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Supplementary Text  

  

Supplementary Text 1. Theoretical cooling power  

The radiative cooling power is determined by (18, 20, 21, 28, 46).  

 R rad amb sun conv+condP P P P P                                                                                                                               (S1)  

in which, radP and ambP  denote radiative power from a cooler and absorbed ambient radiative power  

on the cooler, respectively. sunP is the power of absorbed sunlight. conv+condP  is the loss of cooling  

power due to convection and conduction.   

  

In Equation S1, the radiative power from a cooler is:  

4

rad c cP T                                                                                                                                                          (S2)  

where  is the Stefan-Boltzmann constant, c is the mid-infrared emissivity of the cooler, and cT 

is the temperature of the cooler.  

  

4

amb amb ambcP T                                                                                                                                                 (S3)  

in which, c , amb , and ambT represent the mid-infrared absorptivity of the cooler, mid-infrared  

emissivity and temperature of the ambient, respectively. According to Kirchhoff’s radiation law,  

we assume that c equals c .  

  

conv+cond amb c( )P h T T                                                                                                                                           (S4)  

where h  is the thermal transfer coefficient between the ambient and the cooler in the forms of  

conduction together with convection.  

  

In the calculation for Fig. 1A and Fig. 1B, considering an ideal scenario, the c , ambT , h  and sunP 

are assumed to be 1, 25 ℃, 0 W m-2 K-1, 0 W m-2, respectively. For the calculation in Fig. 1A, cT 

is set as 30 ℃. For the data in Fig. 1B, the amb  is assumed to be 0.724 (28).  

  

The cooling power from the evaporative cooling of pure water can be expressed as (36, 37)  

E evP H m


                                                                                                                                                             (S5)  



 

 

where, evH  is the enthalpy of water evaporation. m


 denotes the evaporation rate of water.   

  

The enthalpy of pure water evaporation nearly unchangs with water temperature within the range  

of 30-50 ℃, and is assumed to be 2400 kJ kg-1 in the following calculations (47).  

  

The water evaporation rate (in a unit of kg m-2 h-1) can be expressed as (48):  

)Sm    （                                                                                                                                                         (S6)  

where,  is evaporation coefficient, which equals 25 + 19v. v is the velocity of air above the water  

surface (unit: m s-1). S  denotes the maximum humidity ratio of saturated air at the same  

temperature as the water surface (kg H2O in kg dry air).  is the humidity ratio of ambient air.  

  

Here, we calculate the water evaporation rate under a windless condition (namely, v is zero). The  

ambient temperature and relative humidity are set as 25 ℃ and 40%, respectively. The calculated  

evaporation rates of pure water (in an open vessel) at different temperatures are shown in fig. S1.    

  

The theoretical cooling power of the TRE cooler is obtained by  

TRE R EP P P                                                                                                                                                        (S7)  

   

https://www.engineeringtoolbox.com/humidity-ratio-air-d_686.html
https://www.engineeringtoolbox.com/humidity-ratio-air-d_686.html


 

 

Supplementary Text 2. Optical modeling 

The optical scattering of the nanofibers in the solar wavelength range under various diameters was 

calculated using Mie theory. Here we treat the nanofibers as randomly oriented cylindrical objects, 

and computed the scattering averaging over both TM and TE polarizations. The refractive index 

dispersion of cellulose acetate was taken into account in the calculation. It can be observed that 

having a non-uniform distribution of nanofiber size is important to maintain a strong broadband 

scattering. The experimentally obtained nanofibers with controllable diameter sizes distributed in 

the range of 0.5-0.85 um can provide efficient scattering over the major part of the solar spectrum.  

  



 

Supplementary Figures  

  

Fig. S1. Water evaporation rates (abbreviated as ER) at different temperatures (shortened to  

T). The fitting assumes that water evaporation is a tandem process of vaporization coupled with  

diffusion. Both processes are regarded as first-order kinetic reactions.    

   



 

 

Fig. S2. Stability in optical properties of the CA fibrous network while exposed under outdoor 

UV light. The solar reflection (a) and mid-infrared emission (b) spectra of the CA fibrous network 

before and after 1-month of outdoor exposure. The nearly unchanged optical spectra of the CA 

fibrous network indicate that it has good UV stability. c, Power of midday sunlight during the 

stability test.  

