

Figure S1. (A) Example of raw spike trains: electrical signal is shown after the high-3 pass filter was applied. Examples of single trials, representing neural response of the 4 unit to numerosity 5 (left column), irrespective of the stimulus appearance (top: 5 radius-fixed, middle: area-fixed, bottom: perimeter-fixed). Note the decreasing neural 6 7 response to the numerosity 1 (right column). (B) The PCA clustering of the corresponding recording with waveforms of different units shown by different colours. 8 The waveforms of the number-responsive unit are shown in orange, unsorted 9 waveforms shown (C) Spike waveforms of corresponding 10 are in grey. 11 units isolated from the recording of one electrode.

- 12
- 13
- 14

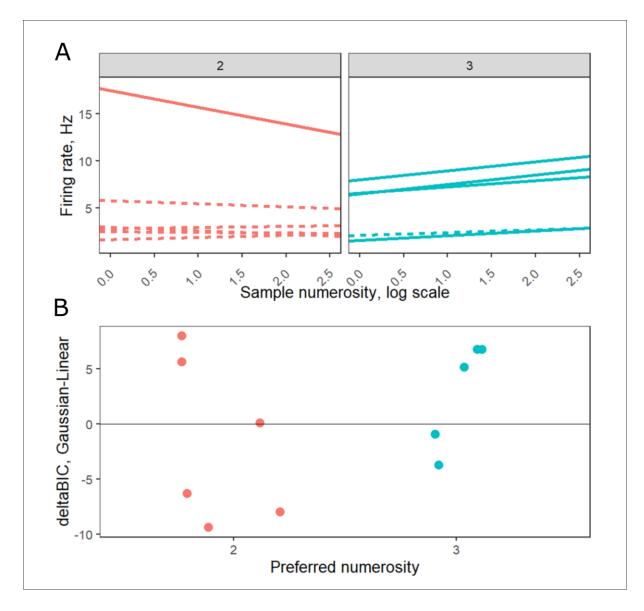


Figure S2. All numerosity-responsive neurons significantly (p<0.01) changed their 18 firing rate in response to numerical stimuli, which was revealed by ANOVA with 19 "numerosity" 20 as а factor. lf these neurons would be monotonically increasing/decreasing their firing rate with numerosity (according to the summation 21 coding), we would expect their firing rate to be best explained by a linear model (the 22 23 linear regression applied to the neural response of these neurons should be highly significant). This, however, is not the case for most neurons. (A) Linear regression 24 lines applied to the raw neural responses of the neurons tuned to numerosity 2 (red) 25

26 and 3 (blue). Solid lines – significant (p<0.01) decrease/increase of the firing rate with numerosity; dashed lines - non-significant regression. Please note that out of 11 27 number neurons, only 5 showed significant (p<0.01) decrease/increase of their firing 28 29 rate with numerosity (solid lines). Out of these 5 cases, 4 belong to the neurons tuned to numerosity 3, which do have very broad and positively skewed tuning 30 curves. Also note that among the 6 neurons that were tuned to numerosity 2, only 1 31 neuron has a significant linear decrease in the firing rate. Thus, the majority of the 32 data does not follow this prediction of the summation coding theory. (B) ΔBIC 33 34 (difference between Bayesian information criterion of a Gaussian fit and the linear regression) is plotted for neurons preferentially responding to numerosity 2 (red) and 35 3 (blue). If Δ BIC is lower than 0, the BIC for the Gaussian fit is smaller than for the 36 linear fit and, hence, the corresponding unit response is better described by a bell-37 shaped behaviour according to a labeled-line code hypothesis. This analysis 38 revealed that only for 5 out of 11 neurons there is a strong preference for the linear 39 40 fit (suggesting monotonic coding). Thus, also in this case, while some of the neurons in our datasets seem to follow the linear fit, supporting the monotonic coding, this 41 does not apply to the entirety or even the majority of our neurons. 42

43

44

- 45
- 46
- 47

Table S1. Summary of the two-way ANOVA for every recorded unit. Unit: id of the recorded unit. Preferred numerosity: numerosity stimulus that elicited the strongest response in the corresponding unit. ANOVA results (F-statistics and p-value) are summarized for the factor "Stimulus type" (radius-fixed, area-fixed, perimeter-fixed), "Numerosity" (numerosity "one" to "five"), or interaction between them.

