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Supporting Information Text12

A. Evaluation13

Global comparison with the baseline. We evaluate our method by reporting, for each country the RMAE, the RmedianAE,14

the relative improvement in mean total coverage (see Section E), and average WIS. The relative improvement in mean total15

coverage is computed as RC = (MC(s)−MC(b))/MC(b) from the coverages MC of the methods, since one aims for higher16

coverage by the estimates of the confidence intervals.17

In Fig. S5, we illustrate the evaluation for the 80 countries with reliable data. In Fig. S6, we illustrate the evaluation score for18

the 101 countries that did not pass our evaluation criteria. The evaluation on the remaining countries (with the exclusion19

of 11 countries which had a particularly low number of cases) shows that there remains 42 countries, for which our method20

still obtains a better MAE than the baseline, only 29 for which we improve in median AE, 63 for which RWIS is improved21

and 74 with improved total coverage. Many of the countries for which our method performs clearly worse than the baseline22

are in fact countries with a fairly low number of cases, which were not the focus of our modelling efforts. This is justified by23

the fact that accurate forecasts are not critical for these countries as long as their number remains low. Furthermore, the24

corresponding time series of a significant number of these countries have numerous irregularities of the reporting and backlogs25

which makes it harder to associate the target average weekly number with the true underlying trend. In that case, the simple26

baseline forecast, which is the average value of the previous week, appears to be closer to the target than the forecast obtained27

after trend estimation. Different smoothing techniques would be needed to produce better trend estimation for these countries,28

which take into account the discrete nature of the count and their Poissonian distribution.29

Comparison with the forecasts submitted to European Covid Forecast Hub, cases. The list of methods includes (with30

abbreviations used in the Tables S1-S4 below):31

• EuroCOVIDhub-ensemble (EUHub-ens, https://covid19forecasthub.eu/visualisation.html),32

• EuroCOVIDhub-baseline (https://covid19forecasthub.eu/visualisation.html),33

• MUNI-ARIMA (MUNI, https://krausstat.shinyapps.io/covid19global/),34

• IEM_Health-CovidProject (IEM_Health, https://iem-modeling.com/),35

• USC-SIkJalpha (USC, https://scc-usc.github.io/ReCOVER-COVID-19/#/),36

• RobertWalraven-ESG (RW, http://rwalraven.com/COVID19/Model),37

• ILM-EKF (ILM, https://github.com/Stochastik-TU-Ilmenau),38

• the proposed method (SDSC_ISG, https://renkulab.shinyapps.io/COVID-19-Epidemic-Forecasting/).39

Fig. S1-S3 show histograms of the errors of the methods with respect to the baseline with 0.1-wide bins. For visualization40

purposes, errors greater than 1.55 were set to 1.55 and therefore contribute to the last bin. One week ahead forecasts MAE41

measured in multiples of the baseline MAE and average WIS measured in multiples of the baseline WIS are presented in Tables42

S1 and S2. Two week ahead forecasts MAE measured in multiples of the baseline MAE and average WIS measured in multiples43

of the baseline WIS are presented in Tables S3 and S4.44

Death forecasting: motivation and comparison with European Covid Forecast Hub submissions. At first sight, in a very simple45

theoretical model, the number of deaths should be related to the number of cases, and correspond simply to the fraction of the46

cases that did not survive. The strategy of estimating the deaths from cases has been particularly successful for the USA at the47

country and state levels. Among the models participating in the US COVID Forecast Hub, epiforecasts-ensemble1 contains48

a model which estimates deaths from a convolution of cases, the model MIT_Crit_Data-GBCF takes 3-weeks lagged deaths and49

cases numbers as a part of the input, etc. Forecasting the number of deaths from a lagged case curve was one of our first50

approaches, but the diversity of situations encountered across the world and in time for a particular region makes it that this51

strategy fails in a number of cases. The relation between lagged cases and the number of deaths is sometimes quite unclear: for52

example, if we consider the evolution of the number of cases and deaths in Egypt in November-December 2021 that we show in53

