronic condition (C), having at least one ADL 

disability (A), being diabetic with at least one condition (DC), being diabetic with at least one ADL disability (DA), having at least 

one condition and one ADL disability (CA), being diabetic with a at least one condition and at least one ADL disability (DCA), and 

death. * Observations in this cell were assigned to DCA due to convergence issues. 
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Appendix Table A2. Posterior Means and 84% Credible Intervals for Various State Expectancies by Gender and Race, Healthy 

Population 

 

Gender-Race Healthy Population 

   TLE XLE CLE DLE CDLE XCLE XDLE XCDLE 

F-W 32.1[31.6,32.7] 1.6[1.4,1.8] 5.8[5.5,6.2] 1.7[1.5,1.8] 2.7[2.5,2.9] 0.5[0.4,0.5] 2.0[1.7,2.2] 1.5[1.4,1.7] 

F-B 30.2[29.5,30.9] 2.0[1.7,2.3] 3.9[3.5,4.3] 2.2[2.0,2.5] 2.7[2.4,3.0] 0.6[0.5,0.8] 1.7[1.5,2.0] 2.1[1.8,2.3] 

F-H 33.1[31.8,34.3] 2.4[1.9,3.0] 4.5[3.7,5.3] 2.0[1.7,2.4] 2.1[1.8,2.6] 1.1[0.8,1.4] 1.9[1.5,2.3] 2.3[1.9,2.7] 

M-W 28.3[27.8,28.9] 1.8[1.5,2.0] 6.2[5.8,6.5] 0.9[0.8,1.0] 1.7[1.5,1.8] 0.3[0.3,0.4] 2.6[2.3,2.9] 1.1[0.9,1.2] 

M-B 25.9[25.2,26.6] 2.2[1.9,2.6] 4.0[3.6,4.4] 1.2[1.1,1.4] 1.6[1.4,1.8] 0.4[0.4,0.5] 2.2[1.9,2.5] 1.5[1.3,1.6] 

M-H 29.4[28.2,30.7] 2.9[2.2,3.6] 4.9[4.1,5.8] 1.2[1.0,1.4] 1.4[1.1,1.7] 0.8[0.6,1.1] 2.4[1.9,2.9] 1.6[1.3,1.9] 

         

    %XLE %CLE %DLE %CDLE %XCLE %XDLE %XCDLE 

F-W   5.0[4.4,5.6] 18.1[17.1,19.2] 5.2[4.8,5.5] 8.3[7.8,8.9] 1.4[1.3,1.7] 6.1[5.5,6.9] 4.8[4.3,5.2] 

F-B  6.6[5.6,7.7] 12.8[11.7,14.0] 7.4[6.8,8.2] 8.9[8.0,9.8] 2.1[1.8,2.5] 5.7[5.1,6.5] 6.9[6.1,7.7] 

F-H  7.3[5.7,9.0] 13.7[11.4,16.1] 6.2[5.1,7.3] 6.5[5.4,7.7] 3.4[2.5,4.4] 5.7[4.5,7.0] 6.8[5.6,8.2] 

M-W  6.2[5.4,7.1] 21.8[20.6,23.1] 3.2[3.0,3.5] 5.8[5.5,6.2] 1.1[0.9,1.3] 9.0[8.1,10.0] 3.7[3.4,4.2] 

M-B  8.7[7.2,10.1] 15.3[13.8,16.9] 4.8[4.3,5.4] 6.1[5.5,6.8] 1.7[1.4,2.0] 8.5[7.4,9.6] 5.6[4.9,6.4] 

M-H   9.8[7.7,12.2] 16.8[13.9,19.6] 4.0[3.3,4.8] 4.7[3.9,5.7] 2.9[2.1,3.7] 8.0[6.5,9.8] 5.5[4.5,6.6] 

Note: Genders include female (F) and male (M), and races include non-Hispanic White (W), non-Hispanic Black (B), and Hispanic 

(H). Life expectancies include total life expectancy (TLE), life expectancy with only diabetes (XLE), life expectancy with only other 

chronic conditions (CLE), life expectancy with only ADLs (DLE), life expectancy with both ADLs and other chronic conditions 

