Supplementary information

Comparative immunogenicity and reactogenicity of heterologous ChAdOx1 nCoV-19-priming and BNT162b2 or mRNA-1273-boosting with homologous COVID-19 vaccine regimens

Verena Klemis¹, Tina Schmidt¹, David Schub¹, Janine Mihm², Stefanie Marx¹, Amina Abu-Omar¹, Laura Ziegler¹, Franziska Hielscher¹, Candida Guckelmus¹, Rebecca Urschel¹, Stefan Wagenpfeil³, Sophie Schneitler⁴, Sören L. Becker⁴, Barbara C. Gärtner⁴, Urban Sester², and Martina Sester^{1;*}

¹Department of Transplant and Infection Immunology, ²Department of Internal Medicine IV, ³Institute for Medical Statistics, Epidemiology and Medical Informatics, Saarland University, Campus Homburg/Saar, ⁴Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany.

*Correspondence: Martina Sester, PhD, Saarland University, Department of Transplant and Infection Immunology, Institutes of Infection Medicine, building 47, Kirrberger Straße, D-66421 Homburg, Germany; email: <u>martina.sester@uks.eu</u>

The supplement contains 6 Supplementary Tables and 3 Supplementary figures.

1° vaccine	ChAdOx		ChAdOx		ChAdOx		BNT		mRNA-1273	
2° vaccine	ChAdOx ¹		BNT ²		mRNA-1273 ³		BNT		mRNA-1273	
	R	P-	R	P-	R	P-	R	P-	R	P-
	(CI)*	value*	(CI)*	value*	(CI)*	value*	(CI)*	value*	(CI)*	value*
CD4 vs CD8	0.323	0.010	0.298	0.015	0.252	0.011	0.436	0.003	0.285	0.030
	(0.072 – 0.536)		(0.053 – 0.509)		(0.053 – 0.431)		(0.147 – 0.656)		(0.021 – 0.512)	
CD4 vs lgG	0.310	0.014	0.324	0.008	-0.110	0.275	0.286	0.063	0.207	0.120
	(0.058 – 0.525)		(0.082 – 0.530)		(-0.304 – 0.093)		(-0.024 – 0.547)		(-0.062 – 0.448)	
CD4 vs	0.325	<0.010	0.201	0.106	0.072	0.475	0.078	0.619	0.201	0.130
Neutralizing ab	(0.075 – 0.537)		(-0.051 – 0.428)		(-0.131 – 0.269)		(-0.236 – 0.378)		(-0.068 – 0.443)	
CD8 vs lgG	0.277	0.029	0.176	0.158	-0.064	0.527	0.438	0.003	0.313	0.017
	(0.022 – 0.498)		(-0.077 – 0.407)		(-0.261 – 0.139)		(0.150 – 0.658)		(0.052 – 0.534)	
CD8 vs	0.243	0.057	0.006	0.962	0.122	0.225	0.360	0.018	0.264	0.045
Neutralizing ab	(-0.015 – 0.470)		(-0.243 – 0.255)		(-0.081 – 0.315)		(0.058 – 0.602)		(-0.001 – 0.495)	
lgG vs	0.853	<0.0001	0.635	<0.0001	0.282	0.004	0.617	<0.0001	0.294	0.025
Neutralizing ab	(0.763 – 0.910)		(0.459 – 0.763)		(0.086 – 0.457)		(0.381 – 0.778)		(0.031 – 0.519)	

Supplementary Table 1: Correlations (coefficient, 95% CI and p-value) of immune parameters in individuals on the five regimens.

¹Refers to ChAdOx1 nCoV-19 by AstraZeneca; ²Refers to BNT162b2 by BioNTech/Pfizer, ³Refers to mRNA-1273 by Moderna; *two-tailed Spearman correlation; source data are provided as a Source Data file; ab, antibody; R, correlation coefficient; CI, confidence interval.

Supplementary Table 2: Demographic and clinical characteristics of subgroups matched for age and

gender.