Fig. S7, the number of cases is almost not changing while the number of death is increasing and then decreasing. There are54

many reasons why the relation between the number of cases might be more complicated, be non-stationary and potentially55

change relatively quickly: as the virus circulates it affects different groups in the population who are more or less fragile and56

who protect their senior more or less well, the testing and reporting policies of some countries have sometimes changed quite57

quickly (including reporting policies for deaths), there is an effect of the vaccination (which is however on a sufficiently slow58

timescale that it can be reestimated over time), there is the emergence of new variants, etc. Taking into account all of the59

above, we use the same strategy for the number of deaths forecasting as for cases, i.e. we estimate the trend based solely on60

the previous deaths observations and predict future numbers by the simple extrapolation.61

We provide a brief comparison of the performance of our strategy to forecast deaths (individually in the same way as cases)62

with a few methods from the European forecast Hub for 31 European countries in a similar way to what we did for cases. We63

identified two forecasting methods IEM_Health-CovidProject and RobertWalraven-ES, which were regularly submitting to the64
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European COVID forecast Hub apart from EuroCOVIDhub-ensemble and EuroCOVIDhub-baseline. The results demonstrate65

that for 1-week ahead forecast our methodology obtains levels of performance comparable to those of other methods submitted66

to EU COVID Forecast Hub: on Fig. S8, S10 and Fig. S9, S11 one can see that mean absolute error (MAE) and WIS normalized67

by the respective errors of the EU COVID hub baseline of our method (SDSC_ICG) are aligned with the other methods.68

B. Raw data preprocessing69

In this section, we describe the preliminary data cleaning steps and smoothing for the daily cases and deaths.70

Negative values. When a negative count is reported following a reassessment of previously reported cases or deaths, we
substitute the negative value with the estimate xt computed from the daily observations a week before multiplied by the growth
factor computed from two weekly observations: during a week before and two weeks before the negative value had occurred, i.e.
with

xt
Xt−1

Xt−8

where xt and Xt =
∑6

k=0 xt−k are daily and weekly observations respectively. Next we reduce the counts in the whole previous71

history by a constant multiplicative factor c to match the cumulative counts obtained by removing this negative quantity from72

the cumulative counts. That is we compute c = (
∑t

s=0 xt)/(
∑t−1

s=0 xt) and xt is updated to xt ← c xt. For the case of large and73

significantly delayed reports or reassessment leading symmetrically to a large positive spike in the data, this is ignored at this74

stage, and will be addressed by the trend-estimation method.75

Identifying last missing daily reports. One of the difficulties with the data sources that we are using is that no distinction is76

made between a missing report and an existing report stating that no new cases should be reported on a given day: in both77

cases the database contains a zero. This is of course because, in practice, there is often no distinction made in the reporting78

protocols. It is however important for our models to be able to distinguish between these two situations. To distinguish missing79

values from actual zeros, we proceed as follows: if the last observation in the data is zero, we compute an estimate of the80

Poisson rate by taking the average of observations during the week before zero occurs. If the probability of observing zero new81

cases given this estimated rate is too low, we consider the zero value to be a missing report one and exclude it from the history82

for further trend estimation and forecasting. The forecasting starts from the next day from the last initial observation.83

Imputations. Many countries have seasonal patterns in which no data is reported on certain days, typically during the weekend,84

and where all the new cases that appeared during these days are reported all together on the next reporting day (typically a85

Monday). We use as a preprocessing a simpler imputation scheme, which consists in reassigning the data declared on that last86

day uniformly over the previous days of missing report and the following reporting day.87

