
1

Supplementary Information for2

A hierarchy of linguistic predictions during natural language comprehension3

Micha Heilbron, Kristijan Armeni, Jan-Mathijs Schoffelen, Peter Hagoort & Floris P. de Lange4

Micha Heilbron5

E-mail: micha.heilbron@donders.ru.nl6

This PDF file includes:7

Supplementary text8

Figs. S1 to S209

Table S110

SI References11

Micha Heilbron, Kristijan Armeni, Jan-Mathijs Schoffelen, Peter Hagoort & Floris P. de Lange 1 of 26



Supporting Information Text12

A. Supplementary methods.13

A.1. Self-attentional language model. Contextual predictions were quantified using GPT-2 – a large, pre-trained language model14

(1). Formally, a language model can be cast as a way of assigning a probability to a sequence of words (or other symbols),15

(x1, x2, ..., xn). Because of the sequential nature of language, the joint probability, P (X) can, via the chain rule, be factorised16

as the product of conditional probabilities:17

P (X) = p(x1)× p(x2 | x1)× · · · × p(xn | xn−1, . . . , x1)

=
x∏

i=1

p (xn | x1, . . . , xn−1)
[1]18

Since the advent of neural language models, as opposed to statistical (Markov) models, methods to compute these conditional19

probabilities have strongly improved. Improvements have been especially striking in the past few years with the introduction of20

the Transformer (2) architecture, which allows efficient training of very large networks on large, diverse data. This resulted in21

models that dramatically improved the state-of-the art in language modelling on a range of domains.22

GPT-2 (1) is one of these large, transformer-based language models and is currently among the best publcicly re-23

leased models of English. The architecture of GPT-2 is based on the decoder-only version of the transformer. In a24

single forward pass, it takes a sequence of tokens U = (u1, . . . , uk) and computes a sequence of conditional probabilities,25

(p(u1), p(u2|u1), . . . , p(uk | u1, ..., uk−1)). Roughly, the full model (see Figure S1) consists of three steps: first, an embedding26

step encodes the sequence of symbolic tokens as a sequence of vectors which can be seen as the first hidden state ho. Then, a27

stack of transformer blocks, repeated n times, each apply a series of operations resulting in a new set of hidden states hl, for28

each block l. Finally, a (log-)softmax layer is applied to compute (log-)probabilities over target tokens. Formally, then, the29

model can be summarised in three equations:30

h0 = UWe + Wp [2]
hl = transformer_block (hl−1)∀i ∈ [1, n] [3]

P (u) = softmax
(
hnW T

e

)
, [4]

where We is the token embedding and Wp is the position embedding (see below).31

The most important component of the transformer-block is the masked multi-headed self-attention (Fig S1). The key32

operation is self-attention, a seq2seq operation turning a sequence of input vectors (x1, x2, . . . xk) into a sequence of output33

vectors (y1, y2, . . . , yk). Fundamentally, each output vector yi is a weighted average of the input vectors: yi =
∑k

j=1 wijxj .34

Critically, the weight wi,j is not a parameter but is derived from a function over input vectors xi and xj . The Transformer35

uses (scaled) dot product attention, meaning that the function is simply a dot product between the input vectors xT
i xj , passed36

through a softmax make sure that the weights sum to one, scaled by a constant determined by the dimensionality, 1√
dk

(to37

avoid the dot-products growing too large in magnitude): wij = (exp xT
i xj/

∑k

j=1
exp xT

i xj) 1√
dk

.38

In self-attention, then, each input xi is used in three ways. First, it is multiplied by the other vectors to derive the weights39

for its own output, yi (as the query). Second, it is multiplied by the other vectors to determine the weight for any other output40

yj (as the key). Finally, to compute the actual outputs it is used in the weighted sum (as the value). Different (learned) linear41

transformations are applied to the vectors in each of these use cases, resulting in the Query, Key and Value matrices (Q, K, V ).42