Unit	Preferred	ANOVA (Firing rate ~ Stimulus type * Numerosity)					
Unit	numerosity	Numerosity	Stimulus type	Interaction			
1	num1	F(4,546)=4.0327, p = 0.003	F(2,546)=0.5228, p = 0.593	F(8,546)=1.4242, p = 0.183			
2	num1	F(4,197)=3.5672, p = 0.008	F(2,197)=0.4656, p = 0.628	F(8,197)=0.8763, p = 0.537			
3	num1	F(4,202)=4.0268, p = 0.004	F(2,202)=1.7732, p = 0.172	F(8,202)=1.1967, p = 0.303			
4	num1	F(4,565)=4.2588, p = 0.002	F(2,565)=0.0012, p = 0.999	F(8,565)=0.7852, p = 0.616			
5	num1	F(4,270)=5.3565, p = 0	F(2,270)=1.2038, p = 0.302	F(8,270)=0.9519, p = 0.474			
6	num1	F(4,270)=5.4507, p = 0	F(2,270)=0.0475, p = 0.954	F(8,270)=0.7056, p = 0.687			
7	num1	F(4,239)=3.7861, p = 0.005	F(2,239)=0.4114, p = 0.663	F(8,239)=1.6597, p = 0.109			
8	num1	F(4,419)=4.9175, p = 0.001	F(2,419)=1.0111, p = 0.365	F(8,419)=1.0988, p = 0.363			
9	num1	F(4,399)=7.4226, p = 0	F(2,399)=2.8675, p = 0.058	F(8,399)=2.1769, p = 0.028			
10	num1	F(4,366)=4.2597, p = 0.002	F(2,366)=0.9588, p = 0.384	F(8,366)=1.4233, p = 0.185			
11	num1	F(4,364)=6.4075, p = 0	F(2,364)=0.2249, p = 0.799	F(8,364)=1.2606, p = 0.263			
12	num1	F(4,490)=3.9053, p = 0.004	F(2,490)=1.1902, p = 0.305	F(8,490)=0.6286, p = 0.754			
13	num1	F(4,251)=5.7273, p = 0	F(2,251)=0.9275, p = 0.396	F(8,251)=1.2411, p = 0.273			
14	num1	F(4,186)=3.5545, p = 0.008	F(2,186)=1.1998, p = 0.304	F(8,186)=0.6334, p = 0.749			
15	num1	F(4,233)=4.4063, p = 0.002	F(2,233)=1.138, p = 0.322	F(8,233)=0.3761, p = 0.933			
16	num1	F(4,316)=3.6533, p = 0.006	F(2,316)=1.4135, p = 0.245	F(8,316)=0.8235, p = 0.582			
17	num2	F(4,177)=4.5348, p = 0.002	F(2,177)=0.2742, p = 0.761	F(8,177)=0.6772, p = 0.711			
18	num2	F(4,176)=4.1623, p = 0.003	F(2,176)=0.8853, p = 0.414	F(8,176)=0.8814, p = 0.533			
19	num2	F(4,147)=3.6633, p = 0.007	F(2,147)=0.929, p = 0.397	F(8,147)=0.5183, p = 0.841			
20	num2	F(4,145)=3.7461, p = 0.006	F(2,145)=0.514, p = 0.599	F(8,145)=0.5375, p = 0.827			
21	num2	F(4,298)=3.4934, p = 0.008	F(2,298)=0.7184, p = 0.488	F(8,298)=1.0979, p = 0.364			
22	num2	F(4,253)=3.5881, p = 0.007	F(2,253)=0.2355, p = 0.79	F(8,253)=0.454, p = 0.887			
23	num3	F(4,213)=3.4856, p = 0.009	F(2,213)=0.6473, p = 0.524	F(8,213)=0.5014, p = 0.854			
24	num3	F(4,184)=3.6183, p = 0.007	F(2,184)=0.5629, p = 0.571	F(8,184)=0.6608, p = 0.725			