C. Details of the piecewise STL algorithm88

Since the seasonal pattern might evolve over time due to changes in the reporting pattern we propose to apply STL in a
piecewise fashion. This allows our method to better adapt to changes in the seasonal component, as the hyperparameters
defining the smoothing levels can then change in each separate segment modelled. To estimate the trend locally in the whole
period of observations, we split the observed time interval into half-overlapping intervals of 6 weeks. These time intervals are
defined from the end of the time series backwards, so that the time series ends with the last segment of 6 months.
First, we apply STL to estimate the trend of the last subinterval [T − L + 1, T ], where L = 42 (corresponding to 4 weeks). For
the last subinterval, the STL trend is rescaled to preserve the number of observations in the last L/2 days to obtain the estimate
s−1 in [T − L + 1, T ]. Next, the trend estimation proceeds as follows. For the two overlapping subintervals, e.g. consider
[T −L + 1, T ] and [T − 3L/2 + 1, T −L/2], we take the estimate s−1 and we estimate the trend s̃ in [T − 3L/2 + 1, T −L/2]. In
order to smoothly join two local trends s−1 and s̃−2 in the interval [T −L + 1, T −L/2] we use a simple weighted interpolation
and obtain the trend in [T − 3L/2 + 1, T ] :

s−2(t0 + τ) =


s̃(t0 + τ), τ = −L/2 + 1, . . . , 0,

σ(τ) s̃(t0 + τ) + (1− σ(τ)) s−1(t0 + τ), τ = 1, . . . , L/2,

s−1(t0 + τ), τ = L/2 + 1, . . . , L,

where t0 = T − L + 1, and σ(τ) = (1 + exp(a(τ − 1)− b))−1 with a = 21.1/L, b = 5.46. We additionally apply rescaling to89

redistribute the possible outliers, removed by trend estimation: we compare the sum of the numbers so far estimated by the90

trend, e.g. S−2 =
∑3L/2−1

i=0 s̃−2(T − i), with the corresponding number of raw daily observations κ−2 =
∑3L/2−1

i=0 xT −i: if the91

excess κ−2 − S−2 is positive, it is added to the observations before T − 3L/2 + 1 by rescaling, otherwise the trend is rescaled92

such that the sum of estimated numbers meets κ−2. The procedure continues with the next local trend estimate (s̃) from93

the corrected data. Note that κ is always computed from raw observations. Local trend estimation with rescaling repeats94

backward until we reach the beginning of the time interval. As a result, we get a smooth trend, the sum of which is equal to95

the sum of raw daily observations.96
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D. Outlier detection scheme97

One of the criteria for the inclusion of a country into our main evaluation set is that there are not too many large delayed reports.98

We assimilate these as outliers and use a simple estimate for each time series of the number of outliers. The corresponding outlier99

detection scheme is based on the Median Absolute Deviation (MAD), which is defined as MAD = median(|xi−median(xi)|) for100

daily observations xi. For each country, we detect outliers using a sliding window MAD estimate. More precisely, for each daily101

value, we compute the MAD in a symmetric window of 22 days around that day. For the MAD to be a consistent estimator for102

the standard deviation, we multiply it by a constant scale factor of 1.4826, which relates the MAD to the standard deviation103

for a Gaussian distribution. If the daily value differs from the median in the window by more than 2 standard deviations, we104

consider it as an outlier. Note that this procedure is only used for the construction of the set of countries in the evaluation set,105

and not for the trend estimation or forecast.106

E. Total Coverage107

We define the total coverage of a probabilistic forecast P the sum over all levels considered of the coverage of the intervals
[qk, q2K+2−k] as defined in (1):

C(P, A, ξ) =
K∑

k=1

1{qk ≤ ξ ≤ q2K+2−k},

where 1{·} is 1 if the condition is satisfied and zero otherwise. We the define the mean total coverage as

MC = 1
T

T∑
t=1

C(Pt, A, Xt),

where Xt are the weekly total number of cases/deaths.108

F. Growth rate analysis109

To be able to estimate the growth rate of the trend, we first compute an independent estimate of the trend using cubic B-splines110

on the weekly data and next compute the growth rate as the slope of the trend normalized by the trend value. To aggregate111