Putting this together, we arrive at the following:43

self_attention(Q, K, V ) = softmax
(

QKT

√
dk

)
V, [5]44

where dk is dimension of the keys/queries. In other words, self_attention simply computes a weighted sum of the values, where45

the weight of each value is determined by the dot-product similarity of the query with its key. Because the queries, keys and46

values are linear transformations of the same vectors, the input attends itself.47

To be used as a language model, two elements need to be added. First, the basic self-attention operation is not sensitive to48

the order of the vectors: if the order of the input vectors is permuted, the output vectors will be identical (but permuted). To49

make it position-sensitive, a position embedding Wp is simply added during the embedding step – see Equation 2. Second, to50

enforce that the model only uses information from one direction (i.e left), a mask is applied to the attention weights (before the51

softmax) which sets all elements above the diagonal to −∞. This makes the self-attention masked. To give the model more52

flexibility, each transformer block actually contains multiple instances of the basic self-attention mechanisms from Eq. (5).53

Each instance (each head) applies different linear transformations to turn the same input vectors into a different set of Q, K54

and V matrices, returning a different set of output vectors. The outputs of all heads are concatenated and then reduced to the55

initial dimensionality with a linear transformation. This makes the self-attention multi-headed.56

In total, GPT-2 (XL) contains n = 48 blocks, with 12 heads each; a dimensionality of d = 1600 and a context window of57

k = 1024, yielding a total 1.5× 109 parameters. We used the PyTorch implementation of GPT-2 provided by HuggingFace’s58

Transformers package (3).59
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A.2. Deriving word-by-word predictions from arbitrary-length texts. Passing the texts through Equations 2-4 results in a sequence of60

conditional (log-)probability distributions over tokens P (U), for each token. Since GPT-2 uses Byte-Pair Encoding, a token61

can be either punctuation or a word or (for less frequent words) a word-part. How many words actually fit into a context62

window of length k therefore depends on the text. For words spanning multiple tokens, we computed word probabilities simply63

as the joint probability of the tokens.64

Assuming that listeners’ expectations would to some extent ‘reset’ during the break, we passed the text for each run65

separately through GPT2. In the EEG experiment, the text of each run was shorter than 1024 tokens for each run, implying66

that word probabilities were conditional on all preceding words in the run (i.e. contexts up to 3 minutes long). In the MEG67

experiments, runs were considerably longer, and often contained more tokens than the context window size of 1024. For these68

texts, we used a windowed approach. For window-placement, we used the constraint that the windows had an overlap of69

at least 700 tokens, and that they could not start mid-sentence (ensuring that the first sentence of the window was always70

well-formed). As such, for each word wi we computed p(wi|context), where ‘context’ consisted either of all preceding words in71

the run, or of a sequence of prior words constituting a well-formed context that was at least 700 tokens long.72

A.3. Syntactic and semantic predictions. Feature-specific predictions were computed from the lexical prediction. To this end, we73

first truncated the unreliable tail from the distribution using a combination of top-k and nucleus truncation. The nucleus was74

defined as the "top" k tokens with the highest predicted probability, where k was set dynamically such that the cumulative75

probability was at least 0.9 – a criterion known to be effective at preserving the core of the prediction, while removing the less76

reliable tail of the distribution (4). To have enough information also for very low entropy cases (where k becomes small), we77

forced k to be a least 40.78

From this truncated distribution, we derived feature-specific predictions by analysing the predicted (top-k) words. For the79

part-of-speech predictions, we performed part of speech tagging on every potential sentence (i.e. the context plus the predicted80

word) with Spacy (5) to derive the probability distribution over parts-of-speech, from which the POS surprisal was calculated81

as the negative log probability of the POS of the presented word. In other words, for word n in the text, the POS surprisal is:82

log(P (POSn |context)) = log(
∑

q∈Q
P (w(n)

q |context)∑
i∈K

P (w(n)
i |context)