25	num3	F(4,472)=5.1242, p = 0	F(2,472)=2.8061, p = 0.062	F(8,472)=0.809, p = 0.595
26	num3	F(4,410)=3.7563, p = 0.005	F(2,410)=4.5228, p = 0.011	F(8,410)=1.3146, p = 0.233
27	num3	F(4,496)=5.8789, p = 0	F(2,496)=0.1179, p = 0.889	F(8,496)=1.4538, p = 0.173
28	num4	F(4,176)=3.926, p = 0.004	F(2,176)=1.1196, p = 0.329	F(8,176)=0.6298, p = 0.752
29	num4	F(4,178)=3.9175, p = 0.004	F(2,178)=0.4244, p = 0.655	F(8,178)=0.6897, p = 0.7
30	num4	F(4,267)=4.5852, p = 0.001	F(2,267)=0.6043, p = 0.547	F(8,267)=0.8609, p = 0.55
31	num4	F(4,371)=3.6503, p = 0.006	F(2,371)=1.9928, p = 0.138	F(8,371)=0.5894, p = 0.787
32	num4	F(4,430)=3.4615, p = 0.008	F(2,430)=0.3739, p = 0.688	F(8,430)=0.513, p = 0.847
33	num4	F(4,420)=4.4972, p = 0.001	F(2,420)=1.1432, p = 0.32	F(8,420)=1.1135, p = 0.353
34	num4	F(4,459)=6.5488, p = 0	F(2,459)=2.8234, p = 0.06	F(8,459)=1.3186, p = 0.232
35	num4	F(4,333)=3.4399, p = 0.009	F(2,333)=3.3226, p = 0.037	F(8,333)=1.5331, p = 0.145
36	num4	F(4,308)=4.2385, p = 0.002	F(2,308)=0.1141, p = 0.892	F(8,308)=0.9124, p = 0.506
37	num5	F(4,323)=5.0184, p = 0.001	F(2,323)=1.9782, p = 0.14	F(8,323)=0.3722, p = 0.935
38	num5	F(4,188)=3.5707, p = 0.008	F(2,188)=1.1655, p = 0.314	F(8,188)=0.5456, p = 0.821
39	num5	F(4,307)=5.1489, p = 0	F(2,307)=0.0322, p = 0.968	F(8,307)=0.4935, p = 0.861
40	num5	F(4,260)=5.1953, p = 0	F(2,260)=0.945, p = 0.39	F(8,260)=0.682, p = 0.707
41	num5	F(4,234)=4.65, p = 0.001	F(2,234)=0.7971, p = 0.452	F(8,234)=0.8709, p = 0.542
42	num5	F(4,232)=3.7216, p = 0.006	F(2,232)=0.0802, p = 0.923	F(8,232)=1.3969, p = 0.199
43	num5	F(4,484)=3.6509, p = 0.006	F(2,484)=0.1205, p = 0.887	F(8,484)=0.7686, p = 0.631
44	num5	F(4,458)=12.8202, p = 0	F(2,458)=0.7574, p = 0.469	F(8,458)=0.4219, p = 0.908
45	num5	F(4,192)=4.4432, p = 0.002	F(2,192)=2.0198, p = 0.135	F(8,192)=1.8229, p = 0.075
46	num5	F(4,415)=3.8044, p = 0.005	F(2,415)=1.618, p = 0.2	F(8,415)=0.5316, p = 0.832
47	num5	F(4,685)=14.1207, p = 0	F(2,685)=1.9687, p = 0.141	F(8,685)=1.4958, p = 0.156
48	num5	F(4,371)=6.7422, p = 0	F(2,371)=0.6683, p = 0.513	F(8,371)=1.6257, p = 0.115
49	num5	F(4,359)=4.1619, p = 0.003	F(2,359)=0.1355, p = 0.873	F(8,359)=0.4252, p = 0.906
50	num5	F(4,355)=13.4938, p = 0	F(2,355)=1.832, p = 0.162	F(8,355)=0.3219, p = 0.958
51	num5	F(4,354)=6.4972, p = 0	F(2,354)=0.6433, p = 0.526	F(8,354)=0.9821, p = 0.45
52	num5	F(4,288)=3.3897, p = 0.01	F(2,288)=2.1069, p = 0.123	F(8,288)=1.2445, p = 0.273
53	num5	F(4,460)=5.4865, p = 0	F(2,460)=1.4027, p = 0.247	F(8,460)=0.7622, p = 0.636

