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Other Supplementary Materials for this manuscript includes: 

‐ Table S2: Lengths and widths of analyzed cells. 

This table reports information on the length and the width of all the analyze cells. Cells’ 
lengths and widths are separated in columns according to the protein they were 
expressing. 

‐ Table S3: Diffusion coefficients and displacements of analyzed cells. 

This table reports information on the number of displacements measured in each region 
(cell center, right pole, left pole) of each cell and the related diffusion coefficient. 
Diffusion values and number of displacements are separated in different columns, 
representing the different regions of the cell. Data are then further separated in cluster 
representing the expressed protein.  



Supplementary Text 

On cytoplasmic viscosity 

We observe that the diffusion coefficient scales with the complex molecular mass in the following 
manner: 

Dobserved ≈ αMcomplex
-0.54

Where Mcomplex represents the complex molecular mass, which was calculated as sum of the mass 
of the monomeric protein plus the fluorescent probe (mEos3.2) and multiplied by the oligomeric 
state number. 

The Einstein-Stokes equation states that for non-interacting spherical particles moving of 
Brownian motion: 

𝐷 ൌ
𝑘𝑇

6𝜋𝜂𝑟
   ሺ1ሻ 

 where kB is the Boltzmann constant, T is the absolute temperature, η is the viscosity of the solvent and r 
is the radius of the diffusing particle. We can rewrite this equation as: 
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 We know that:  

𝑚 ൌ 𝑚𝑜𝑙𝑒𝑠 ∗ 𝑀௫   ሺ4ሻ 

1 𝑚𝑜𝑙𝑒 ≡  1 𝑁 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠   ሺ5ሻ 
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 Hence, we obtain: 

 

 So, we can rewrite the Einstein-Stokes equation as: 

𝐷 ~ 
𝑘𝑇

6𝜋𝜂ඨ 3
4𝜋

𝑀௫
𝜌𝑁

య

   ሺ7ሻ 

which means that: 

𝐷 ∝  𝑀௫
ି.ଷଷ   ሺ8ሻ 

Our experimental relationship differs substantially from the Einstein-Stokes equation. What is the 
basis for this difference? Clearly, the proteins are not perfect spheres, but if this parameter is 
important we would not have found the relationship with complex molecular mass. A similar 
argument could be made for surface charge. If deviations from the Einstein-Stokes equation are 
due to differences in protein charge, we would have lost the observed relationship. Another 
possibility would be that random walk is not an appropriate model for describing the diffusion of 



proteins inside the bacterial cell. However we do not see any clear dependence of diffusion on any 
of the analyzed parameters (abundance, loneliness or oligomeric state) except for the complex 
mass. If random walk was not an appropriate model for diffusing particles in the bacterial 
cytoplasm, then we should have seen some relationship with one of the other analyzed 
parameters. 

To ensure that our results were not biased by a systematic error, we compared a regression model 
with unconstrained fitting parameters and with an exponent power constrained to -0.33, which is 
the value given by the Einstein-Stokes equation. According to the extra sum-of-squares F test, 
which compares the goodness-of-fit of two alternative nested models (unconstrained and 
constrained), the unconstrained model with an exponent value of -0.54 was significantly better (p-
value << 0.01) than the constrained model for describing the relationship between apparent 
diffusion and complex molecular weight for the set of native proteins. As a quantitative measure 
of fitting error for unconstrained and constrained regression models, the absolute sum of squares 
was selected. The absolute sum of squares for the unconstrained and constrained models are 741.4 
and 1059.1, respectively, which indicates a 43% decrease in the deviation for the unconstrained 
fitting model. Hence, we conclude that the power-law model with an exponent of -0.54 is a better 
fit for correlating experimental diffusion data with the molecular weight of the protein complexes. 
We also notice that the protein density is more or less constant for proteins bigger than 30 kDa, 
with a fixed value of ~1.41 g/cm3 as reported by Fischer et al. (71). Hence, this parameter is not a 
factor in the scaling of the diffusion coefficients of proteins. We hypothesize that the cell 
cytoplasm is a dilatant, non-Newtonian fluid, in which the viscosity increases as a function of the 
stress applied to the environment. Bigger particles diffusing in the solution will impose a higher 
stress compared to the smaller particles, which in turn will make the environment more viscous. 
By rearranging the Einstein-Stokes equation, we compare the perceived viscosity with the 
macromolecular size of the particles as a function of the observed diffusion coefficients: 
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Hence, the perceived viscosity in the cytoplasm of E. coli can be written as a function of the mass 
of the macromolecules: 

𝜂௩ௗ ~ 𝛼𝑀௫
ఉ   ሺ10ሻ 

If we want to obtain the relation of Equation 8, given the formula reported in equation 7, we will 
have that 

𝛽 ൌ  െ0.333 െ ሺെ0.535ሻ ൌ 0.202   ሺ11ሻ 

Hence: 

𝜂௩ௗ  ~ 𝛼𝑀௫
.ଶ   ሺ12ሻ 



 Fig. S1. 

 Schematic of the target selection process. The native E. coli proteins selected for SMdM analysis  
are specified in Supplementary Table S1. 
 



 Fig. S2. 

 Comparison of cell width and cell length for each expression construct. The mean values are  
represented by dots; the error bars represent the standard deviation. 
 



Fig. S3. 

Analysis of the residuals from the plots in Figure 6D. The analysis shows no signs of correlation 
for the residuals. The diffusion coefficients of the heterologous proteins appear to be outliers 
when compared to the dataset obtained from only native proteins. 



Fig. S4. 

Multi-parameter analysis. Each variable has been tested for correlation with every other variable 
using the Spearman’s rank correlation test. No correlation was found between loneliness and 
molecular weight, loneliness and abundance, and abundance and molecular weight. A moderate 
correlation between molecular weight and complex mass and between oligomeric and complex 
mass is observed, which is expected as the complex mass is calculated as the sum of the 
molecular weight of the monomeric protein plus fluorescence reporter and multiplied by the 
oligomeric state number. No correlation is observed between molecular weight and oligomeric 
state. 



 Fig. S5. 

 Different views of the surface charge distribution of the three homologous TrxA proteins. Top  
view corresponds to Fig. 5A. 
 



Fig. S6. 

Examples of cells discarded from the analysis. A) Cell having too many displacements for being 
analyzed. B) Fitting of the cell in panel B. Too many displacements result in a poor fitting due to 
the high amount of background fluorescence. C) Cell not having enough displacements for being 
analyzed. D) Fitting of the cell in panel D. Too little displacements result in a poor fitting, which 
is especially evident for the fit of the right area. 



Table S1. 

Final set of proteins chosen for SMdM analysis. Most of the proteins were successfully expressed 
as C-terminal fusions with mEos3.2. We noted the following exceptions: SlyD and LeuB 
expression yielded a mix of aggregating and non-aggregating cells; OsmC, Ndk, NadE, AceA, 
MetK displayed polar aggregation after overexpression in the majority of their cells; SucC forms 
an obligatory heterotetrameric complex with SucD; and Ppc failed to produce an expressing 
clone. Proteins marked with an asterisk were excluded from diffusion mapping. MW is the 
molecular weight (Mw) of a single chain; oligomeric state is according to the UNIPROT entry; 
abundance in copies per cell was taken from Schmidt et al. (3) for cells grown in M9-glycerol. 
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