Supplementary information for

LncRNA CTBP1-DT-encoded microprotein DDUP sustains DNA damage response signalling to trigger dual DNA repair mechanisms

Ruyuan Yu ^{1,2, §}, Yameng Hu ^{1,2, §}, Shuxia Zhang ^{1,2, §}, Xincheng Li ^{1,2}, Miaoling Tang ^{1,2}, Meisongzhu Yang ^{1,2}, Xingui Wu ^{1,2}, Ziwen Li ^{1,2}, Xinyi Liao ^{1,2}, Yingru Xu ^{1,2}, Man Li ^{1,2}, Suwen Chen ^{1,2}, Wanying Qian^{1,2}, Li-Yun Gong⁴, Libing Song³, Jun Li ^{1, 2, *}

Correspondence to: Jun Li

E-mail: lijun37@mail.sysu.edu.cn

Supplementary Figure S1

MWLVECTGRDLTGLSCLLSMDRQP RRRQHVAGCRDVPPPLPQGSWGQ TSPRHSILCSKSGCDLLGGGEYNGE **TSGEEFLAPAWTCRAQQAATWLSV** QQTSHKALGPAGGAAMSSKLSPEE QFLSRIHFLRTFMCSVAGAELPGIPQ ATENGEGCRPARDPASSPSSLSMAS VYTQCSSAQLVSALS

Supplementary Figure S1. LncRNA CTBP1-DT-encoded DDUP microprotein promotes DNA damage repair. A. Diagram of the 5'- and 3'-untranslated regions (UTRs) and the open reading frame (ORF) in human IncRNA CTBP1-DT (upper) and the corresponding 186 amino acid (aa) sequence (lower). B. Real-time PCR analysis of CTBP1-DT expression in sh-vector- and CTBP1-DT shRNAstransduced cells. GAPDH served as a control. C. Real-time PCR analysis of CTBP1-DT expression in

С

the indicated cells treated with CPT (10 μ M) or VP-16 (10 μ M) or CDDP (5 μ M) for 1 hour or with IR (10 Gy) and were allowed to recover for six hours. GAPDH served as a loading control. **D.** Representative images (left) and quantification (right) of damaged DNA in the indicated vehicle-treated cells determined by comet assay (*n* = 100). Scale bar = 20 μ m. **E.** Representative images (left) and quantification (right) of γ-H2AX foci in the indicated cells with vehicle treatment. At least 100 cells were counted. Scale bar = 5 μ m. **F.** Representative images (left) and quantification (right) of γ-H2AX foci in the indicated cells and quantification (right) of γ-H2AX foci in the indicated cells with vehicle treatment. At least 100 cells were counted. Scale bar = 5 μ m. **F.** Representative images (left) and quantification (right) of γ-H2AX foci in the indicated cells treated with CPT (10 μ M), VP-16 (10 μ M), CDDP (5 μ M) for 1 hour or IR (10 Gy) (>100 counted cells). Scale bar = 5 μ m. **G-H.** MTT assay analysis of indicated cell survival in response to vehicle (G) or CPT(H) treatment at the indicated concentration. Each error bar represents the mean ± SD of three independent experiments (**p* < 0.05, ***p* < 0.01, ****p* < 0.001).

Supplementary Figure S2 Microprotein DDUP, but not CTBP1-DT RNA, promotes DNA damage repair. A. Quantification of γ -H2AX foci in the indicated cells treated with CPT (10 μ M), VP-16 (10 μ M), CDDP (5 μ M) for 1 hour, or IR (10 Gy) (>100 counted cells). B. MTT assay analysis of indicated cell survival in response to CPT treatment at the indicated concentration. C. Mutagenesis of target sites revealed by the presence of a PCR product with 300 bp digestion products in T7 endonuclease 1 (T7E1) assays in HeLa/DDUP-/--#1 and DDUP-/--#2 cells. D. Genomic DNA sequence analysis showing that

homozygous DDUP deletion occurred downstream of the neighbouring start codon (ATG) in HeLa/DDUP-/-#1 and DDUP-/-#2 cells. **E.** MTT assay analysis of the survival of control and DDUP-KO cells in response to CPT treatment at the indicated concentration. **F**. Representative images (upper) and quantification (lower) of the colony formation ability of the indicated cells treated with CPT (10 μ M) or CDDP (5 μ M), as determined by a colony-formation assay. Each error bar represents the mean ± SD of three independent experiments (**p* < 0.05, ***p* < 0.01, ****p* < 0.001).