- 57 Table S2. The post hoc analysis of the two-way ANOVA based on the Tukey-Kramer
- 58 method summarising p-values for every pairwise comparison between the most-
- 59 preferred and other numerosities. Significant p-values <0.05 are highlighted in bold.

	Preferred	d Post hoc analysis, p-value				
Unit	numerosity	num1	num2	num3	num4	num5
1	num1		0.016	0.022	0.019	0.007
2	num1		0.081	0.019	0.011	0.021
3	num1		0.988	0.903	0.303	0.003
4	num1		0.974	0.315	0.002	0.209
5	num1		0.890	0.650	0.000	0.027
6	num1		0.176	0.063	0.001	0.001
7	num1		0.035	0.048	0.006	0.020
8	num1		0.031	0.001	0.001	0.023
9	num1		0.788	0.174	0.000	0.000
10	num1		0.465	0.002	0.009	0.169
11	num1		0.033	0.000	0.000	0.001
12	num1		0.036	0.013	0.090	0.004
13	num1		0.221	0.120	0.001	0.000
14	num1		0.147	0.142	0.061	0.004
15	num1		0.031	0.002	0.084	0.004
16	num1		0.304	0.048	0.008	0.014
17	num2	0.447		0.986	0.362	0.001
18	num2	0.001		0.027	0.025	0.206
19	num2	0.023		0.945	0.065	0.063
20	num2	0.013		0.017	0.826	0.608
21	num2	0.973		0.181	0.125	0.011
22	num2	0.040		0.312	0.075	0.004
23	num3	0.005	0.807		0.760	0.123
24	num3	0.006	0.094		0.504	0.899
25	num3	0.001	0.913		0.998	0.796
26	num3	0.005	0.059		0.370	0.857
27	num3	0.000	0.024		0.798	0.683
28	num4	0.003	0.282	0.120		0.016
29	num4	0.020	0.051	0.213		0.999
30	num4	0.710	0.001	0.028		0.103
31	num4	0.007	0.369	0.813		0.998
32	num4	0.059	0.059	0.936		0.999
33	num4	0.065	0.007	0.864		1.000
34	num4	0.000	0.092	0.419		0.968
35	num4	0.004	0.628	0.616		0.850
36	num4	0.003	0.194	0.981		0.928
37	num5	0.002	0.002	0.007	0.054	
38	num5	0.022	0.287	0.995	0.999	
39	num5	0.000	0.148	0.653	0.803	

40	num5	0.000	0.026	0.525	0.214	
41	num5	0.001	0.021	0.226	0.012	
42	num5	0.008	0.150	0.010	0.431	
43	num5	0.004	0.097	0.111	0.725	
44	num5	0.000	0.000	0.750	0.851	
45	num5	0.015	0.032	0.001	0.080	
46	num5	0.070	0.002	0.428	0.069	
47	num5	0.000	0.000	0.016	0.868	
48	num5	0.000	0.003	0.251	0.901	
49	num5	0.003	0.394	0.940	0.997	
50	num5	0.000	0.000	0.034	0.078	
51	num5	0.000	0.009	0.014	0.801	
52	num5	0.074	0.023	0.988	0.798	
53	num5	0.006	0.004	0.276	0.998	

60

61

62 Video S1

Examples of trials showing raw neural responses to numerosities 1 and 5. The firing rate increases in response to the most preferred numerosity 5 compared to the least preferred numerosity 1. The video-recordings of the corresponding trials show that the animal is observing the stimuli (shown on the right) with the contralateral (left) eye or with both eyes. The video is slowed down to 60% of the original speed.