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Supplementary Text 

Instrumentation, parameters and software for mass spectrometry 

Q-EXACTIVE HF 

Instrument / Parameter Value Comments 

Q-Exactive HF ThermoScientific, Bremen, Germany DDA-Mode (positive ion mode) 

MS1   

Polarity positive  

Resolution R120000 at m/z 200  

AGC 3x 10E6  

Max. Fill Time 100ms  

Lock Mass m/z 445.120025 Dodecamethylcyclohexasiloxane (60) 

Scan Range m/z 395-1500  

Picotip Needle  20µm / 10µm NewObjectives, Ithaca, USA 

Voltage 2.3-2.7kV (might vary between experiments) 

   

MS2 High Res Top10 HCD 

Resolution R15000 at m/z 200  

AGC 1E5  

Max. Fill Time 50ms  

Isolation 2.0 m/z  

Isolation window Offset 0.3 m/z  

Scan Range 200-2000 m/z  

Fixed 1st Mass -  

Norm. Collision Energy 27  

Threshold 2E3 / 4E4  

Charge states Unassigned, 1, 6-8, >8 (rejected) 

Dynamic Exclusion 15s / 3ppm  

 

Thermo Dionex3000 RSLC 

Instrument / Material Manufacturer (Supplier) Comments 

Dionex3000 RSLC  ThermoScientific, Idstein, Germany Nanoflow System 

Acclaim PepMap 100 C18,  

3 µm, 300 µm x 5 mm, 

Acclaim PepMap C18 3, 

 µm, 75 µm x 15 cm 

ThermoScientific, Idstein, Germany  Trap-Column Setup 

Load: 2µl/min 

Separation: 200nl/min 

 

 

 

 

 

 

 

 



 

 

 

 

Software 

 

Instrument / Material Manufacturer 

(Supplier) 

Comments 

MASCOT V2.6 (61) MatrixScience, London, UK Protein Identification Software 

matrixscience.com 

Progenesis QIP V4.2 Nonlinear Dynamics, Newcastle 

u.T., UK 

Quantitative data interpretation (Peak 

Picking, MS/MS Export, Peptide ID import 

and Assignment, Quantification (MI3/Hi3)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

Fig. S1. C11orf94 is exclusively expressed in the murine testis. (A) Targeting strategy for 

generation of the C11orf94-/- strain. The complete protein-coding region of the wild type (Wt) 

C11orf94 allele was deleted and a LacZ reporter cassette was integrated in this locus. 

(B) Representative example for genotyping PCRs detecting either the wild type or knockout allele. 

(C) HEK cells were transfected with either human (h) or murine (m) C11orf94-3xFLAG. Lysates 

of these cells were subsequently employed to test the newly generated C11orf94 antibody targeting 

the C-terminus of the murine protein. Anti-FLAG served as control. Expression of C11orf94 was 

analysed in spleen (D), lung (E), brain (F), bone marrow (G), liver (H), heart (I), ovary (J) and 

uterus (K) of wild type mice by Western Blotting. While lysates from the respective organs isolated 

from C11orf94-deficient mice (C11 KO) served as negative control, a wild type testis lysate was 



 

 

 

 

included in the analysis as positive control. The asterisk indicates an unspecific protein band 

stained with the C11orf94 antibody. 

  



 

 

 

 

 

Fig. S2. C11orf94 specifically inhibits SPPL2c-mediated proteolysis. (A) HEK cells were 

transiently transfected with mC11orf94-3xFLAG and mSPP-myc and interaction of both proteins 

was analysed by co-immunoprecipitation. For this purpose, C11orf94 was precipitated from 

lysates (1% Triton X100) of these cells using anti-FLAG and protein G agarose. Bead eluates (IP) 

as well as total lysates were finally subjected to Western Blotting. (B) To test proteolytic activity 

of SPPL2c active site mutants, HEK cells were transfected with HA-RAMP4-2 and the indicated 

SPPL2c mutants or an empty vector (EV) as control. RAMP4-2 proteolysis was finally evaluated 

by immunoblotting. (C) Quantification of B). N=2, n=4, One-Way ANOVA with Tukey’s post 

hoc test. Statistical indices above the bars indicate significance against the EV-transfected control. 

(D) Proteolysis of RAMP4-2 by SPPL2c P508L in transfected HEK cells was analysed by Western 

Blotting. (E) Quantification of D). N=3, n=6, One-Way ANOVA with Tukey’s post hoc test. 



 

 

 

 

Throughout the Figure, statistical indices above the bars depict significance against the EV control, 

further comparisons are indicated with lines. (F) HEK cells transiently transfected with the 

indicated constructs were lysed and C11orf94 protein levels were compared by Western Blotting. 