Supplementary Figure S3

Supplementary Figure S3. The IRES in the 5'UTR of CTBP1-DT is essential for DNA damageinduced DDUP translation. A. Upper: Diagram of uORFs, putative IRES and DDUP-coding regions in CTBP1-DT RNA. Lower: IRESfinder was used to predict the potential IRES region in the 5'UTR of CTBP1-DT RNA. B. Quantification of γ -H2AX foci in HeLa cells with CPT (10 μ M, 1h) (>100 counted cells). C. Quantification of damaged DNA in the indicated cells with CPT (10 μ M, 1h) analyzed by comet assay (*n* = 100). Each error bar represents the mean ± SD of three independent experiments (**p* < 0.05, ***p* < 0.01, ****p* < 0.001).

Supplementary Figure S4. Phosphorylation of DDUP is essential for DDUP-mediated damage repair. A. IF staining using anti-DDUP antibody in vehicle-, or CPT (10 μ M)-, or VP-16 (10 μ M)-treated control and DDUP-KO HeLa cells. B. IF staining of ATR foci in vehicle- and CPT (10 μ M, 1h)-treated DDUP-KO HeLa cells. C. Molecular docking between ATR and DDUP performed using the Cluspro 2.0 web server (https://cluspro.org/help.php) shown in cartoon representation. D. Co-IP assay analysis of the DDUP-interacting region in ATR using anti-ATR antibody in CPT-treated (10 μ M,1h) 293T cells transfected with full-length or truncated ATR fragments (right). E. Representative images (left) and quantification (right) of damaged DNA in the indicated cells analysed by comet assay (n = 100). The indicated cells were pre-treated with or without berzosertib (80 nM) for 1 hour, and then treated with CPT (10 μ M) for 1 hour. Each error bar represents the mean ± SD of three independent experiments (*p < 0.05, **p < 0.01, ***p < 0.001).

Supplementary Figure S5 A

Supplementary Figure S5. Phosphorylated DDUP forms a complex with γ -H2AX and RAD18. A. IF staining analysis of the expression of the indicated truncated DDUP protein in CPT (10 μ M, 1h)-treated HeLa cells. **B.** Chromatin fraction and IB analysis of expression of DDUP/WT, DDUP/N, DDUP/M, DDUP/ Δ C, and DDUP/C in chromatin in CPT (10 μ M, 1h)-treated 293T cells. H3 served as a loading control. **C.** IB analysis of DNA-bound endogenous DDUP expression in chromatin fraction (upper) and whole cell lysates (lower) extracted from CPT (10 μ M, 1h)-treated 293T cells transfected with DDUP/N, DDUP/ Δ C or DDUP/C. H3 served as a loading control for chromatin fractions and GAPDH served as a loading control for whole cell lysates. **D.** Co-IP assay analyses of the DDUP/ γ -H2AX interaction in CPT (10 μ M, 1h)-treated 293T cells transfected with Flag-tagged DDUP/N (0, 0.5, 1.0, 5.0 μ g), the DDUP/RAD18 interaction in CPT (10 μ M, 1h)-treated 293T cells transfected with Flag-tagged DDUP/ Δ C (0, 0.5, 1.0, 5.0 μ g), and formation of the DDUP/ γ -H2AX/RAD18 complex in CPT (10 μ M, 1h)-treated 293T cells transfected with Flag-tagged DDUP/C (0, 0.5, 1.0, 5.0 μ g). The detailed technical information was described in the Material and Methods section.

Supplementary Figure S6. DDUP enhances the retention of RAD18 at DNA damage sites. A. IF guantification of RPA2-foci using anti-RPA2 antibody (left) and RAD51-foci using anti-RAD51 antibody (right) in the indicated cells treated with CPT (10 µM, 1h). B. IB analysis of RAD18 expression in scramble- and RAD18 siRNAs-transfected HeLa/DDUP cells. GAPDH served as a loading control. C. Quantification of γ-H2AX foci determined by IF staining using anti-γ-H2AX antibody in the indicated cells treated with CPT (10 µM, 1h). D. Percentage of GFP+ and mCherry+ cells, gated on BFP+, of three biological replicates. E. IB analysis of expression of DNA-bound and total monoubiquitinated

PCNA and DDUP in the indicated DDUP-KO HeLa cells treated with CDDP (5 μ M, 1h) or UV radiation (60 J/m²). H3 and α -Tubulin served as a loading control. **F.** Representative images (left) and time course (right) of the formation of PCNA foci in untreated or CDDP (5 μ M)- or UV radiation (60 J/m²)- treated control and DDUP-KO HeLa cells, and allowed to recover for the indicated times. Each error bar represents the mean ± SD of three independent experiments (**p* < 0.05, ***p* < 0.01, ****p* < 0.001).