1° vaccine	ChAdOx	ChAdOx	ChAdOx	BNT	mRNA-1273	
2° vaccine	ChAdOx ¹	BNT ²	mRNA-1273 ³	BNT	mRNA-1273	
	n=40	n=40	n=40	n=40	n=40	p-value
Years of age (mean±SD)	50.0±11.8	49.2±9.4	49.8±10.7	51.0±17.9	48.6±13.1	0.942§
Female gender, n (%)	28 (70.0)	31 (77.5)	31 (77.5)	26 (65.0)	29 (72.5)	0.689†
Weeks between 1° and 2° vaccination, (mean±SD)	11.9±1.2	11.8±0.9	12.1±0.4	5.4±1.1	5.9±0.3	
Analysis time [days after 2° vaccination], median (IQR)	14 (2.75)	14 (1)	14 (1)	14 (2)	16 (2)	
Differential blood cell counts	n=40	n=39	n=40	n=38	n=39	
Leukocytes (cells/µl),	7000	6400	7000	6000	7700	0.061 [‡]
median (IQR)	(2500)	(2000)	(2750)	(2750)	(2900)	
Granulocytes (cells/μl),	4064	3819	4083	3415	4617	0.022 [‡]
median (IQR)	(2070)	(1279)	(1736)	(2229)	(2379)	
Monocytes (cells/μl),	556	578	578	479	539	0.118 [‡]
median (IQR)	(248)	(256)	(178)	(202)	(169)	
Lymphocytes (cells/µl),	2100	2103	2243	2246	2150	0.544‡
median (IQR)	(959)	(828)	(802)	(803)	(917)	
CD3 T-cells (cells/µl),	1526	1525	1489	1584	1636	0.920 [‡]
median (IQR) [#]	(765)	(655)	(766)	(666)	(743)	
CD4 T-cells (cells/µl),	878	1024	996	1046	1144	0.904 [‡]
median (IQR) [#]	(600)	(359)	(588)	(522)	(663)	
CD8 T-cells (cells/µl),	396	331	414	355	370	0.539 [‡]
median (IQR) [#]	(219)	(235)	(304)	(252)	(155)	
CD19 B cells (cells/µl),	202	196	213	190	217	0.832‡
median (IQR) [#]	(132)	(141)	(164)	(168)	(155)	
Plasmablasts (cells/µl),	0.484	0.489	0.503	0.475	0.805	0.078‡
median (IQR) [#]	(0.611)	(0.835)	(0.592)	(0.468)	(0.801)	

Demographic characteristics, vaccine-related data as well as information on differential blood counts and lymphocyte subpopulations are summarized for subgroups of the five different vaccination regimens. The 40 individuals per group have been chosen to be matched for age and gender to exclude age- and gender-related differences. ¹Refers to ChAdOx1 nCoV-19 by AstraZeneca; ²Refers to BNT162b2 by BioNTech/Pfizer, ³Refers to mRNA-1273 by Moderna; [#]B and T cell counts were calculated on 40 ChAdOx-ChAdOx, 39 ChAdOx-BNT, 40 ChAdOx-mRNA-1273, 36 BNT-BNT, and 39 mRNA-1273-mRNA-1273 vaccinated individuals, respectively. [§]Ordinary one-way ANOVA with Tukey's multiple comparisons test. [†]X² test; [†]two-sided Kruskal-Wallis test; source data are provided as a Source Data file.

Supplementary Table 3: Results of nonparametric regression analyses.