), [6]83

where Q is the range of predicted words with the same POS as the actually presented word n, and K is the range of the84

top-k most probable words in the distribution.85

For the semantic prediction, we took a weighted average of the glove embeddings of the predicted words to compute the86

expected vector: E[G(wn)] =
∑k

i=1 P (xi|context) G(xi), where G(xi) is the GloVe embedding for predicted word xi, where87

i ranges over the top-k words in the truncated distribution, and P (xi|context) is renormalized such that this truncated88

distribution sums to one. From this prediction, we computed the semantic prediction error as the cosine distance between the89

predicted and observed vector:90

PEsemantic = 1− E [G (wn)] G (wn)
‖E [G (wn)]‖ ‖G (wn)‖ . [7]91

Technically, this is a prediction error because it is defined as a distance, rather than as as a negative log probability.92

Conceptually however, there is no important difference: surprisal is a probabilistic measure of prediction error.93

A.4. Phonemic predictions. Phonemic predictions were formalised in the context of incremental word recognition (6, 7). This94

process can be cast as probabilistic prediction by assuming that brain is tracking the cohort of candidate words consistent with95

the phonemes so far, each word weighted by its prior probability. We compared two such models that differed only in the prior96

probability assigned to each word.97

The first model was the single-level or frequency-weighted model (Fig 6), in which prior probability of words was fixed and98

defined by a word’s overall probability of occurrence (i.e. lexical frequency). The probability of a specific phoneme (A), given99

the prior phonemes within a word, was then calculated using the statistical definition:100

P (ϕt = A | ϕ1:t−1) = f(Cϕt=A)
f(Cϕ1:t−1 ) . [8]101

Here, f(Cϕt=A) denotes the cumulative frequency of all words in the remaining cohort of candidate words if the next phoneme102

were A, and f(Cϕ(1:t−1)) denotes the cumulative frequency of all words in the prior cohort (equivalent to f(C) of all potential103

continuations). If a certain continuation did not exist and the cohort was empty, f(Cϕt=A) was assigned a laplacian pseudocount104

of 1. To efficiently compute Eq. (8) for every phoneme, we constructed a statistical phonetic dictionary as a digital tree that105

combined frequency information from SUBTLEX database and pronunciation from the CMU dictionary.106

The second model was equivalent to the first model, except that the prior probability of each word was not defined by its107

overall probability of occurrence, but by its conditional probability in that context (based on GPT-2). This was implemented108

by constructing a separate phonetic dictionary for every word, in which lexical frequencies were replaced by implied counts109

derived from the lexical prediction. We truncated the unreliable tail from the distribution and replaced that by a flat tail110

that assigned each word a pseudocount of 1. Since all counts in the tail are 1, the cumulative implied counts of the nucleus111
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is complementary to the the length of the tail, which is simply the difference between the vocabulary size and nucleus size112

(V − k). As such a little algebra reveals:113

freqsn = Ptr(w(i)|context) V − k

1−
∑k

j=1 P (w(i)
j |context)

, [9]114

where Ptr(w(i)|context) is the trunctated lexical prediction, and P (w(i)
j |context) is predicted probability that word i in the115

text is word j in the sorted vocabulary.116

Although we computed probabilities using simply the implied relative frequencies, these two ways of assigning relative117

probabilities are equivalent to two kinds of priors in a Bayesian model. Specifically, in the first model the prior over words is118

the fixed unconditional word probability, while in the second model the prior is the contextual probability, itself based on a119

higher level (lexical) prediction. This makes the second computation hierarchical. Because phoneme predictions are based on120

not just (at the first level) on short sequences of within-word phonemes, but also on a contextual prior which itself (at the121

second level) is based on long sequences of prior words.122

B. Reduced regression control analysis. In our analysis of spatial patterns of explained variance (Figures 4, S9) and coefficients123

(Figures 5, S10) we observed dissociable spatiotemporal signatures of different prediction error regressors. We interpreted these124

as independent neural effects of different types of linguistic unexpectedness. However, an alternative possibility is that these125

signatures may reflect an artefact of our analysis, in which we subdivide unexpectedness into multiple, partially correlated126

regressors (Figure 3). These multiple regressors could then reveal a linear approximation of a single non-linear effect, instead of127

reflecting multiple, independent underlying effects.128

To assess this possibility, we performed reduced regressions. Here, the logic is that if the signatures indeed reflect independent129

effects, these effects should be preserved in a reduced regression in which only a single covariate, or only a single unexpectednes130

covariate, is included. Note that due to the inherent correlations between unexpectedness regressors, the results of the reduced131

regressions are not expected to be identical to the full regression. Specifically, in the reduced regression there may be additional132

variance assigned to an unexpectedness regressor – variance that in the full model would be assigned to a different regressor.133

