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Supplementary Figure 1 Impacts of atx(r) mutations on H3K4me

(a) ChIP-seq of H3K4me1 in 6 mutants (y-axis) did not show large change compared to WT (x-axis). Each dot represents one gene
and axes are trimmed to 0.98 quantiles. (b) atx71,2,3,4,5 and atxr7 mutants were clustered based on the H3K4me1 pattern
detected in ChlP-seq (see Methods). (¢) ChlP-seq for H3K4me1, H3K4me2, H3K4me3 in atx1/2, atx1/atxr7 and atx2/atxr7 double
mutants (y-axis) compared to WT (x-axis). For all three mutants, H3K4me1 shows the most prominent reduction. (d) Spike-in
normalization shows mutations of atx1, atx2, and atxr7 synergistically cause reduced H3K4me1. The raw read counts are provided
in Supplementary Data 2. (e) ATX1/2/R7-, ATX3/4/5-, and ATXR3-marked genes have distinct characteristics in gene length and
expression level. The center line of violin plot, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range.
Numbers within the figure represent p-values calculated with two-sided Dunnett’s test comparing against protein coding genes.
(f)-(h) Metaplots illustrating the averaged distribution of H3K4me1,2,3 over ATX1/2/R7-marked (f), ATX3/4/5-marked (g), and
ATXR3-marked genes (h).
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Supplementary Figure 2 Effects on H3K4me in mutants agree with previous reports and replicates.

(a) Western blot for H3K4 methylations on bulk histone extracted from the mutants. Left panel shows example blots for H4
and H3K4me1 obtained from the same membrane. Right panel shows H3K4me1 signals normalized to H3 or H4 histone
signals in two lines of atx1/2/r7 mutants compared to WT. Data are presented as mean+SD and each dot represents data of
each replicate. (b-f) Mutant (y-axis) ~ WT (x-axis) comparison of H3K4me profiles. In all panels, genes are colored with the
same rules defined in Figure. 1d. (b) ChlP-seq targeting H3K4me0 shows that in atx12r7, hypo-H3K4me1 genes gain
H3K4me0, consistent with the view that ATX1,2, and ATXR7 are responsible for H3K4me0-to-H3K4me1 conversion. (c)
Biological replicates of H3K4me ChiIP-seq in atx1/2/r7, atx3/4/5 and atxr3. (d-f) Previously reported ChlP-seq datasets in
atxr3 (d), atx3-1/4/5 (e) mutants, and our datasets on atx3-1/4/5 (f). Our datasets show consistent trends with datasets from
ref. 20; in both datasets, atxr3 mutants lose H3K4me3 in blue-colored genes while atx3(-1)/4/5 mutants lose H3K4me2 in
yellow-colored genes. Axes are trimmed to 0.98 quantiles.
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Supplementary Figure 3 ATX1, ATX2, and ATXR7 occupied genes tend to lose H3K4me1 in atx1/2/r7.

(a) Heat maps showing H3K4me1 change in atx1/2/r7 and ATX(R)s distribution. All heat maps are sorted according to the
H3K4me1 change in atx1/2/r7 (the heat map in the middle is the same data as Fig. 1c¢, shown for reference) so that genes
that lost H3K4me1 the most come to the top. (b) All genes metaplot corresponding to the panel (a) above. (c) Overlap between
ATX12R7-marked genes and ATX1, ATX2, ATXR7-bound genes. Enrichment is the actual/expected number of overlapped

genes, p-values are calculated with hyper-geometric test.
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Supplementary Figure 4 Distribution profiles of predictively ‘important’ chromatin modifications for ATX1, ATX2, or
ATXR7 localization.

Averaged distribution profiles of ATX(R)s proteins and features that had high importance in the random forest models to
predict ATXR7 or ATX1,2-bound genes (see Fig. 3). Profiles around TTS are shown for ATXR7, and profiles around TSS are
shown for ATX1 and ATX2.
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Supplementary Figure 5 Random forest analyses using the biological replicates of ATX(R)s ChIP-seq.