	1			-
	lgG	Neutralizing Ab	Spike CD4	Spike CD8
Confounders*	p-value	p-value	p-value	p-value
Age	0.739	0.439	0.258	0.779
Gender	0.218	1.000	0.469	0.714
ChAdOx/BNT	<0.0001	<0.0001	<0.0001	<0.0001
ChAdOx/mRNA-1273	<0.0001	<0.0001	<0.0001	<0.0001
BNT/BNT	<0.0001	<0.0001	0.015	0.890
mRNA-1273/mRNA-1273	<0.0001	<0.0001	<0.0001	0.782
Interaction analyses [#]				
Age*ChAdOx/BNT	0.221	0.947	0.140	0.060
Age*ChAdOx/mRNA-1273	0.589	0.281	0.095	0.203
Age*BNT/BNT	0.003	0.511	0.103	0.388
Age*mRNA-1273/mRNA-1273	0.015	0.268	0.185	0.499

The influence of age, gender, and the different vaccine regimens (using ChAdOx/ChAdOx as reference) on IgG levels, neutralizing antibody activity, and levels of spike-specific CD4 and CD8 T cells were analyzed using nonparametric regression. To determine whether age had an effect on immunological parameters within each vaccine group, interaction analyses were performed with the homologous ChAdOx vaccine group as a reference. Shown are the p-values determined by non-parametric regression analyses. *p-values refer to differences compared to ChAdOx/ChAdOx regimen; #confounding effects of age within each group was performed with ChAdOx/ChAdOx as a reference; source data are provided as a Source Data file.

Vaccine regimens	ChAdOx vs. BNT	ChAdOx vs. mRNA-1273	BNT vs. mRNA-1273	All groups
Adverse events (general) ¹	p<0.0001	p<0.0001	p=0.064	p<0.0001
Pain ²	p=0.485	p=0.109	p=0.076	p<0.0001
Swelling ²	p=0.0033	p>0.999	p=0.012	p<0.0001
Antipyretic medication ³	p<0.0001	p<0.0001	p>0.999	p<0.0001
Fever (<38.5°C) ³	p<0.0002	p<0.0001	p>0.999	p<0.0001
Headache ³	p<0.0001	p<0.0001	p=0.597	p<0.0001
Fatigue ³	p<0.0001	p=0.0004	p=0.420	p<0.0001
Chills ³	p<0.0001	p<0.0001	p=0.260	p<0.0001
GI effects ³	p=0.005	p=0.004	p>0.999	p=0.004
Myalgia ³	p<0.0001	p<0.0001	p=0.295	p<0.0001
Arthralgia ³	p<0.0001	p<0.0001	p=0.506	p<0.0001

Supplementary Table 4: Two-sided p-values from statistical comparisons of reactogenicity of the primary vaccines used for the first vaccination.

¹Corresponding to differences in local, systemic or local and systemic adverse events as shown in figure 3a; ²Corresponding to figure 3b; ³Corresponding to figure 3c; ChaAOx refers to ChAdOx1 nCoV-19 by AstraZeneca; BNT refers to BNT162b2 by BioNTech/Pfizer, mRNA-1273 by Moderna; Fisher test has been used for comparison except for the comparison between all three primary vaccines where the X² test was used (last column). Two-sided tests were used. Statistically significant differences are indicated by bold type p-values; source data are provided as a Source Data file.

Supplementary Table 5: Two-sided p-values from statistical comparisons of reactogenicity of the regimens after the second vaccination.