 

  



 

  
Fig. S3. Characterizations of the cellulose acetate butyrate (abbreviated as CAB) fibrous  

network and comparisons with the CA fibrous network. CAB is a ramification of CA with  

recognized UV stability (49-51). The CAB fibrous network is also fabricated via electrospinning,  

with the same solution system of acetone and DMF for the CA fibrous network. a, The as-prepared  

CAB fibrous network appears snow-white like the CA fibrous network. b, Nano-fibers randomly  

stack with each other just as that of the CA fibrous network. c, The CAB and CA fibrous networks  

have similar vapor permeability (slope). d, The water contact angle of the CAB fibrous network  

reaches 135°, resembling that of the CA fibrous network (131°). e, The CAB and CA fibrous  



 

 

networks possess similar sunlight reflection and mid-infrared emission spectra. Photo credit of (a)  

and (d): Jinlei Li, Nanjing University.  

  

   



 

 

  

Fig. S4. Stability in optical properties of the CAB fibrous network while exposed under  

outdoor UV light. The solar reflection (a) and mid-infrared emission (b) spectra of the CAB  

fibrous network before and after 1-month of outdoor exposure. The nearly unchanged optical  

spectra reflect the excellent UV stability of the CAB fibrous network.  

   



 

 

  

Fig. S5. Moisture adsorption curves of the PVA-CaCl2 hydrogel under different humilities.  

The ambient temperature was controlled to be ~25 ℃.   

   



 

 

  
Fig. S6. Evaporation curves of the PVA-CaCl2 hydrogel under different humilities. The  

ambient temperature and heating temperature were controlled around 25 ℃ and 50 ℃, respectively.   

   



 

 

  

Fig. S7. Reflection spectra of the PVA-CaCl2 hydrogel before and after moisture adsorption.  

The intrinsic optical absorption of water for sunlight, especially at the near-infrared band, results in  

a significant decline in reflection.   
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Fig. S8. Relative humidity of cooling performance measurements in Fig. 3. a and b, Relative  

humidity of the measurements in Fig. 3D and Fig. 3F, respectively.  

   



 

 

 

Fig. S9. Ambient conditions of cooling performance measurements in Fig. 4. a-c, Ambient 

conditions of Fig. 4C, Fig. 4E, and Fig. 4G, respectively. 

  



 

 

 

Fig. S10. Ambient conditions and sunlight power during 3-day continuous cooling 

measurement in Fig. 4H. a-c, Ambient temperature and relative humidity of air and power of 

sunlight, respectively. 

  



 

 

  

Fig. S11. The experimental setup and cooling performance of the TRE cooler when it rains. a  

and b, Schematics show the bird’s view and sectional view of the experimental setup, respectively.  

The PE film and the groove wind shelter together serve as effective rain shelters. The holes on the  

wind shelter ensure vapor escape from the TRE cooler to the ambient. c, A photograph of the  

experimental device. d, A photograph shows that the PE film is capable of protecting the inner TRE  

cooler from water/rain. e, Temperature comparisons between a TRE cooler and a radiative cooler  

on a rainy day. A thermal load of ~200 W m-2 is applied to the coolers. The TRE cooler is ~6.5 ℃  

cooler than the radiative cooler. Photo credit of (c) and (d): Jinlei Li, Nanjing University.  

  

  

   



 

 

  

Fig. S12. Comparison of cooling performance between the TRE cooling and conventional  

evaporative cooling (from a wet white textile) at 50 ℃. a, Cooling powers. The cooling capacity,  

by integrating cooling power with respect to time (namely, the area below the curves of cooling  

power), of the TRE cooler is much larger than that of the evaporative cooling. This is mainly  

because the PVA hydrogel is elaborately designed not only to efficiently harvest moisture, but also  

to have an excellent capacity in storing the captured water to sustain the daytime cooling. b,  

Sunlight power during the cooling power measurement.  

   



 

 

  
Fig. S13. Climate/humidity map. Maps show the (a) climate zone of China and (b) global average  

yearly humidity. The red/black circles denote the places we traveled to measure the cooling  

performance of the TRE cooler. Our test sites include the three main climate zones of China that  

require cooling, and the major humidity conditions of the world (accounting for >70% of land  

surface). Map source: (a) PloS one, doi:10.1371/journal.pone.0068102.g003 (52), (b) University of  

Wisconsin-madison (53).  