(G) Quantification of F). N=4, n=8, One-Way ANOVA with Tukey’s post hoc test. (H) HEK cells 

were transfected with HA-HO1 alone or in different combinations with mSPPL2c-myc (2c) and/or 

mC11orf94-3xFLAG (C11). Processing of HA-HO1 by SPPL2c under these conditions was 

visualised by Western Blotting following lysis of the cells. (I) Quantification of H). N=5, n=5, 

One-Way ANOVA with Tukey’s post hoc test. (J) Same as described in H) but employing HA-

Stx8 as substrate. (K) Quantification of J). N=3, n=3, One-Way ANOVA with Tukey’s post hoc 

test. (L) Proteolysis of HA-mPLN was analysed as described in H) for HA-HO1. (M) 

Quantification of L). N=3, n=3, One-Way ANOVA with Tukey’s post hoc test. (N) Regulation of 

SPP-mediated intramembrane proteolysis of HA-RAMP4-2 by C11orf94 was evaluated by 

Western Blot analysis of HEK cells transiently transfected with the indicated constructs. (O) 

Quantification of N). N=4, n=4, One-Way ANOVA with Tukey’s post hoc test. ns, not significant; 

* p≤0.05; ** p≤0.01; *** p≤0.001. 

  



 

 

 

 

 

Fig. S3. Loss of C11orf94 does not impair binding of sperm to oocytes. Binding of sperm cells 

from either wild type or C11orf94-deficient mice (C11orf94 KO) to wild type oocytes without 

zona pellucida was monitored 1 h after IVF by light microscopy. Scale bar, 100 µm. 

  



 

 

 

 

 

Fig. S4. C11orf94 specifically regulates Izumo1 trafficking. (A) HeLa cells were transiently 

transfected with mCADM-HA alone or in combination with mC11orf94-3xFLAG. After PFA-

fixation, localisation of both proteins was subsequently visualised by indirect immunofluorescence 

employing the indicated antibodies. Scale bar, 10 µm. (B) Same as in A) but employing Notch1ΔE-

eGFP (NΔE-GFP) instead of CADM-HA. Scale bar, 10 µm. (C) Interaction of Izumo1-HA and 

C11orf94-3xFLAG was analysed in presence or absence of SPPL2c-myc. HeLa cells transiently 

transfected with the indicated constructs were lysed in 0.5% CHAPSO and C11orf94-containing 

complexes were precipitated using anti-FLAG beads. Presence of the individual proteins in total 

lysates and bead eluates (IP) was finally evaluated by Western Blotting.  

 

  



 

 

 

 

 



 

 

 

 

Fig. S5. Loss of C11orf94 does not impact on acrosomal sorting of Izumo1. (A) Localisation 

of Izumo1 and C11orf94 was analysed in testis cryosections from either wild type (Wt) or C11-

deficient mice (C11 KO) mice by immunohistochemistry. Nuclei were stained with DAPI. Scale 

bar, 25 µm. (B) Izumo1 protein levels in the testis were compared between Wt and C11 KO mice 

by Western Blotting. (C) Quantification of B). N=2, n=6, two-tailed unpaired Student’s t-test. (D) 

Non-capacitated epididymal spermatozoa not subjected to acrosome reaction (-AR) from Wt or 

C11 KO mice were analysed for Izumo1 protein levels by immunoblotting. (E) Quantification of 

D). N=3, n=7(Wt)/6(C11 KO), two-tailed unpaired Student’s t-test. (F) The experiment described 

in D) was repeated using sperm cells that were first capacitated for 45 min and then subjected to 

treatment with 10 µM Calcimycin to induce the acrosome reaction (+AR). (G) Quantification of 

F). N=1, n=3, two-tailed unpaired Student’s t-test. Localisation of Izumo1 in non-capacitated (H) 

or capacitated and acrosome-reacted (I) epididymal spermatozoa from Wt or C11orf94 KO mice 

was analysed by indirect immunofluorescence. Acrosome reaction was induced by treatment with 

10 µM Calcimycin for 45 min. Sperm cells were fixed with PFA prior to staining of Izumo1 using 

a specific antibody as well as acrosomes employing PNA-FITC and nuclei with DAPI. Scale bar, 

5 µm. (J) The localisation of Izumo1 in sperm cells from Wt or C11 KO mice that showed a clear 

redistribution of Izumo1 upon induction of the acrosome reaction was categorised as either within 

the aequatorial segment or spread over the whole sperm head. At least 49 sperm cells per mouse 

were analysed.  N=2, n=5(Wt)/6(C11 KO), two-tailed unpaired Student’s t-test. ns, not significant. 

  



 

 

 

 

Fig. S6. Validation of antibodies targeting SOF1 or SPACA6. (A) HEK cells transfected with 

an empty vector (EV) or SOF1-3xHA as well as testis and sperm cells from a wild type mouse 

were lysed. Antibodies targeting SOF1 were subsequently tested by Western Blotting for detection 

of the endogenous or overexpressed protein. Expression of SOF1-3xHA was validated employing 

an antibody targeting the HA epitope. Tubulin served as loading control. (B) A custom-made 

antibody targeting murine SPACA6 was validated as described in A) but employing HEK cells 

transfected with SPACA6-HA as control. 
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