Secondary vaccine	ChAdOx/	ChAdOx/	ChAdOx/	ChAdOx/	ChAdOx/	ChAdOx/	ChAdOx/	ChAdOx/	ChAdOx/	BNT/	
regimen 1	ChAdOx	ChAdOx	ChAdOx	ChAdOx	BNT	BNT	BNT	mRNA-1273	mRNA-1273	BNT	
Versus											All groups
				DNA 4070/			DNA 4070/		DNIA 4070/	DNIA 4272/	All groups
Secondary vaccine	ChAdOx/	ChAdOx/	BN1/	mRNA-1273/	ChAdOx/	BN1/	mRNA-1273/	BN1/	mRNA-12/3/	mRNA-12/3/	
regimen 2	BNT	mRNA-1273	BNT	mRNA-1273	mRNA-1273	BNT	mRNA-1273	BNT	mRNA-1273	mRNA-1273	
Adverse events											
(goporal) ¹	p<0.0001	p<0.0001	p=0.134	p<0.0001	p=0.001	p=0.002	p=0.234	p<0.0001	p=0.213	p=0.0008	p<0.0001
(general)											
Pain ²	p<0.0001	p<0.0001	p=0.433	p=0.0002	p=0.380	p=0.002	p=0.821	p<0.0001	p=0.258	p=0.009	p<0.0001
			-								-
Swolling ²	n=0.902	n=0.005	n=0 102	-0.042	n=0.012	n=0.120	n=0.090	n=0.0002	n=0 725	m=0.002	n=0.0002
Sweining	p=0.802	p=0.005	p=0.195	p=0.042	p=0.012	p=0.120	p=0.080	p=0.0002	p=0.725	p=0.002	p=0.0005
Antipyretic		m <0.0001	-0.000	n-0 11	-0.024	-0 199	-0.042			n-0.250	m 40,0001
medication ³	p=0.037	p<0.0001	p=0.600	p=0.115	p=0.024	p=0.188	p=0.843	p=0.0008	p=0.012	p=0.350	p<0.0001
5 (22 500)2	0.050		0.465		0.400	0 700	0.754		0.051		
Fever (<38.5°C) ³	p=0.058	p=0.0003	p=0.165	p=0.011	p=0.103	p=0.702	p=0.754	p=0.060	p=0.351	p=0.461	p=0.005
Headache ³	p=0.0008	p<0.0001	p=0.207	p=0.0003	p=0.004	p=0.102	p=0.857	p<0.0001	p=0.013	p=0.061	p<0.0001
	P	P	P	P	P	P 0	p	P	P	P	P
Fatigue ³	p=0.030	p<0.0001	p=0.043	p<0.0001	p=0.0002	p>0.999	p<0.0001	p=0.0015	p=0.543	p=0.0005	p<0.0001
Chills ³	p=0.033	p<0.0001	p=0.303	p<0.0001	p=0.072	p=0.522	p=0.014	p=0.020	p=0.353	p=0.003	p<0.0001
	P	P	p	P	P		P	P	p 0.000	P	P
GI effects ³	p=0.745	p=0.057	p=0.714	p=0.352	p=0.175	p>0.999	p=0.770	p=0.311	p=0.375	p=0.755	p=0.204
Mvalgia ³	p=0.003	p<0.0001	p=0.351	p=0.0001	p=0.002	p=0.102	p=0.340	p<0.0001	p=0.070	p=0.013	p<0.0001
i i i julgiu	p 01000	p (010001	p 0.001	p clocci	p 0.001	p 0.102	p 0.510	p 1010001	p 0.070	p 0.010	p (010001
Arthralgia ³	p=0.139	p=0.001	p=0.734	p=0.125	p=0.109	p=0.096	p>0.999	p=0.0012	p=0.146	p=0.088	p=0.001

¹Corresponding to differences in local, systemic or local and systemic adverse events as shown in figure 3a; ²Corresponding to figure 3b; ³Corresponding to figure 3c; ChAdOx refers to ChAdOx1 nCoV-19 by AstraZeneca; BNT refers to BNT162b2 by BioNTech/Pfizer, mRNA-1273 by Moderna; Fisher test has been used for comparison except for the comparison between all three primary vaccines where the X² test was used (last column). Two-sided tests were used. Statistically significant differences are indicated by bold type p-values; source data are provided as a Source Data file.