AE values for different countries, we use the MAPE (the mean of AE(Ft)/Xt) on the weekly forecasts in the evaluation period112

instead of the MAE, to bring the errors for each country on a comparable scale. Given that the growth rate as a measure113

of the slope is comparable across countries, we pool the data from all countries to obtain Fig. S4. The baseline performs114

best when there are no changes in the number of cases/deaths (i.e., the growth rate of 0 or constant trend). However, our115

method outperforms the baseline predictor as soon as the growth rate is larger than 3% in absolute value, which shows that116

the proposed forecast is informative as soon as the trend is not flat.117
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Fig. S1. Histograms for the MAE (in x-axis) based on 1 week ahead cases forecasts for 31 European countries
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Fig. S2. Histograms for the MAE (in x-axis) based on 2 week ahead cases forecasts for 31 European countries
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Fig. S3. Histograms for the average WIS (in x-axis) based on 2 week ahead cases forecasts for 31 European countries
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Fig. S4. Dependence of the error on the relative slope of the trend: Median (solid line) and interquartiles (shaded region) over all countries (this excludes 11 countries with
more than 90% of zero daily observations: Marshall Islands, Grenada, Vanuatu, Tanzania, Fiji, Saint Kitts and Nevis, Micronesia, Samoa, the Holy See, Solomon Islands, Laos)
of the MAPE of each forecasting algorithm (blue: baseline, orange: proposed forecast) as a function of the growth rate (aka relative slope) of the trend. Since the baseline
assumes zero slope it has lower median error when the absolute growth rate is less than 3%, but larger median error otherwise.
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Fig. S6. Evaluation scores for the 101 countries, corresponding to the countries not included in the list of 80 countries considered in Section that have more than 10% of
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Fig. S7. Cases in (a) and deaths numbers in (b) in Egypt in the end of 2021: the growth and decrease of death numbers is not preceeded by the similar behavior in the cases.
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Fig. S8. Histograms for the MAE (in x-axis) based on 1 week ahead deaths forecasts for 31 European countries
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Fig. S9. Histograms for the average WIS (in x-axis) based on 1 week ahead deaths forecasts for 31 European countries
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Fig. S10. Histograms for the MAE (in x-axis) based on 2 week ahead deaths forecasts for 31 European countries
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Fig. S11. Histograms for the average WIS (in x-axis) based on 2 week ahead deaths forecasts for 31 European countries
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Fig. S12. Confidence intervals for Germany for one week ahead prediction obtained on January 14, 2022. The upper subplot demonstrates the forecast together with the
predictive intervals; additional spline smoothing is applied for each confidence level to smooth the quantiles in time. Lower plot shows the estimated quantiles for the weekly
number.
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Fig. S13. Confidence intervals for Poland for one week ahead prediction obtained on January 14, 2022. The upper subplot demonstrates the forecast together with the
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number.
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Fig. S14. Confidence intervals for Switzerland for two weeks ahead prediction obtained on January 14, 2022. The upper subplot demonstrates the forecast together with the
predictive intervals; additional spline smoothing is applied for each confidence level to smooth the quantiles in time. Lower plot shows the estimated quantiles for weekly
numbers of the second forecasted week.
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country EUHub-ens IEM_Health ILM MUNI RW USC SDSC_ISG