(CDLE), life expectancy with diabetes and other chronic conditions (XCLE), life expectancy with diabetes and ADLs (XDLE), life 

expectancy with all three health issues (XCDLE). Proportions of various life expectancies are calculated by life expectancy in a state 

divided by total life expectancy. Estimates only apply to the US-born population. 
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Appendix Table A3. Posterior Means and 84% Credible Intervals for Various State Expectancies by Gender and Race, Diabetic 

Population 

 

Gender-Race Diabetic Population 

  TLE XLE XCLE XDLE XCDLE 

F-W 23.7[22.5,24.7] 10.3[9.2,11.4] 6.0[5.4,6.5] 2.4[2.0,2.9] 5.0[4.6,5.4] 

F-B 22.5[20.9,24.2] 10.5[9.2,11.9] 4.1[3.6,4.7] 2.9[2.3,3.5] 5.1[4.4,5.7] 

F-H 24.2[22.1,26.4] 10.3[8.3,12.3] 4.5[3.7,5.5] 3.6[2.6,4.7] 5.8[4.7,7.0] 

M-W 21.5[20.2,23.0] 10.4[9.2,11.7] 6.7[6.1,7.4] 1.5[1.1,1.8] 2.9[2.6,3.2] 

M-B 20.2[18.2,22.1] 10.9[9.4,12.5] 4.5[3.9,5.2] 1.8[1.3,2.3] 3.0[2.5,3.4] 

M-H 22.3[19.9,24.8] 11.5[9.3,13.7] 4.8[3.9,5.8] 2.5[1.7,3.3] 3.6[2.9,4.4] 

      

   %XLE %XCLE %XDLE %XCDLE 

F-W  43.3[39.7,47.0] 25.2[22.8,27.7] 10.3[8.6,12.3] 21.1[19.1,23.2] 

F-B  46.7[42.2,50.8] 18.2[16.0,20.6] 12.7[10.4,15.2] 22.5[19.7,25.3] 

F-H  42.3[35.9,48.6] 18.7[15.0,22.9] 14.9[11.1,19.2] 24.1[19.7,29.3] 

M-W  48.4[44.4,52.3] 31.3[28.0,34.7] 6.8[5.4,8.4] 13.5[12.1,15.1] 

M-B  54.1[49.5,58.1] 22.4[19.4,25.5] 8.8[7.0,10.7] 14.7[12.7,17.1] 

M-H  51.1[44.6,57.1] 21.5[17.5,26.2] 11.1[8.1,14.6] 16.3[12.9,20.2] 

Note: Genders include female (F) and male (M), and races include non-Hispanic White (W), non-Hispanic Black (B), and Hispanic 

(H). Life expectancies include total life expectancy (TLE), life expectancy with only diabetes (XLE), life expectancy with only other 

chronic conditions (CLE), life expectancy with only ADLs (DLE), life expectancy with both ADLs and other chronic conditions 

(CDLE), life expectancy with diabetes and other chronic conditions (XCLE), life expectancy with diabetes and ADLs (XDLE), life 

expectancy with all three health issues (XCDLE). Proportions of various life expectancies are calculated by life expectancy in a state 

divided by total life expectancy. Estimates only apply to the US-born population. 
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Appendix Table A4. Posterior Means and 84% Credible Intervals for Various State Expectancies by Gender and Education Level, 

Healthy Population 

 

Gender-Education Healthy Population 

  TLE XLE CLE DLE CDLE XCLE XDLE XCDLE 

F-BH 30.2[29.6,30.8] 1.6[1.3,1.8] 4.7[4.4,5.1] 1.9[1.7,2.1] 2.7[2.4,2.9] 0.6[0.5,0.7] 1.8[1.6,2.0] 1.8[1.6,2.0] 

F-HS 33.7[33.1,34.3] 1.8[1.6,2.1] 6.2[5.9,6.5] 1.7[1.6,1.8] 2.6[2.4,2.8] 0.4[0.4,0.5] 2.1[1.8,2.4] 1.5[1.4,1.7] 