   



 

 

  

Fig. S14. Ambient conditions of the measurements in the arid climate. a, Ambient temperature  

and relative humidity during the night. The PVA-CaCl2 hydrogel captures 0.43 kg m-2 of water  

from ambient. b and c, Sunlight power and ambient temperature together with relative humidity of  

air during the cooling power measurement in the day, respectively.  

  

   



 

 

  
Fig. S15. Ambient conditions of the measurements in the subhumid climate. a, Ambient  

temperature and relative humidity during the night. The PVA-CaCl2 hydrogel captures 0.86 kg m-2  

of water from ambient. b and c, Sunlight power and ambient temperature together with relative  

humidity of air during the cooling power measurement in the day, respectively.  

  



 

 

 
Fig. S16. Ambient conditions of the measurements in the humid climate. a, Ambient 

temperature and relative humidity during the night. The PVA-CaCl2 hydrogel captures 1.86 kg m-2 

of water from ambient. b and c, Sunlight power and ambient temperature together with relative 

humidity of air during the cooling power measurement in the day, respectively. 

 

  



 

 

  
Fig. S17. The cooling powers of the TRE and radiative coolers during the whole day  

performance test in the subhumid climate. The TRE cooler performs much better cooling  

compared with the radiative cooler. The yellow line records the sunlight power during the cooling  

performance test.  

  

   



 

 

  
Fig. S18. The continuous cooling power of the TRE cooler in the subhumid climate. a-f,  

Cooling powers of the TRE and radiative coolers during the 6 days of continuous measurements.  

The cooling powers of TRE cooler are higher than that of the radiative cooler until the stored water  

is used up. Then their cooling powers, both from radiative cooling, stay at the same level. The  

higher cooling performance of the TRE cooler supports better cooling during the hottest period  

during the daytime compared to the radiative cooler. g, Cooling powers at 11:30 every day of the  

TRE and radiative coolers.  The cooling power of the TRE cooler stays stable and is always higher  

than that realized by the radiative cooler. h, From top to bottom are the powers of sunlight during  

the 6 days of continuous measurements. i, Water adsorption and desorption of the PVA-CaCl2  

hydrogel during the 6 days of continuous measurements. Water adsorption matches desorption.  

  

   



 

 

 
Fig. S19. Continuous temperature measurements of the TRE cooler in the subhumid climate. 

a-f, Temperatures of the TRE and radiative coolers under a heating load of ~ 200 W m-2. 6 days of 

continuous measurements are presented, respectively. The temperatures of the TRE cooler are 

always lower than that of the radiative cooler during the hottest 5 hours of daytime, indicating the 

better cooling performance enabled by the TRE cooler. g and h, Temperatures of the TRE and 

radiative coolers at (g)11:30 and (h)13:00 every day. The temperature of the TRE cooler is stably 

lower than that of the radiative cooler. i, Water adsorption and desorption of the PVA-CaCl2 

hydrogel during the 6 days of continuous measurements. Water adsorption and desorption are 

accordant. 

 

  



 

 

   

Fig. S20. The realized and expected cooling power of the TRE cooler as a function of working  

temperatures. Attractive potential in realizing a better cooling performance of the TRE cooler is  

predicted. In the future, further optimizing the atmospheric moisture harvesting along with water  

desorption properties (such as minimizing the water evaporation enthalpy (54)) and  

reflectivity/emissivity spectra of the TRE cooler can lead to ongoing improvement in the passive  

cooling power of the TRE cooler during daytime.  

   



 

 

  

Fig. S21. A schematic of the test device for obtaining the water desorption curves of PVA- 

CaCl2 hydrogel with/without the CA fibrous network.  

  

   



 

 

Supplementary Table  

  

Table S1. Comparisons in cooling power with literatures. The asterisk (*) denotes the value is  

estimated according to the information provided in the reference.  

Reference Working temperature (℃) Cooling power (W m-2) 

This work ~50 ~500 (Fig. 4C) 

PAM-CNT hydrogel (36) ~50 ~331 

MIL-101(Cr) powders onto 

metallic substrate (37) 
~54 ~313* 

Li-PAAm hydrogel (38) ~50 ~112* 

rGO/ionogel (RIG) (55) ~50 ~0.55* 

LiBr Hydrogel (56) ~50 ~157* 

Zn-PAAm hydrogel (57) ~50 ~190* 
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