The ChlIP-seq data sets of the biological replicates, which were independently grown, were processed in the same manner as in
Fig. 2 and Fig. 3. (a) Metaplot and (b) heat maps illustrating ATX1, ATX2, and ATXR?7 distributions in the gene body region
corrected with non-transgenic control. The heat maps were sorted so that highly transcribed genes (measured as mRNA-seq in
WT) come to the top. (c) Position of ATX1 and ATX2 ChIP-seq peaks relative to TSS and ATXR7 peaks relative to TTS (x-axis),
visualized as a frequency of peak summits (y-axis). Consistent with the other replicates (Fig. 2), most of ATX1 and ATX2 peaks
belong to the ‘TSS region’, while most of ATXR7 peaks belong to the ‘TTS region’. (d-f) ‘importance’ of features and (g-i) ROC
plot of random forest model trained to predict ATX1/2/R7-bound genes. Average and standard deviation of the 5 repeats of
training are plotted.
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Supplementary Figure 6 H3K4me1 may promote H3K36me3 via ASHH3.

(a) In atx1/2/r7, hypo-H3K4me1 correlates with H3K36me3 loss, while change of H3K36me3 levels in ashh2 (b) does not
correlate with change of H3K4me1. Each dot in the scatter plot represents one protein coding gene and axes are trimmed
to 0.0005 and 0.9995 quantiles. Heat maps in (a) are sorted according to the H3K4me1 change in atx1/2/r7 (the heat map
for H3K4me1 of replicate 1 is the same data as Fig. 1c, shown for reference) so that genes that lost H3K4me1 the most
come to the top, while heat maps in (b) are sorted according to the H3K36me3 change in ashh2. p is the Spearman's
correlation coefficient. (c) In search for a methyltransferase that catalyzes H3K36me3 in response to ATX(R)s-catalyzed
H3K4me1, we analyzed H3K36me3 change by ChlP-seq in mutants of ASHH2, known major H3K36me3 methyltransferase
3132 and ASHH1, ASHH3, ASHH4, and ASHRS3, whose catalytic domain SET are similar with ASHH2 '8, Overlap between
ATX1/2/R7-marked genes and hypo-H3K36me3 genes detected by MACS2 in each ashh mutants are shown as bubble
plots. The size of a bubble shows enrichment value against all protein-coding genes (n = 27,409) and the p-value
represented by color is based on unadjusted one-sided hypergeometric test. ashh3 lose H3K36me3 at ATX1/2/R7-marked
locus, suggesting that ASHH3 may functions downstream of ATX1/2/R7-marked H3K4me1 to mediate H3K36me3. (d)
mRNA expression of ASHH3 was not altered in atx1/2/r7, precluding the possibility that H3K36me3 change in atx1/2/r7 was
due to reduced expression of ASHH3.
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Supplementary Figure 7 Loss of H2Bub results in loss of ATX2 localization and decreased H3K4me1.

(a) Overview of the analysis. To test if H2Bub promotes presence of ATX, ChiP-seq analysis of ATX2 localization was
performed in hub2 and WT (control) background in two replicates. Mutation in either HUB1 or HUBZ2 is known to depletes
H2Bub to undetectable levels*>1°2-104  ATX localization in the absence of H2Bub was simulated by letting the trained random
forest model (WT model) predict ATX-bound genes using a feature table in which H2Bub are replaced with 0 (hub model).
‘Genes that lose ATX in in silico hub’ are the genes that are predicted to be ATX-bound in the WT model and unbound in the
hub model. (b) In planta ChiP-seq signal over the TSS region of 'genes that lose ATX in in silico hub' is largely reduced in
hub2 compared to WT. The ratio of wild-type to hub ATX2 signal was significantly different for all genes vs ‘Genes that lose
ATX in in silico hub’, as indicated by the p-value of Wilcoxon's rank sum test. Center line of boxplot, median; box limits, upper
and lower quartiles; whiskers, 1.5x interquartile range. (c) Genes that are detected to lose ATX2 in planta matches in silico
prediction. Genes that correspond to hypo-ATX regions, which are detected by comparing ATX2 ChIP-seq profile in hub2
mutant and WT background using peak caller MACS2, significantly overlap with genes predicted to lose ATX in the in silico
hub. Numbers within the circles are the number of overlaps and the p-value represented by color is based on unadjusted
one-sided hypergeometric test. Size and color scales are the same in (c)-(e). (d) To further test if H2Bub promotes ATX1,2,
thereby H3K4me1, H3K4me1 ChIP-seq was performed in hub1, hub2 and WT. Genes hypo-H3K4 monomethylated in the
hub significantly overlap with genes that lose ATX2 in the in planta hub2 (2 replicates) and genes that lose ATX1 or ATX2 in
the in silico hub. (e) To test if H3K4me1 promotes H2Bub or H4K16ac, ChlP-seq targeting H2Bub and H4K16ac was
performed in atx1/2/r7 and WT. Genes that are hypo-H2B ubiquitinated in atx1/2/r7 significantly overlap with hypo-H3K4me1
genes (= ATX1/2/R7-marked genes), while genes detected to be hypo-H4K16 acetylated did not overlap with ATX1/2/R7-
marked genes nor with ATX1,2 localization, suggesting that H2Bub but not H4K16ac is regulated downstream of H3K4me1.
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Supplementary Figure 8 ATXR7 and FLD share target genes.