Austria 0.71 1.05 0.79 0.82 1.05 0.64 0.70
Belgium 0.81 1.11 0.85 1.09 1.33 0.77 1.49
Bulgaria 0.77 1.34 1.14 0.53 1.13 0.80 0.79
Croatia 0.70 1.16 0.94 0.72 0.94 0.83 0.61
Cyprus 0.85 0.77 2.28 0.93 1.13 0.99 0.81
Czechia 0.65 0.89 0.74 0.75 1.02 0.61 0.62
Denmark 0.74 0.76 0.98 0.94 1.00 0.89 0.64
Estonia 0.88 0.85 1.16 1.02 1.06 1.24 0.81
Finland 0.84 0.82 1.02 1.10 1.18 1.17 0.80
France 0.61 0.70 0.73 0.78 0.93 0.66 0.54
Germany 0.60 1.19 0.65 0.78 0.89 0.74 0.69
Greece 0.96 1.44 1.46 0.84 1.34 1.47 0.94
Hungary 0.66 1.06 0.79 0.58 1.10 0.65 0.64
Iceland 0.65 0.43 2.18 0.90 0.57 0.72 0.79
Ireland 1.25 1.45 1.98 1.27 1.40 1.20 1.31
Italy 0.52 0.63 0.60 0.38 1.08 0.69 0.47
Latvia 0.86 0.99 1.04 1.00 1.07 0.68 0.73
Liechtenstein 0.71 1.12 1.52 0.86 0.83 1.24 0.95
Lithuania 0.64 0.84 1.13 0.48 0.92 0.98 0.64
Luxembourg 0.89 1.14 1.24 1.06 1.16 1.37 1.07
Malta 1.10 1.52 5.11 0.74 1.21 1.45 1.20
Netherlands 0.69 0.81 1.09 0.56 1.07 1.00 0.84
Norway 0.70 0.71 0.86 0.62 1.06 0.94 0.54
Poland 0.49 0.92 0.64 0.29 1.00 0.73 0.53
Portugal 0.70 0.79 0.97 0.93 1.04 1.01 0.63
Romania 0.55 0.97 0.57 0.33 0.93 0.44 0.52
Slovakia 0.70 0.81 0.67 0.67 0.91 0.79 0.77
Slovenia 0.79 1.25 1.18 0.48 1.13 1.06 0.59
Spain 0.79 0.96 0.98 0.98 0.90 0.99 0.60
Sweden 0.87 1.00 0.90 1.24 0.86 0.69 0.66
Switzerland 0.67 0.67 0.81 0.89 0.95 0.72 0.70

ranks best in 4 2 1 10 0 5 9
in top 2 15 5 2 13 2 7 18
in top 3 28 8 3 16 4 9 25
in top 4 31 14 8 20 6 16 29

Table S1. One week ahead forecast AE normalized by the EuroCovidhub_baseline AE. The values, which are highlighted in bold and orange
color, correspond to the best performance. The lower part of the table reports for each method the number of countries for which its forecast
is best, or in the top 2, 3 or 4 best performing methods.
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country EUHub-ens IEM_Health ILM MUNI RW USC SDSC_ISG

Austria 0.55 0.99 0.54 0.78 1.06 0.61 0.54
Belgium 0.61 0.92 0.64 0.97 1.30 0.79 1.21
Bulgaria 0.57 1.11 0.88 0.45 1.06 0.80 0.66
Croatia 0.58 0.83 0.73 0.56 0.81 0.85 0.58
Cyprus 0.66 0.77 2.19 0.83 1.11 1.04 0.59
Czechia 0.49 0.67 0.58 0.68 1.11 0.46 0.45
Denmark 0.59 0.69 0.77 0.84 1.08 0.99 0.50
Estonia 0.77 0.73 0.88 1.03 1.07 1.03 0.77
Finland 0.64 0.59 0.73 1.01 1.22 1.32 0.64
France 0.45 0.60 0.65 0.65 1.00 0.76 0.47
Germany 0.46 0.86 0.38 0.57 0.77 0.68 0.47
Greece 0.76 1.18 1.15 0.69 1.39 1.38 0.86
Hungary 0.50 0.90 0.54 0.47 1.14 0.61 0.54
Iceland 0.73 1.30 1.42 0.57 0.38 1.41 1.22
Ireland 1.03 1.17 1.64 1.10 1.38 1.37 1.25
Italy 0.41 0.64 0.51 0.31 1.09 0.98 0.39
Latvia 0.62 0.73 0.69 0.96 0.94 0.58 0.54
Liechtenstein 0.68 0.81 1.09 0.65 0.83 1.24 0.73
Lithuania 0.49 0.72 0.95 0.43 0.98 0.98 0.61
Luxembourg 0.73 1.27 1.21 0.96 1.39 1.58 1.12
Malta 0.82 1.75 5.07 0.58 1.37 1.75 1.31
Netherlands 0.55 0.85 1.11 0.55 1.15 0.82 0.83
Norway 0.55 0.57 0.64 0.47 0.99 0.84 0.35
Poland 0.35 0.69 0.40 0.23 0.91 0.57 0.42
Portugal 0.57 0.64 0.73 1.05 1.08 1.23 0.62
Romania 0.36 0.81 0.36 0.25 0.86 0.38 0.34
Slovakia 0.54 0.57 0.47 0.60 0.87 0.75 0.61
Slovenia 0.64 0.95 0.91 0.37 1.13 0.88 0.54
Spain 0.70 0.97 1.27 1.15 1.13 1.22 0.52
Sweden 0.78 1.01 0.80 1.39 0.90 0.90 0.62
Switzerland 0.53 0.66 0.65 0.81 1.09 0.78 0.55