Antigen	Conjugate	Clone	lsotype	Reactivity	Catalogue number
CD3	PerCP	SK7	lgG1 k	mouse anti-human	345766
CD4	APC-H7	SK3	lgG1 k	mouse anti-human	641398
CD8	V500	RPA-T8	lgG1 k	mouse anti-human	560774
CD8	PerCP	SK1	lgG1 k	mouse anti-human	345774
CD19	FITC	HIB19	lgG1 k	mouse anti-human	555412
CD27	APC	L128	lgG1 k	mouse anti-human	337169
CD38	PE	HB7	lgG1 k	mouse anti-human	345806
CD69	PE-Cy7	L78	lgG1 k	mouse anti-human	335792
CTLA-4	APC	BNI3	lgG2a k	mouse anti-human	555855
IFNγ	FITC	4S.B3	lgG1 k	mouse anti-human	554551
IgD	PE-Cy7	IA6-2	IgG2a k	mouse anti-human	561314
IL-2	PE	MQ1-17H12	lgG2a k	rat anti-human	559334
τνγα	V450	MAb11	lgG1 k	mouse anti-human	561311

Supplementary Table 6: Antibodies for flow-cytometric analyses

All antibodies were purchased from BD.

Supplementary Figure 1

Supplementary Fig. 1: Representative flow-cytometric results of antigen-specific T cells after SARS-CoV-2 vaccination (mRNA-1273/mRNA-1273). Representative contour plots of CD4 and CD8 T cells after antigen-specific stimulation of a whole blood sample from a 49-years old individual 18 days after the second dose of the homologous mRNA-1273-vaccination regimen. Percentage of reactive (CD69+IFNγ+) cells among total CD4 (upper panel) or CD8 T cells (lower panel) were determined after stimulation with DMSO (negative control), overlapping peptides of SARS-CoV-2 spike protein or SEB (positive control). IFN, interferon; SEB, *Staphylococcus aureus* enterotoxin B.

ntary Figure 2

Supplementary Fig. 2: Immune responses against the SARS-CoV-2 spike protein after homologous COVID-19 vaccine regimens or heterologous ChAdOx-priming and BNT- or mRNA-1273-boosting in individuals matched for age and gender. Cellular and humoral immune parameters were analyzed two weeks post vaccination and compared between ageand gender-matched individuals (n=40 per vaccine group). (a) ELISA and surrogate neutralization assays were performed to quantify levels of spike-specific IgG and neutralizing antibodies. Intracellular cytokine staining after antigen-specific stimulation of whole blood samples allowed for flow-cytometrical determination of SARS-CoV-2 spike-specific (b) and SEB-reactive (c) CD4 and CD8 T-cell levels. Reactive cells were identified by co-expression of CD69 and IFNy among CD4 or CD8 T cells and subtraction of background reactivity of respective negative controls. Bars represent medians with interquartile ranges. Differences between the groups were calculated using two-sided Kruskal-Wallis test with Dunn's multiple comparisons post-test. Dotted lines indicate detection limits for antibodies in (a), indicating negative, intermediate and positive levels or levels of inhibition, respectively as per manufacturer's instructions, and detection limits for SARS-CoV-2-specific CD4 T cells in (b) and (c). Source data are provided as a Source Data file. IFN, Interferon; SEB, Staphylococcus aureus enterotoxin B.

Supplementary Figure 3

Supplementary Fig. 3: Gating strategy for analysis of antigen-specific T cells. (a) Lymphocytes were identified among total events by SSC-A and FSC-A signals and backgating of CD4 and/or CD8 positive cells. To improve the accuracy of the analysis, doublets were excluded by area and height signals of FSC and non-specific events were excluded using the V500 channel (not used for staining). Among single lymphocytes, T helper cells were determined as CD4-positive CD8-negative cells, whereas cytotoxic T cells were positive for CD8 and negative for CD4. Gating of cytokine-expressing antigen-specific T cells is shown in (b) for CD4 and (c) for CD8. CD69+IFNy+ T cells were further subdivided into four subpopulations according to additional

expression of TNF α and IL-2. Using "NOT" Boolean Gating (dotted gates), T cells not being CD69+IFN γ + were analyzed for CD69+IL-2+ and CD69+TNF α +. By using "OR" Boolean Gating, CD69+IL-2+ and CD69+TNF α + were combined and divided into TNF α single, IL-2+TNF α + or IL-2 single T cells. FSC, forward scatter; IFN, interferon; IL, interleukin; SSC, side scatter; TNF, tumor necrosis factor.