F-CH 36.4[35.6,37.2] 2.1[1.8,2.5] 6.7[6.2,7.2] 1.5[1.4,1.7] 2.7[2.4,3.0] 0.4[0.3,0.5] 2.3[1.9,2.7] 1.3[1.1,1.5] 

M-BH 26.2[25.6,26.8] 1.8[1.5,2.1] 5.0[4.6,5.3] 1.1[0.9,1.2] 1.6[1.5,1.8] 0.4[0.3,0.5] 2.3[2.0,2.6] 1.2[1.1,1.4] 

M-HS 29.9[29.3,30.5] 2.0[1.7,2.3] 6.6[6.2,7.0] 0.9[0.9,1.0] 1.6[1.5,1.7] 0.3[0.2,0.3] 2.7[2.4,3.1] 1.1[1.0,1.2] 

M-CH 33.0[32.1,33.9] 2.2[1.9,2.6] 7.3[6.8,7.8] 0.8[0.8,0.9] 1.7[1.5,1.8] 0.2[0.2,0.3] 3.2[2.7,3.8] 0.9[0.8,1.1] 

         

   %XLE %CLE %DLE %CDLE %XCLE %XDLE %XCDLE 

F-BH  5.2[4.4,6.0] 15.7[14.6,16.9] 6.3[5.8,6.8] 8.8[8.1,9.5] 2.0[1.7,2.4] 6.0[5.3,6.7] 6.1[5.4,6.7] 

F-HS  5.5[4.8,6.2] 18.4[17.5,19.3] 5.0[4.7,5.3] 7.7[7.2,8.3] 1.3[1.1,1.5] 6.2[5.5,7.0] 4.6[4.1,5.1] 

F-CH  5.8[4.8,6.8] 18.4[17.2,19.7] 4.1[3.7,4.5] 7.5[6.8,8.2] 1.1[0.8,1.4] 6.3[5.2,7.5] 3.4[2.9,4.0] 

M-BH  6.8[5.7,7.9] 19.0[17.6,20.5] 4.0[3.6,4.4] 6.2[5.7,6.8] 1.6[1.3,1.9] 8.7[7.7,9.8] 4.8[4.2,5.3] 

M-HS  6.7[5.8,7.6] 22.0[20.8,23.3] 3.1[2.9,3.4] 5.4[5.0,5.8] 0.9[0.8,1.1] 9.1[8.2,10.2] 3.6[3.2,4.0] 

M-CH  6.7[5.7,7.8] 22.2[20.7,23.7] 2.5[2.3,2.8] 5.1[4.6,5.6] 0.7[0.6,0.9] 9.7[8.2,11.4] 2.8[2.4,3.3] 

Note: Genders include female (F) and Male (M), and education levels include below high school (BH), high school diploma and some 

college (HS), and college degree or higher (CH). Life expectancies include total life expectancy (TLE), life expectancy with only 

diabetes (XLE), life expectancy with only other chronic conditions (CLE), life expectancy with only ADLs (DLE), life expectancy 

with both ADLs and other chronic conditions (CDLE), life expectancy with diabetes and other chronic conditions (XCLE), life 

expectancy with diabetes and ADLs (XDLE), life expectancy with all three health issues (XCDLE). Proportions of various life 

expectancies are calculated by life expectancy in a state divided by total life expectancy. Estimates only apply to the US-born 

population. 
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Appendix Table A5. Posterior Means and 84% Credible Intervals for Various State Expectancies by Gender and Education Level, 

Diabetic Population 

Gender-Education Diabetic Population 

  TLE XLE XCLE XDLE XCDLE 

F-BH 22.2[21.0,23.3] 9.1[8.1,10.3] 4.9[4.3,5.5] 2.9[2.3,3.5] 5.3[4.7,5.9] 

F-HS 25.1[23.8,26.4] 11.7[10.5,12.9] 6.3[5.7,6.9] 2.2[1.8,2.7] 4.9[4.4,5.4] 