We thus expect the effects found in the reduced regression to be a superset of those in the full regression. To test this, we134

compared the patterns of unique explained variance (Figures 4, S9) and of the coefficients (Figures 5, S10) observed in the full135

model, with those obtained with two reduced models, that either contained (i) only baseline covariates, but no surprisal or136

prediction error covariates; or (ii) including only onset regressors, and no other covariates aside from the surprisal or prediction137

error covariate of interest. We focus on the spatiotemporal coefficients in the EEG data and patterns of additional explained138

variance in the MEG data, as these are the primary targets of statistical evaluation.139

The results show that as expected, the overall patterns are preserved in the reduced regression analysis, plus some additional140

effects (i.e. in line with our expectation of finding a superset of the effects in the full regression model). In the coefficient141

analysis, this is especially clear for the POS surprisal regressor (Figure S17). In the reduced models, the coefficients for142

POS surprisal preserve the characteristic early frontal positivity (like in the full regression model), but additionally reveal a143

N400-like posterio-central negativity – an effect which in the full model is not attributed to the POS surprisal, presumably144

because it is already explained by overall lexical surprisal (Fig S12). A similar ‘residual N400 effect’ is also observed in the145

coefficients for the semantic prediction error regressor. For the spatial patterns of explained variance, the additional effects are146

best visible in terms of extra areas and higher amount of ‘unique’ variance explained, due to variance that is shared between147

unexpectedness regressors, is now being attributed solely to a single unexpectedness regressor (see Figure S16). Another148

notable aspect of patterns of explained variance, is that in the reduced regressions, the differences between participants appear149

less stark, especially in terms of lateralisation. This may reflect that in the full model, we only focus on unique explained150

variance, and discard ‘shared’ variance equally well accounted by multiple regressors. This may amplify apparent differences151

between participants, by only focussing on the tip of the statistical ‘iceberg’.152

Together, the reduced regressions suggest that the dissociable signatures are not an artefact of our multiple regression153

approach, and instead reflect independent effects – in line with our interpretation.154
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Fig. S1. GPT-2 Architecture. Note that this panel is a re-rendered version of the original GPT schematic, slightly modifyied and re-arranged to match the architecture of
GPT-2. For more details on the overall architecture and on the critical operation of self-attention, see Methods. In this graphic, Layer Norm refers to layer normalisation. Not
visualised here is the initial tokenisation, mapping a sequence of characters into tokens.
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hɪ z f ɑ ðɚw ʌz ʌ f ɪ ʃ ɚmʌn

broadband envelope variance (acoustic edges)

pitch 

unigram surprisal (lexical frequency)

lexical surprisal 

content word

semantic distance (sem. integration difficulty)

unigram surprisal (lexical frequency)

lexical improbability (1-p)

content word

semantic distance (sem. integration difficulty)

unigram surprisal (lexical frequency)

lexical improbability (1-p)

content word

semantic distance (sem. integration difficulty)

Baseline
(non-predictive) Continuous prediction Constrained guessing Naïve guessing 

(control)

word onset word onset word onset

spectrogram amplitude (8 bands) 

broadband envelope variance (acoustic edges)

pitch 

phoneme onset

spectrogram amplitude (8 bands) 

broadband envelope variance (acoustic edges)

pitch 

phoneme onset

spectrogram amplitude (8 bands) 

broadband envelope variance (acoustic edges)