Supplementary Figure S7

Supplementary Figure S7. Upregulation of DDUP confers resistance to cisplatin in ovarian cancer cells *in vitro*. A-B. IB analysis of DDUP expression in Vector- or DDUP-transduced PDOVCs #1 and #2 (A) or sh-vector- or DDUP shRNA(s)-transduced PDOVCs #3 and #4 (B). GAPDH served as a loading control. C. Representative images (left) and quantification (right) of damaged DNA in the indicated cells analysed by comet assay (n = 100). The indicated cells treated with CDDP(5 μ M) for 1 hour. Scale bar = 5 μ m. Each error bar represents the mean ± SD of three independent experiments (*p < 0.05, **p < 0.01, ***p < 0.001).

Supplementary Tables

Supplementary Table 1. Label-free quantitative (LFQ) mass spectrometry analysis of the potential DDUP-interacting proteins in CPT- vs. Vehicle-treated cells

Accessions	Gene	Vehicle	Vehicle	CPT_	CPT_	Log2	P value
	name	_rep1	_rep2	rep1	rep2	FC	
sp Q13535 ATR_	ATR	NA	NA	24.99	24.67	4.81	7.25E-06
HUMAN							
sp Q9NS91 RAD	RAD18	NA	NA	24.30	24.51	4.12	7.12E-05
18_HUMAN							
sp O43502 RAD	RAD51C	NA	NA	24.30	24.50	4.12	7.12E-05
51C_HUMAN							
sp Q00839 HNR	HNRNPU	20.26	20.81	24.02	23.95	3.45	8.03E-05
PU_HUMAN							
sp P62805 H4_H	H4C1	22.25	21.84	24.76	24.96	2.82	1.34E-04
UMAN							
sp P06748 NPM	NPM1	23.50	23.81	26.41	26.41	2.75	8.17E-05
_HUMAN							
sp P23527 H2B1	H2BC17	22.67	22.92	25.49	25.49	2.64	8.38E-05
O_HUMAN							
NR_033339.1 D	DDUP	NA	NA	22.89	22.83	2.61	1.16E-04
DUP							
sp P16104 H2AX	H2AX	NA	NA	22.04	22.42	2.46	2.09E-04
_HUMAN							
sp P78347 GTF2	GTF2I	NA	NA	22.61	22.42	2.18	2.75E-04
I_HUMAN							
sp P11940 PABP	PABPC1	23.34	23.20	25.20	25.5	2.08	3.03E-04
1_HUMAN							
sp Q9Y2X3 NOP	NOP58	25.92	25.92	28.11	27.98	2.02	2.42E-04
58_HUMAN							

Supplementary Table 2. Primers and Oligonucleotides used in this study

Primer used for qP	CR
CTBP1-DT-up	5'-CCATCCTCTGCAGCAAGTCA -3'
CTBP1-DT-dn	5'-CTCCGTTCTCAGTTGCCTGT-3'
GAPDH-up	5'-GGAGCGAGATCCCTCCAAAAT -3'
GAPDH-dn	5'-GGCTGTTGTCATACTTCTCATGG-3'
Primer used for sub	ocloning and plasmid construction
CTBP1-DT-up	5'-GCCGCCCACGTCAGCGCCTG-3'
CTBP1-DT-dn	5'-TGGCAGTTTTCAGCGATTGT-3'
DDUP-Flag-up	5'-gtgtcgtgaggattgggatccgccATGTGGTTGGTGGAGTGCACA-3'
DDUP-Flag-dn	5'-gaagaattcgtccggggatccTCACTTATCGTCGTCATCCTTGTAATC
	TGATAACGCGCTGACAAGC-3'
ATG1mDDUP-up	5'-GGGACGATtTGGTTGGTGGAGTGCACAGGCAG-3'
ATG1mDDUP-dn	5'-ACCAACCAaATCGTCCCTTCCCGGCAGCCTCA-3'
ATG2mDDUP-up	5'-CTCAGCATtGACAGGCAGCCCAGGAGAAGGCA-3'
ATG2mDDUP-dn	5'-TGCCTGTCaATGCTGAGCAGACAGGAAAGTCC-3'
DDUP/T174A-up	5'-CGTCTACgCACAGTGTTCGTCTGCACAGCTTG-3'
DDUP/T174A-dn	5'-AACACTGTGcGTAGACGGAGGCCATGGAGAGT-3'
DDUP/T174D-up	5'-CGTCTACgacCAGTGTTCGTCTGCACAGCTTG-3'
DDUP/T174D-dn	5'-AACACTGgtcGTAGACGGAGGCCATGGAGAGT-3'
Flag-DDUP/N-up	5'-gtgtcgtgaggattgggatccgccATGGATTACAAGGATGACGACGATAAG
	TGGTTGGTGGAGTGCACA-3'
Flag-DDUP/N-dn	5'-gaagaattcgtccggggatccTCAATCACAACCTGACTTGCTGC-3'
Flag-DDUP/∆C-up	5'-gtgtcgtgaggattgggatccgccATGGATTACAAGGATGACGACGATAAG
	TGGTTGGTGGAGTGCACA-3'
Flag-DDUP/∆C-dn	5'-gaagaattcgtccggggatccTCAGGAGAGGAACTGTTCTTCTGG-3'
Flag-DDUP/C-up	5'-gtgtcgtgaggattgggatccgccATGGATTACAAGGATGACGACGATAAG
	AGGATCCACTTCCTGCGC-3'
Flag-DDUP/C-dn	5'-gaagaattcgtccggggatccTCATGATAACGCGCTGACAAGC-3'