F-CH 27.7[25.7,29.7] 13.9[12.3,15.5] 7.4[6.3,8.5] 2.0[1.5,2.6] 4.4[3.9,5.0] 

M-BH 20.0[18.6,21.5] 9.6[8.5,11.0] 5.5[4.8,6.1] 1.8[1.4,2.3] 3.1[2.7,3.6] 

M-HS 22.8[21.4,24.4] 11.6[10.4,13.1] 7.0[6.3,7.8] 1.3[1.0,1.6] 2.8[2.5,3.1] 

M-CH 25.8[23.6,28.0] 13.3[11.6,15.1] 8.7[7.5,10.1] 1.1[0.8,1.5] 2.6[2.3,3.1] 

      

   %XLE %XCLE %XDLE %XCDLE 

F-BH  41.2[37.1,45.2] 22.1[19.6,24.6] 12.9[10.6,15.4] 23.9[21.3,26.6] 

F-HS  46.5[42.9,50.0] 25.1[22.8,27.5] 8.9[7.4,10.7] 19.5[17.6,21.7] 

F-CH  50.0[45.7,54.3] 26.7[23.3,30.2] 7.3[5.6,9.2] 16.0[14.0,18.3] 

M-BH  48.1[43.9,52.3] 27.3[24.1,30.7] 9.1[7.0,11.2] 15.6[13.6,17.6] 

M-HS  51.0[47.3,54.4] 30.8[28.0,33.9] 5.8[4.7,7.1] 12.5[11.1,14.1] 

M-CH  51.6[47.1,56.2] 33.8[29.7,38.1] 4.4[3.2,5.7] 10.3[8.8,11.9] 

Note: Genders include female (F) and Male (M), and education levels include below high school (BH), high school diploma and some 

college (HS), and college degree or higher (CH). Life expectancies include total life expectancy (TLE), life expectancy with only 

diabetes (XLE), life expectancy with only other chronic conditions (CLE), life expectancy with only ADLs (DLE), life expectancy 

with both ADLs and other chronic conditions (CDLE), life expectancy with diabetes and other chronic conditions (XCLE), life 

expectancy with diabetes and ADLs (XDLE), life expectancy with all three health issues (XCDLE). Proportions of various life 

expectancies are calculated by life expectancy in a state divided by total life expectancy. Estimates only apply to the US-born 

population. 
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Appendix Table A6. Gaps in Total Life Expectancies between Healthy and Diabetic Populations, 

with 84% Credible Intervals 

Gender-Race Median and 84% CI Gender-Education Median and 84% CI 

F-W 8.5[7.4, 9.6] F-BH 8.0[6.9, 9.2] 

F-B 7.7[6.1, 9.3] F-HS 8.6[7.4, 9.8] 

F-H 8.9[7.0, 10.7] F-CH 8.7[7.0, 10.5] 

M-W 6.8[5.5, 8.2] M-BH 6.2[4.9, 7.6] 

M-B 5.7[3.9, 7.5] M-HS 7.1[5.5, 8.4] 

M-H 7.0[5.1, 9.1] M-CH 7.2[5.3, 9.1] 

Note: See notes above. 
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Appendix Table A7. Gaps in Health Outcomes between Whites and Blacks, with 84% Credible 

Intervals  

 

Health Outcomes Healthy Population Diabetic Population 
 Female Male Female Male 

TLE 1.9[1.3, 2.6] 2.4[1.7, 3.1] 1.1[-0.3, 2.6] 1.3[-0.2, 2.9] 

%XLE -3.5[-6.7, 0.2] -5.8[-9.5, -1.9] -1.6[-2.6, -0.7] -2.5[-3.8, -1.2] 

%XDLE -2.4[-4.3, -0.5] -2.0[-3.4, -0.6] -0.7[-1.0, -0.4] -0.6[-0.9, -0.3] 

Note: See notes above. 
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Appendix Table A8. Gaps in Health Outcomes between Persons with and without a College 

Degree, with 84% Credible Intervals  

 

Health Outcomes Healthy Population Diabetic Population 
 Female Male Female Male 

TLE 2.7[2.0, 3.4] 3.1[2.3, 3.9] 2.7[0.7, 4.5] 3.1[1.1, 4.8] 