ranks best in 7 2 2 11 1 0 8
in top 2 21 2 4 16 1 2 16
in top 3 31 9 7 16 1 4 25
in top 4 31 14 19 20 3 8 29

Table S2. One week ahead forecast WIS normalized by the EuroCovidhub_baseline WIS. The values, which are highlighted in bold and orange
color, correspond to the best performance. The lower part of the table reports for each method the number of countries for which its forecast
is best, or in the top 2, 3 or 4 best performing methods.
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country EUHub-ens IEM_Health ILM MUNI RW USC SDSC_ISG

Austria 0.81 1.49 1.43 0.60 1.00 0.56 0.93
Belgium 0.74 1.45 1.31 1.21 1.21 0.91 1.23
Bulgaria 0.95 1.59 1.68 0.62 1.05 0.87 1.04
Croatia 0.88 1.66 1.56 0.74 0.98 0.94 0.92
Cyprus 1.04 0.88 3.69 0.78 1.13 0.91 0.94
Czechia 0.99 1.00 1.65 0.71 0.89 1.24 0.68
Denmark 0.69 0.86 1.30 1.04 1.00 0.97 0.65
Estonia 0.82 0.82 1.32 0.92 0.97 1.33 0.88
Finland 0.88 0.91 1.23 1.11 1.35 1.20 0.90
France 0.64 0.86 1.36 0.78 0.96 0.78 0.64
Germany 0.78 1.49 1.16 0.79 0.87 0.56 0.76
Greece 1.34 1.71 1.96 0.90 1.43 1.44 1.15
Hungary 0.99 1.57 1.52 0.74 1.03 0.69 0.71
Iceland 0.47 0.41 2.73 1.00 0.95 0.92 1.00
Ireland 1.51 1.78 3.32 1.35 1.48 1.43 1.58
Italy 0.54 0.77 0.99 0.56 1.07 0.77 0.56
Latvia 0.92 1.25 1.32 0.99 0.93 0.62 0.79
Liechtenstein 0.85 1.75 1.38 0.96 0.91 1.77 1.01
Lithuania 0.61 1.03 1.51 0.52 0.91 0.92 0.78
Luxembourg 0.85 1.07 1.03 1.05 1.10 2.09 1.04
Malta 1.67 1.90 9.98 0.77 1.13 1.69 1.40
Netherlands 1.28 0.89 3.01 0.86 1.04 1.05 0.89
Norway 0.85 0.93 1.12 0.69 1.09 1.43 0.66
Poland 0.79 1.29 1.37 0.43 1.01 1.03 0.49
Portugal 0.82 0.91 1.31 0.97 1.08 1.07 0.74
Romania 0.73 1.28 1.11 0.52 0.86 0.46 0.71
Slovakia 0.54 0.63 0.56 0.62 0.88 0.66 0.71
Slovenia 1.15 1.56 1.70 0.58 1.08 1.66 0.92
Spain 1.00 1.11 1.70 0.96 0.94 1.10 0.82
Sweden 0.77 1.04 0.85 1.19 0.84 0.60 0.61
Switzerland 0.67 1.02 1.19 0.91 1.01 0.82 0.71

ranks best in 8 2 0 10 0 6 5
in top 2 14 3 2 14 3 9 17
in top 3 22 7 2 19 7 13 23
in top 4 29 10 2 27 14 15 27