(a) ATXR7 and FLD colocalize. When the Random Forest model is trained to predict ATXR7-bound and -unbound genes in
the same manner as Fig. 3a except for the inclusion of the amount of FLD protein in the TTS region showed high importance.
Error bars represent the standard deviation of the 5 repeats of training. (b) ATXR7-bound TTS regions are highly enriched in
FLD. (c) There is a significant overlap between genes that lose H3K4me1 in the atxr7 mutant (RPKM WT-atxr7 > 6.5) and
genes that gain H3K4me1 in the fld mutant. p-value is calculated with a hypergeometric test. The center point of violin plot,
median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range.
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Supplementary Figure 9 Biological replicates confirmed that DNA motifs also rule ATX1 and ATX2 localization.

The ChIP-seq data sets of the biological replicates (Supplementary Fig. 5) were analyzed in the same manner as Fig. 4.
Biological replicates also achieved accurate prediction for both (a) ATX1 and (b) ATX2 as demonstrated by ROC plots. Error bars
represent the standard deviation of the 5 repeats of training. (c,d) The learned trends of weights highly correlated between the
replicates. r represents Pearson’s correlation coefficient.
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Supplementary Figure 10 Annotations of predictive and non-predictive 6-mers in the ATX2 model.
Predictive and non-predictive 6-mers in the ATX2 models were selected and analyzed in the same manner as in ATX1
models (Fig. 4). (a-c) Clustering and annotation of predictive and non-predictive 6-mers. Each circle represents the top
sixty 6-mers with negative (a), positive (b), or nearly zero (c) SVM weights in the ATX2 model. (d) Positional distributions of
highly weighted motifs in the TSS region. (e) ATX2-bound TSS significantly overlaps with sppRNA-harboring TSS detected

in the hen2-2 background. The significance of the overlap was tested using a hypergeometric test.
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Supplementary Figure 11 Non-predictive 6-mers.
(a,b) Clustering and annotation of non-predictive sixty 6-mers. Random (a) and near-zero-weighted (b) sixty 6-mers
in the ATX1 model.
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Supplementary Figure 12 An example browser view of ATX1-bound and unbound genes.

Examples of the ATX1-bound and unbound genes. ChIP-seq read coverage tracks of ATX1, negative control (non-
transgenic), H2Bub, and H4K16c are shown. AT5G14220 is one of the ‘ATX1-bound genes’. Its ‘TSS region’, highlighted
with yellow shade, has higher levels of H2Bub and H4K16ac compared to the other TSS regions in the view. The SVM
score of this TSS region in the full model is 0.85 (ranges from 0 to 1. The higher the value is, the more likely it to be ATX1-
bound, based on DNA sequence). In the DNA sequence of the TSS region, positively weighted ARGCCCAWT and GAGA-
stretch are present, as well as negatively weighted TATA-stretch.
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Supplementary Figure 13 Conservation of the predictive motifs in angiosperm genomes.