%XLE 0.3[-0.6, 1.2] 0.0[-1.0, 1.0] 3.5[-0.4, 7.6] 0.7[-3.3, 4.7] 

%XDLE -0.2[-0.4, 0.1] -0.2[-0.4, 0.0] -1.7[-3.4, 0.2] -1.5[-2.6, -0.3] 

Note: See notes above. 
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Appendix: Bayesian Multistate Life Table Methods for Complex, 

High-Dimensional State Spaces 
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Our method is an extension of the method developed in Lynch and Brown (2005). In their 

approach, parameters are sampled from a two-dimensional discrete-time multinomial probit 

model using a Gibbs sampler. As with bootstrapping, a life table is produced for each post-burn-

in parameter sample, and (credible) interval estimates of any life table quantity of interest can be 

computed from the life tables using a typical Bayesian approach of sorting estimates and 

selecting the values at the desired quantiles. A pair of C and R programs were developed by the 

authors to facilitate implementation. Aside from the ability of this approach to incorporate prior 

information if desired, the method does not resample data and therefore does not risk obtaining 

samples that are missing transitions. Further, the method does not require asymptotic 

assumptions regarding the shape of the posterior distribution for life table quantities. 

 The key limitation of their method, however, is that, as developed, the method can handle 

only two living states. Additionally, as developed, the method treats the state as the start of a 

time interval as a covariate, with the state at the end of the interval as the multinomial outcome. 

Although this approach can yield identical results to those obtained by treating the transition 

itself as the outcome, it prohibits the ability to incorporate “partially absorbing states” (i.e., 

structural zeros in the transition matrices) into the model. For instance, in our case, individuals 

may transition to becoming diabetic, but once diagnosed, they cannot return to any non-diabetic 

state. Thus, under the original Lynch-Brown method, for any state that does not also involve 

diabetes (e.g., nondiabetic with serious chronic health conditions), a covariate representing 

“diabetic” may only take one value (1; diabetic), making estimation of transitions impossible, 

because of lack of variability in the covariate for some outcome states. 

 We extend the Lynch-Brown approach to handle much higher dimensional state spaces 

with partially absorbing states, resolving the two key limitations of the previous method. Our 
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MLST method involves two steps: 1) sampling from the posterior distribution for a Bayesian 

discrete time multinomial logit model for transitions, with covariates including age as predictors 

using panel data; and 2) generating life tables using typical multistate demographic calculations 

applied to the posterior samples. 

The multinomial logit model is a model for qualitatively distinct, mutually exclusive 

outcomes, with covariates predicting the probability of each outcome. Let p(Yi = j) represent the 

probability that individual i experiences outcome j from a total of j = 1,…, J possible outcomes. 

Then,  

 

𝑃(𝑌𝑖 = 𝑗) =  
exp (𝛽𝑗𝑋𝑖)

∑ exp (𝛽𝑠𝑋𝑖)
𝐽
𝑠=1

, 

 

where 𝑋𝑖 is a k × 1 vector of covariates for individual i, and 𝛽𝑗 is a vector of the coefficients for 

the effects of the covariates on outcome j, with one outcome omitted as a reference outcome. 

These probabilities can be inserted into a typical multinomial mass function to obtain a 

likelihood function: 

 

𝐿(𝛽|𝑌) ∝ ∏(∏ 𝑝(𝑌𝑖 = 𝑗)𝐼(𝑌𝑖=𝑗)

𝐽

𝑗=1

)

𝑛

𝑖=1

 

 

where I(𝑌𝑖= j) is the indicator function indicating whether respondent i experienced outcome j. 