Table S3. Two week ahead forecast AE normalized by the EuroCovidhub_baseline AE. The values, which are highlighted in bold and orange
color, correspond to the best performance. The lower part of the table reports for each method the number of countries for which its forecast
is best, or in the top 2, 3 or 4 best performing methods.
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country EUHub-ens IEM_Health ILM MUNI RW USC SDSC_ISG

Austria 0.61 1.44 1.03 0.45 1.10 0.53 0.69
Belgium 0.61 1.27 1.03 1.10 1.33 1.01 1.09
Bulgaria 0.73 1.49 1.46 0.50 1.12 0.92 1.02
Croatia 0.67 1.22 1.15 0.53 0.89 0.92 0.88
Cyprus 0.84 1.03 3.83 0.69 1.21 1.10 0.81
Czechia 0.81 0.83 1.41 0.67 1.04 0.84 0.66
Denmark 0.58 0.84 1.07 0.94 1.20 1.06 0.63
Estonia 0.75 0.80 1.10 0.94 1.08 1.02 0.98
Finland 0.75 0.76 1.07 1.04 1.56 1.50 0.84
France 0.54 0.83 1.37 0.73 1.20 1.01 0.59
Germany 0.57 1.20 0.73 0.59 0.85 0.55 0.59
Greece 0.98 1.53 1.70 0.73 1.63 1.49 1.14
Hungary 0.77 1.51 1.13 0.54 1.18 0.68 0.58
Iceland 0.81 1.52 1.94 0.55 0.52 1.63 1.03
Ireland 1.37 1.81 3.44 1.17 1.58 1.97 1.40
Italy 0.51 0.85 0.90 0.44 1.23 1.15 0.61
Latvia 0.73 1.07 1.00 0.98 0.85 0.59 0.60
Liechtenstein 0.78 1.49 1.06 0.72 0.99 1.93 0.77
Lithuania 0.52 0.97 1.36 0.52 1.06 0.98 0.91
Luxembourg 0.84 1.30 1.19 1.01 1.42 2.28 1.41
Malta 1.25 2.33 10.50 0.69 1.37 2.36 1.33
Netherlands 1.24 1.00 3.10 0.80 1.20 0.93 1.02
Norway 0.69 0.83 0.87 0.52 1.11 1.31 0.48
Poland 0.59 1.13 1.04 0.31 1.10 0.74 0.41
Portugal 0.69 0.83 1.14 1.11 1.28 1.47 0.73
Romania 0.52 1.21 0.79 0.39 0.82 0.40 0.50
Slovakia 0.37 0.46 0.36 0.45 0.88 0.61 0.49
Slovenia 0.94 1.30 1.34 0.42 1.16 1.35 0.83
Spain 0.93 1.19 2.34 1.09 1.28 1.41 0.89
Sweden 0.69 1.06 0.70 1.31 0.80 0.77 0.67
Switzerland 0.55 1.08 0.98 0.80 1.27 1.05 0.57

ranks best in 8 0 1 15 1 2 4
in top 2 19 2 1 19 1 6 14
in top 3 28 5 4 25 1 8 22
in top 4 30 14 5 28 7 11 29

Table S4. Two week ahead forecast WIS normalized by the EuroCovidhub_baseline WIS. The values, which are highlighted in bold and orange
color, correspond to the best performance. The lower part of the table reports for each method the number of countries for which its forecast
is best, or in the top 2, 3 or 4 best performing methods.
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