Primer used for CRISPR Cas9 System			
gRNA#1	5'-GGTTGGTGGAGTGCACAGGCAGG-3'		
gRNA#2	5'-TGCACAGGCAGGGACCTCACTGG-3'		
CTBP1-DT-up	5'-TTATTAGTCGGTGTGTTCAGTATC-3'		
CTBP1-DT-dn	5'-AGCAGAGGGTAGAATGGTGTT-3'		
shRNA			
ShRNA#1_CTBP1	5'-ACCTCGGAATGATGCAGACTCCTATCTCAAGAGGATAGGAGTCTGCA		
-DT	TCATTCCTT-3'		
ShRNA#2_CTBP1	5'-ACCTCGTTCGTCTGCACAGCTTGTCATCAAGAGTGACAAGCTGTGC		
-DT	AGACGAACTT-3'		
siRNA			
Si RAD18#1	5'-GACCAAAGAGACACGTTCTGT-3'		
Si RAD18#2	5'-GCTGTTTATCACGCGAAGAGA-3'		
Si DDUP#1	5'-GGAAUGAUGCAGACUCCUAUC-3'		
Si DDUP#2	5'-GTTCGTCTGCACAGCTTGTCA-3'		
Si H2AX#1	5'-TGGACTAATTTTATTAAAGGATT-3'		
Si H2AX#2	5'-GACTAATTTTATTAAAGGATTGT-3'		

Supplementary Table 3. Clinicopathological characteristics of clinical samples and expression

Characteristics	No. patients	DDUP	P value	
		Low (n=217)	High (n=150)	
Age (years)				
≤ 62	192	109	83	0.336
> 62	175	108	67	
Histological type				
Serous	270	158	112	
Endomotrioid	43	26	17	0.378
Mucinous	23	11	12	
Undifferentiated	31	22	9	
FIGO stage				
I/II	89	61	28	0.038
Ш/IV	278	156	122	
Histologic grade				
1	31	15	16	
2	75	34	41	0.101
3	261	168	93	
Chemo-response				
status				
Chemoresistance	190	60	130	<0.001
Chemosensitivity	177	157	20	
Recurrence				
Yes	248	111	137	<0.001
No	119	106	13	
Vital status				
Alive	143	112	31	<0.001
Dead	224	105	119	

of DDUP in platinum-treated Ovarian Cancer

Supplementary Table 4. Univariate and multivariate analysis of different prognostic parameters in patients with ovarian cancer by Cox-regression analysis.

	Univariate analysis		Multivariate analysis		
	Р	Hazard ratio (95% CI)	Р	Hazard ratio (95% CI)	
Age (years)	0.137	0.819 (0.629-1.065)			
Histological type	0.002	0.773(0.659-0.907)	0.006	0.776 (0.648-0.929)	
Histologic grade	< 0.001	0.673 (0.547-0.829)	0.007	0.734 (0.585-0.920)	
FIGO stage	0.001	1.847 (1.267-2.691)	0.013	1.664 (1.111-2.491)	
Recurrence	< 0.001	3.068 (2.170-4.336)	< 0.001	2.479 (1.545-3.978)	
Chemo-response status	< 0.001	2.171 (1.642-2.869)	0.009	0.548 (0.349-0.861)	
DDUP expression	< 0.001	3.157 (2.401-4.152)	< 0.001	2.797 (1.974-3.963)	