We assume that all covariates predict each outcome and that there are no outcome-specific 

covariates. 
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 In our case, n represents the number of person-interval records in the data, where an 

interval can be defined as the time interval between successive survey waves. The outcomes, Y, 

are transitions individuals experienced over an interval of length m years (or months, days, etc.), 

with the states at time t and t + m defining the transition. Thus, the ending state at time t + m for 

the interval that begins at time t is the starting state for the interval that begins at time t + m and 

runs to t + 2m. In our specification, we assume that m does not vary across survey waves nor 

across individuals, although that assumption can be relaxed in various ways. Individuals who die 

between survey waves (or are censored in some other way, e.g., attrition) contribute no further 

person-interval records to the data. Given this data structure, the model can be described as a 

discrete time hazard model (see Allison (1984)). 

 Defining the transition experienced over an interval as the outcome—rather than defining 

the ending state as the outcome with a covariate for the starting state used to help define the 

transition—resolves one limitation of the Lynch and Brown (2005) method: transitions that are 

not possible (i.e., structural zeroes) are simply not included as an outcome in the multinomial 

regression model. A complication of this approach, however, is that it increases the 

dimensionality of the outcome, posing another problem. While the number of outcomes in the 

model is theoretically unlimited, from a practical standpoint, parameters of the multinomial logit 

model become increasingly difficult to estimate when the dimensionality becomes large, in both 

maximum likelihood and Bayesian settings. 

In the Bayesian setting, the multinomial probit model is often used instead of the logit, 

because it lends itself to Gibbs sampling, and Gibbs samplers are fairly easy to implement with 

data augmentation strategies (McCulloch and Rossi, 1994; Albert and Chib, 1993; Imai and Van 

Dyk, 2005). In contrast, estimation of logit model parameters in the Bayesian setting requires 
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more general Metropolis-Hastings or other samplers, because there has been no analagous data 

augmentation strategy that yields exact conditional posterior distributions for 𝛽 that are of known 

forms. In lower dimensions, the Gibbs sampler for the probit model and MH algorithms for the 

logit model both work well, and for medium-dimensional outcomes, the multinomial probit 

model using data augmentation works far better than MH routines for the logit model. However, 

beyond dimensions of 20 or so, both the Gibbs sampler for the probit model and MH routines for 

the logit model become computationally difficult or even infeasible. 

Fortunately, the recent development of a Gibbs sampling routine for the logit model has 

resolved much of the difficulty. Polson et al. (2013) developed a Gibbs sampler for the 

multinomial logit model using a data augmentation strategy with Polya-Gamma latent variables. 

Details of the approach can be found in both the authors' original paper and in their technical 

supplement. The Polya-Gamma strategy can be thought of as an analogue to the probit data 

augmentation strategy developed by Albert and Chib (1993) in that they both introduce latent 

variables that enable exact posterior inference through Gibbs sampling. The main difference 

from an analytic perspective is that, while the posterior distribution for regression parameters (𝛽) 

in the probit model is a location mixture of normals in which the locations are influenced by 

truncated normal latent variables, the Polya-Gamma strategy results in a scale mixture posterior. 

A second difference is that while the latent variables used in the probit model were motivated by 

their direct interpretation as the “utility” of each category in the context of a discrete choice 

model, the Polya-Gamma latent variables have no apparent intuitive interpretation. 

Compared to other Bayesian strategies for estimating multinomial logit models, this data-

augmentation strategy is more efficient and easier to use when the dimensionality of the outcome 

is large (Polson et al., 2013). As with any full Gibbs sampler, the method does not require tuning 
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parameters like MH algorithms do. In our own trials, this strategy is orders of magnitude much 

faster computationally to converge and mix and generates more reliable estimates when the 

dimensionality is high compared to an independence sampler or an adaptive random walk 

Metropolis-Hastings algorithm. Specifically, in other substantive research we have found that an 

independence sampler using a multivariate normal proposal with a mean vector equal to the ML 

estimates and a covariance matrix equal to the ML covariance matrix of estimates works well 

when the outcome dimensionality is less than 20 (self-identifying reference omitted), but we rely 

on the Polya-Gamma strategy for models with higher-dimensional outcomes, such as in our 

example here. 