pitch 

phoneme onset

constraining context 

Fig. S2. Word-level regression models. Schematic of the main models plus the control model of the model comparison test for predictive processing at the word level,
for an example fragment from the EEG stimulus material. In all models, lexical attributes are modelled on a word-by-word basis; acoustic control variables (grey) are modelled
on a phoneme-by-phoneme basis. For voiceless phonemes or other segments where PRAAT could not track the pitch, pitch values were set to zero. Transcription of the words
and phonemes are given under the word and phoneme onset impulses in the Baseline model. Because we use a regression ERP/ERF framework (8), aimed at capturing
(modulations of) evoked responses to discrete events like words or phonemes, all regressors are modelled as impulses (see Methods).
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Fig. S3. Full EEG topographies of the effects of lexical surprise These topographies show the average t-statistics of the coefficients (upper row) and respective
FWE-corrected significance (lower row) of the lexical surprise regressor from the continuous prediction model (Figure S2). As such, while Figure 2b shows the coefficients
averaged over channels participating in the cluster (thereby only visualising the effect) these topographies visualise the results comprehensively across all channels over time.
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Fig. S4. Coefficients for lexical surprise from the lexical model (Figure S2) Left column: timecourses of the coefficients at each MEG source-localised parcel
for lexical surprise for all MEG participants, and the polarity-aligned average across them. Right column: Absolute value of the coefficients averaged across the highlighted
period plotted across the brain.
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Fig. S5. The effect of word predictability on brain responses is logarithmic and ubiquitous.
Same as in Figure 2a, but now including the ‘naive guessing’ control model. Like the constrained guessing model, this included a linear (rather than logarithmic) estimate of
word improbability, but defined for every word rather than only for constraining contexts. This model was introduced to identify which of the two differences between the
continuous prediction and constrained guessing model – the linearity vs logarithmicity, or the constrainedness vs ubiquity – contributed to the difference in model performance.
In both datasets, the naive guessing model performed better than the constrained guessing model (EEG: p < 6.24 × 10−4; MEG, hierarchical bootstrap t-test across
participants: p = 0.034) but worse than the continuous prediction model (EEG: p = 0.03; MEG: all p’s < 4.68 × 10−5). This confirms that the effect of unexpectedness is
both logarithmic, and not limited to only highly constraining contexts, but found much more generally – in line with the notion of continuous prediction.

Because the naive guessing model includes a linear metric of word improbability for every word, it strictly speaking formalises the hypothesis that the brain
‘naively’ makes all-or-none guesses about every word. Given that this hypothesis appears a-priori implausible, it may seem surprising that the model still performs comparably
well. However, note that the predictability regressors of the continuous prediction model (i.e. surprisal) and the constrained guessing model (i.e. linear (im)probability) are highly
correlated ( 0.7) because one is a monotonic function of the other. Therefore, we suggest the results are better interpreted the other way around: the fact that – despite being so
correlated – the log-probability is consistently a better predictor of neural responses than the linear probability clearly supports that the effect of word predictability on brain
responses is logarithmic (see Discussion). This is in line with predictive processing theories, which postulate that the neural response to a stimulus are proportional to negative
log-probability of that stimulus.
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Fig. S6. Surprisal modulations are found for content words and function words.
Expectancy modulations are primarily studied on content words, and studies looking at predictability modulations on function words have obtained mixed results. To test whether
the observed surprisal modulation generalises to function words, we compared a model that included surprisal for all content words, to a model that included it additionally for
function words (equivalent to the continuous prediction model). In both datasets, we found that while the model including surprisal for only content words performed considerably
better than the baseline (EEG: t18 = 3.66, p = 1.81 × 10−3; MEG: all p‘s < 3.52 × 10−11), the model that also included function words performed better still (EEG (panel
a,b): t18 = 2.72, p = 0.014; MEG c,d: all p‘s < 2.13 × 10−5). Upper panels show mean cross-validated prediction performance (pearson r), averaged across all channels
(EEG, a), or all sources in the language network (MEG, b). Lower panels show the pairwise differences in model performance between the model including surprisal only for
content words, and the model that also included surprisal for function words, for every participant (EEG, b) or every run (MEG, d). Although the gain in model performance from
including function words is small, it is consistent in both datasets.