The conservation score PhastCon® score calculated by ref. 101 based on genome sequence alignment of 63
angiosperm species. Higher PhastCons score reflects higher conservation within the TSS region. (a,b) SVM weights and
PhastCons lack overall correlation (c,d) RGCCCAW motif is under evolutionary constraint. Leftmost violin plots
represent PhastCon distribution of all 6-mers (n= 46 = 4096) in the TSS region. The center point of violin plot, median;
box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. Each circle represents highly weighted 6-mers
with the same color and numbers as Fig. 4 and Supplementary Fig. 10. 6-mers connected with lines in Fig. 4 and
Supplementary Fig. 10 are clustered together.
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Supplementary Figure 14 Change in H3K4me1-transcription correlation is due to change in H3K4me1, not in transcription.
(a,b) Correlation between H3K4me1 and expression is shown in the same way as Fig. 5, except that in this figure the expression
(mRNA-seq) data are of WT. The atx1/2 mutant has a higher, while atxr7 has a lower correlation than WT, demonstrating that the
change in H3K4me1 rather than transcription causes the change in the correlation. p= Spearman's correlation coefficient. The
color scale is the same as Fig. 5. (c-h) Another ChlP-seq datasets replicated the trend. ChiP-seq data used for (c-e) atx1/2 -WT
comparison is the data sets for double mutants shown in Supplementary Fig. 1c (ChlP-seq A), and for (f-h) atxr7-WT comparison
is the datasets shown in Supplementary Fig. 1a (ChIP-seq B). P-values indicate p are significantly different between genotypes
(Welch's two sample t-test).
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Supplementary Figure 15 Correlational trend between H3K4me and transcription of atxr3 and atx3/4/5.

(a) Identical to Fig. 6e and shown for reference. (b) Correlation between H3K4me3 level in atxr3 and expression level in WT.
Compared to WT-WT comparison in (a), the correlation is diminished and almost as weak as a mutant-mutant comparison
in Fig. 6f, demonstrating that the change in H3K4me3 rather than transcription causes the change in the correlation. (c)
atx3/4/5 mutant does not show a large correlational change between H3K4me3 and transcription. (a-c) and Fig. 6e,f are
shown in the same color scale. (d) Identical to Fig. 6g. (e) Correlation between H3K4me2 level in atx3/4/5 and expression
level in WT. Compared to a WT-WT comparison in (d), the correlation is stronger and almost as strong as a mutant-mutant
comparison in Fig. 6h, demonstrating that the change in H3K4me2 rather than transcription causes the change in the
correlation. (f-i) Change in the correlation between H3K4me2 (f, g) or H3K4me3 (h, i) and transcription in the atx3-1/4/5
mutant, from the datasets reported by Chen et al., 2017 (ref. 20). In the atx3-1/4/5 mutant, which has stronger effects on
H3K4me2 and H3K4me3 compared with atx3/4/5 (Fig. 1e, Supplementary Fig. 2), there is a stronger correlation compared
to WT not only in transcription-H3K4me2 but also in transcription-H3K4me3. P values indicate p are significantly different
between genotypes (Welch's two sample t-test).
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Supplementary Figure 16 Localization of mammalian H3K4 methyltransferases in TSSs and enhancers.

(a,b) Position of mammalian H3K4 methyltransferases’ peaks relative to TSS (a) and enhancer (b), visualized as a frequency
of ChIP-seq peak summits. x-axis, distance from TSS (a) or center of enhancer (b); y-axis, number of peak summits. Most of
SET1A and MLL2’s peaks belong to the region spanning from 150 bp upstream to 300 bp downstream of TSS, where we
hereafter refer to as the ‘TSS region’. Most of the MLL3/4 peaks belong to 1800 bp around the center of the enhancer, where
we hereafter refer to as ‘enhancer’. (c,e,g) ‘Importance’ of features derived from the Random Forest models trained to predict
enhancer occupied by SET1A (¢) and MLL2 (e), or to predict TSS region occupied by MLL3/4 (g). Graphs are shown like Fig.
7b,e,h. (d,f,h) ROC plot showing the prediction accuracy of the random forest models corresponding to (c,e,g). All ROC and
AUC are calculated with test data (25% of the original data). Average and standard deviation of the 5 repeats of training are
plotted.
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Supplementary Figure 18 Parameter tuning of SVM models.
(a,b) Prediction accuracy of linear SVM models trained with different sizes of k-mers, and kernel SVM with 6-mers. Error

bars represent the standard deviation of the 5 repeats of training. The numbers in parenthesis are AUC calculated with test
data
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