For our purposes, J – 1 of the J possible transitions across an interval are treated as 

outcomes in the multinomial logit model, with all covariates 𝑥1…𝑥𝑘 (including an intercept and 

an age variable) included as predictors of each transition. After G post-burn n iterations of the 

Gibbs sampler involving Poly-gamma latent variables, we will have G samples of 𝛽, a k × (𝐽 −

1) matrix of coefficients. For life table construction, we first determine a covariate profile for 

which we wish to generate a life table, and we construct a 𝑇 × 𝑘 matrix Z, and T is the number of 

age groups included in the life table calculations (a = 1…T). Each row in Z consist of the fixed 

covariate values (and intercept) plus a value of age that is incremented across rows. 

The product 𝑍𝛽 yields a 𝑇 × (𝐽 − 1) matrix of predicted values from which probabilities 

for each transition can be computed row-wise via: 

 

𝑝𝑟𝑗(𝑎) =  
exp ((𝑍𝛽)𝑎𝑗)

1 +  ∑ exp ((𝑍𝛽)𝑎𝑗)𝐽
𝑗=2

. 
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The probability for the omitted transition can be computed by subtracting the sum of the 

computed probabilities from 1. The result is a matrix, 𝑓(𝑍𝛽), from which age-specific transition 

probability matrices, P(a), a = 1…T can be constructed. Specifically, each row of 𝑓(𝑍𝛽) is 

placed in a square matrix of dimension 𝑑 × 𝑑 based on the starting and ending states represented 

by the probabilities. Structural zeros are included, and a final row of zeros with a trailing 1 is 

also included, to reflect the fact that individuals cannot transition from the deceased state. It is 

important to note that d is the number of starting/ending states across a transition interval, while 

J is the total number of estimated possible transitions, so that 𝐽 < 𝑑2. The rows of these square 

matrices are then normalized so that each row sums to 1 by adding all elements in a given row 

and then dividing each element in the row by the sum. This produces a set of right-stochastic 

matrices, one for each age group. 

With a complete set of age-specific transition probability matrices for a specific covariate 

profile, we can construct MSLTs in a straightforward fashion using mostly traditional 

calculations. Let l be an 𝑁 × 𝑑 matrix of counts of individuals in each of the d states at the start 

of each age interval, and let l(a) reference row a of the matrix. Then, l(1) is the radix population, 

l(2) is the number of persons in each state at age k, l(3) is the number of persons in each state at 

age 2k, and so one, and l(a = N) is the number of persons alive at the start of the open-ended 

interval. 

The radix population can either be derived from the row sums of the unnormalized 

probabilities in 𝑓(𝑍𝛽(𝑔)) at age 0 (a = 1) in order to produce “population-based” life tables, or it 

can be fixed at specific values to produce “status-based” life tables. For example, we could set 

the radix such that all persons in the population are in a specific state at age 0 (e.g., diabetic 
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without other chronic conditions defined previously or ADL disabilities) in order to estimate 

state expectancies for persons who enter the life table at age 0 in that state. 

Given a radix, we can compute l(a) for all age groups except the last as: 

 

𝑙(𝑎 + 1) = 𝑙(𝑎)𝑃(𝑎). 

 

Person years lived in each state in age group a can be computed using the linear assumption: 

 

𝐿(𝑎) =  .5𝑘[𝑙(𝑎) + 𝑙(𝑎 + 1)], 

 

where, again, k is the width of the age interval. 

 As with any life table procedure, the final age interval requires a different computation 

than other intervals. In particular, we compute L(T) as: 

 

𝐿(𝑁) = 𝑘𝑙(𝑁(𝐼 − 𝑃(𝑁))
−1

, 

 

where the last row and column of l(N) and P(N) is omitted. 

 The more conventional calculation for years lived in the open-ended interval is 𝐿(Ω) =

 𝑘𝑙(𝑎)𝜇−1, where 𝜇 is the intensity or rate matrix of transitions in the oldest age group (Palloni, 

2001). In a continuous time framework, this calculation provides the waiting time for absorption 

(death), assuming constant transition rates from age Ω forward. Our calculation simply assumes 

constant transition probabilities, rather than rates, from age Ω forward, so that waiting times are 

geometrically distributed. (𝐼 − 𝑃(𝑁))−1 is the sum of the infinite geometric series implied by the 
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transition probability matrix at age Ω. Given that we generate predicted transition probability 

matrices to age 110+ (the oldest age for which we often have some data in panels), there is 

almost no difference in estimates of state expectancies at age 0, nor at age Ω. We prefer this 

calculation to converting P(N) to a rate matrix and performing the usual computation as a matter 

of coherence with the discrete time modeling strategy. 