10 of 26 Micha Heilbron, Kristijan Armeni, Jan-Mathijs Schoffelen, Peter Hagoort & Floris P. de Lange



unigram surprisal (lexical frequency)

lexical surprisal 

content word

semantic distance (sem. integration difficulty)

spectrogram amplitude (8 bands) 

broadband envelope variance (acoustic edges)

pitch 

part-of-speech surprisal

semantic prediction error

phoneme surprisal

uniqueness point

hɪ z f ɑ ðɚw ʌz ʌ f ɪ ʃ ɚmʌn

his father was a fisherman

(phoneme onset)

(word onset)

Fig. S7. Regressors of the integrated feature-specific model. Same as Figure S5, but for the integrated feature-specific regression model. The three regressors
of interest – POS surprisal, semantic prediction error and phonemic surprisal – are coloured, all control regressors are in black. For voiceless phonemes or other segments
where PRAAT could not track the pitch, pitch values were set at zero. Transcription of the words and phonemes from this particular example fragment from the stimulus are
given under the word and phoneme onset impulses. Following the regression ERP/ERF scheme (8) all regressors are modelled as impulses (see Methods).
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Fig. S8. PHONEME ONSET AND SURPRISAL RESPONSES ARE ALIGNED TO PHONEME ONSETS. Model comparison results of phoneme-alignment test. To test whether the
phoneme-level and phoneme surprisal response truly captures a response locked to individual phonemes, rather than being an overparametrized way to capture responses to
words, we performed a model comparison. In this comparison we compared a model in which the phoneme-level surprisal was aligned to each phoneme, to a control model in
which also contained phoneme-level surprisal, but in which the values for individual phonemes were summed and temporally aligned with the word-initial phoneme. In this
analysis, we omitted the acoustics regressors, since for these low-level, sub-linguistic regressors adding more temporal granularity arguably increases prediction performance,
irrespective of phoneme alignment. Results show that in both EEG (a) and MEG (b), the model with phoneme aligned regressors predicts brain responses significantly better
(EEG: t18 = 3.8, p = 2.32 × 10−3; MEG, Wilcoxon sign-rank: all p’s < 3.75 × 10−37. This confirms that the model is not just picking on word-level responses.
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Fig. S9. Unique explained variance for five regressors across the brain.
Same as Figure 4, but including the lexical surprisal control regressor for comparison. Colours indicate amount of additional variance explained by each regressor; opacity
indicates the FWE-corrected statistical significance (across cross-validation folds). Note that p < 0.05 is equivalent to − log10(p) > 1.3.
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Part-of-speech Semantic Phonemic Lexical