The vector T(a), the person years to be lived in each state from age (group) a forward, 

can be computed as: 

 

𝑇(𝑎) =  ∑ 𝐿(𝑖)

𝑁

𝑖=𝑎

 

 

Finally, state expectancies can be computed for each age group by dividing T(a) by 

∑ 𝑙(𝑎), where ∑ 𝑙(𝑎) is the total number of persons alive at age a, regardless of state. This 

computation apportions the total years to be lived in each state from a given age forward across 

all persons surviving to the beginning of age group a. 

We note that this method produces estimates that are a compromise between a period and 

cohort life table. Panel data generally follow an accelerated longitudinal design: multiple birth 

cohorts are followed over an extended time period, but no birth cohort is observed over the 

complete age range observed in the study. Here, if birth cohort is included as a covariate in the 

multinomial regression model (and we argue it should be), then it must be fixed at a value for life 

table estimation. Fixing cohort at a specific value means that the resulting life table is a cohort 

life table, but estimates will obviously be informed by patterns of other cohorts, implying that the 

results assume some degree of stationarity. 
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To be a little more specific, for each of the posterior samples obtained from the Gibbs 

sample, we compute sets of age-specific probabilities for each outcome transition as discussed 

earlier. These matrices are not transition probability matrices, but appear as: 

 

 

 

 

 

 

 

 

 

 

f (Zβ(a)) = , 

 

 

 

 

 

 

 

where the collection of pr sum to 1 across all values (∑ 𝑝𝑟𝑗 = 143
𝑗=1 ). Transition probability 

matrices are obtained by normalizing the cell probabilities by their row marginals. For example, 

we can obtain the transition probability, 𝑝11, (the H-H transition) as: 

 

𝑝11 =  
𝑝𝑟1

∑ 𝑝𝑟𝑗
9
𝑗=1

. 

 

Thus, the 43 age-specific outcome probabilities are converted to the non-zero elements of the 9 

× 9 age-specific transition probability matrix necessary for life table calculations. 

We have tested our method using simulated data that mimics the HRS study design, and 

the method performs extremely well. We have done simulations for both a single-decrement 

 
H A C CA D DA DC DCA Death 

H pr1 pr2 pr3 pr4 pr5 pr6 pr7 pr8 pr9 

A pr10 pr11 pr12 pr13 pr14 pr15 0 pr16 pr17 

C 0 0 pr18 pr19 0 0 pr20 pr21 pr22 

CA 0 0 pr23 pr24 0 0 pr25 pr26 pr27 

D 0 0 0 0 pr28 pr29 pr30 pr31 pr32 

DA 0 0 0 0 pr33 pr34 pr35 pr36 pr37 

DC 0 0 0 0 0 0 pr38 pr39 pr40 

DCA 0 0 0 0 0 0 pr41 pr42 pr43 

Death 0 0 0 0 0 0 0 0 1 
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model and for a two-state model. The simulation results show that our approach yields results 

that are very close to the population data from which the simulated data were generated, even 

though our modeling assumptions are not entirely aligned with the data generation process. For 

example, while the spacing between waves in the HRS is 2 years on average, it is not exactly two 

years for everyone. Therefore, in our simulations, we generated a sample in which the average 

spacing between survey waves for each person was 2 years, but we randomly generated survey 

times to be up to .8 years away from exactly 2 years (𝑢 ~ 𝑈(1:2; 2:8)). Further, our transition 

rates were generated using Gompertz (i.e., exponential across age) curves. Despite using a 

sigmoidal function (logit) and assuming exact two year spacing between survey occasions, we 

found a very close match between estimates obtained via our method and the “true” values in our 

contrived population. 
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