Part-of-speech 0.72, p = 0.0031 0.78, p < 0.0001 0.78, p < 0.0001

Semantic 0.72, p = 0.0031 0.71, p = 0.0014 0.83, p < 0.0001

Phonemic 0.78, p < 0.0001 0.71, p = 0.0014 0.67, p = 0.002

Lexical 0.78, p < 0.0001 0.83, p < 0.0001 0.67, p = 0.002

Table S1. PAIRWISE DISSOCIABILITY OF SPATIAL PATTERNS OF EXPLAINED VARIANCE.
Pairwise classification performance in the classification-based dissociability analysis (Methods) performed to statistically evaluate whether
the spatial patterns of additional explained variance explained (see Figures 4, S9) was statistically robust. Tables shows the mean cross-
validated classification accuracy, across the 3 participants. P-values indicates a statistical comparison against chance level, using a multi-
level nonparametric procedure (hierarchical bootstrapping) to aggregated across all cross-validation folds of all three participants. Classifi-
cation was based on mean-normalised, non-thresholded spatial maps of explained variance. The fact that all maps of additional explained
variance were could be dissociated, indicates that the spatial dissociation was not just present on average across all data, but that it holds
up when using cross-validation, indicating that the patterns are robustly different.
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Fig. S10. Full topographies of the coefficients and significance of feature-specific prediction errors For each feature-specific prediction error
regressor, the topographies show the t-statistics of the coefficients (upper row) and the respective TFCE-corrected significance (lower row). So while Figure 5 only shows the
coefficients averaged over channels participating in the cluster (i.e. the effect) these topographies visualise the results comprehensively across all channels, over time.
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Fig. S11. Significant effects of POS surprisal in the EEG data. Two significant effects were observed in the modulation functions for POS surprisal: an
early positive effect with a frontal topography (upper panel) and a later negative effect based on a distributed cluster (lower panel). The early effect tightly replicates recent
model-based studies on EEG effects of (morpho)syntactic surprisal, and was also found in the MEG data. By contrast, the late effect of POS surprisal is not in line with any
earlier study (note that it is negative unlike the syntactic P600) and importantly was not replicated in the MEG data. Therefore we only consider the early effect a ‘main’ effect of
POS surprisal (visualised in the main Figure 5) and we advice to refrain from interpreting the late effect before it is independently replicated.
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Fig. S12. Coefficients for each feature specific prediction error metric, and lexical surprisal (control variable)
EEG (left column): coefficient modulation function averaged across the channels participating for at least one sample in the significant clusters. Highlighted area indicates
temporal extent of the cluster. Shaded area around waveform indicates bootstrapped standard errors. Stars indicate cluster-level significance; p < 0.05 (*) , p < 0.05
(**), p < 0.001 (***). Insets represent channels assigned to the cluster (white dots) and the distribution of absolute values of t-statistics. MEG (right column): polarity
aligned responses averaged across participants for all sources (same as in Figure 5 but without averaging over sources, and including two control variables). Insets represent
topography of absolute value of coefficients averaged across the highlighted period. Note that due to polarity alignment, sign information is to be ignored for the MEG plots.
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Fig. S13. Coefficients for POS surprisal from the integrated model (Figure S7)
Left column: coefficients for each source for each individual in the MEG experiment, and the polarity-aligned average across participants. Right column: absolute value of the
coefficients across the brain, averaged across the highlighted time-period.
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Fig. S14. Coefficients for semantic prediction error from the integrated model (Figure S7)
Left column: coefficients for each source for each individual in the MEG experiment, and the polarity-aligned average across participants. Right column: absolute value of the
coefficients across the brain, averaged across the highlighted time-period.
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Fig. S15. Coefficients for phoneme surprisal from the integrated model (Figure S7)
Left column: coefficients for each source for each individual in the MEG experiment, and the polarity-aligned average across participants. Right column: absolute value of the
coefficients across the brain, averaged across the highlighted time-period.
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Fig. S16. DISSOCIABLE SPAITAL SIGNATURES ARE PRESERVED IN REDUCED REGRESSIONS.
Same as Figure S9, but comparing the full regression model with two reduced regression models (see Supplementary Note B for details). Colours indicate amount of additional
variance explained by each regressor; opacity indicates the FWE-corrected statistical significance (across cross-validation folds). Overall, the spatial patterns are preserved in
the reduced regressions, indicating they are not an artefact of our analyses (see Supplementary Note B).
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Fig. S17. DISSOCIABLE (SPATIO)TEMPORAL SIGNATURES ARE PRESERVED IN REDUCED REGRESSIONS.
Like Figure S10 but comparing the full regression model with two reduced regression models (see Supplementary Note B for details). Topographies show the the t-statistics of a
one sample t-test on the coefficients across participants, over time. Shaded area indicates the time period where the main effect of interest occurs. Overall, the key signatures
are preserved in the reduced regressions, indicating these are not an artefact of our analyses but reflect independent, dissociable effects (see Supplementary Note B for
details).
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Fig. S18. Coefficients for phoneme onsets from integrated regression model (Figure S7)
Left column: coefficients for each source for each individual in the MEG experiment, and the polarity-aligned average across participants. Right column: absolute value of the
coefficients across the brain, averaged across the highlighted time-period.
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Fig. S19. Regressors of the phoneme model. As indicated by the different colours, both the constants and covariates were modelled separately for word-initial and
word-non-initial phonemes.
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Fig. S20. Language network definition The language network was defined as temporal cortex plus temporo-parietal junction, and IFG and dorsolateral prefrontal cortex;
all bilaterally. In terms of Brodmann areas this corresponded to 20, 21, 22, 38, 39, 40, 41, 42, 44, 45, 46 and 47, amounting to a total of 100 out of 370 cortical parcels.
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