Science Advances

Supplementary Materials for

Bioinspired large Stokes shift small molecular dyes for biomedical fluorescence imaging

Hao Chen et al.

Corresponding author: Zhen Cheng, zcheng@simm.ac.cn; Hong Liu, hliu@simm.ac.cn

Sci. Adv. **8**, eabo3289 (2022) DOI: 10.1126/sciadv.abo3289

The PDF file includes:

Supplementary Text Figs. S1 to S12 Table S1 Legends for movies S1 to S3 NMR and MS spectrum data

Other Supplementary Material for this manuscript includes the following:

Movies S1 to S3

General Information

All air and moisture-sensitive reactions were carried out in flame-dried glassware under a nitrogen atmosphere. Reactive liquid compounds were measured and transferred by gas-tight syringes and were added to the reaction flask through rubber septa. Tetrahydrofuran (THF) was freshly distilled from sodium benzophenone ketyl. Dichloromethane, toluene, and DMF were distilled from CaH₂. All standard synthesis reagents were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO) and used without further purification. The cell line was obtained from the American Type Tissue Culture Collection (Manassas, VA). Female athymic nude mice (nu/nu) were purchased from Shanghai Experimental Animal Center (Shanghai). Analytical thinlayer chromatography was performed on glass-backed silica gel plates with an F254 indicator. Compounds were visualized under UV lamp or by developing in iodine, vanillin, phosphomolybdic acid solution or with a potassium permanganate solution followed by heating on a hot plate to approximately 350 °C. Flash chromatography was performed on 230-400 mesh silica gel with technical grade solvents which were distilled prior to use. ¹H NMR spectra were recorded on a Bruker AV400 at 400 MHz as CDCl₃ solutions with tetramethylsilane ($\delta = 0$ ppm) as the internal standard. ¹³C spectra were obtained on the same instruments at 100 MHz with CDCl₃ ($\delta = 77$ ppm) as the internal reference. Chemical shifts are reported in parts per million (ppm). Multiplicities are reported as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), etc. High-resolution mass spectra were performed on Bruker APEX III 7.0 Tesla Ion Spec 4.7 Tesla FTMS and Thermo Scientific LTO ORBITRAP XL. Analytical or preparative high-performance liquid chromatography (HPLC) was performed on a DIONEX ultimate 3000 instrument with PDA detection (column: Princeton SPHER-300 C18, 5 µm, 250 mm ×4.6 mm or 10.0 mm; mobile phase: water/acetonitrile with 0.1 % TFA).

Fig. S1. General Procedure for Preparation of Oxazolone Derivatives: Reagents and conditions: (a) HATU, DIPEA, DCM, r.t., 16 h; (b) LiOH, CH₃OH/H₂O, r.t., overnight; (c) DCC, DCM, r.t.; (d) DIPEA, DCM, r.t.

Fig. S2. X-ray diffraction structure analysis of SOD10

Table S1.

Crystal data and structure refinement data of SOD10.

Identification code	SOD10					
Empirical formula	C ₂₂ H ₁₉ Br N ₂ O ₂					
Formula weight	423.30					
Temperature	173(2) K					
Wavelength	1.34138 Å					
Crystal system	Monoclinic					
Space group	P21					
Unit cell dimensions	a = 4.0033(2) Å	a= 90°.				
	b = 9.9206(5) Å	b=93.855(3)°.				
	c = 23.7028(14) Å	g = 90°.				
Volume	939.23(9) Å ³					
Z	2					
Density (calculated)	1.497 Mg/m ³					
Absorption coefficient	2.069 mm^{-1}					
F(000)	432					
Crystal size	0.160 x 0.070 x 0.010 mm ³					
Theta range for data collection	3.252 to 54.909°.					
Index ranges	-4<=h<=4, -12<=k<=12, -2	8<=1<=25				
Reflections collected	7777					
Independent reflections	3414 [R(int) = 0.0479]					
Completeness to theta = 53.594°	99.5 %					
Absorption correction	Semi-empirical from equivalents					
Max. and min. transmission	0.888 and 0.695					
Refinement method	Full-matrix least-squares on F ²					
Data / restraints / parameters	3414 / 1 / 246					
Goodness-of-fit on F ²	1.010					
Final R indices [I>2sigma(I)]	R1 = 0.0409, wR2 = 0.0848					
R indices (all data)	R1 = 0.0553, wR2 = 0.0906					
Absolute structure parameter	-0.020(19)					
Extinction coefficient	n/a					
Largest diff. peak and hole	0.228 and -0.575 e.Å ⁻³					

Fig. S3. Optimized ground-state (S₀) geometries, calculated HOMO and LUMO of SOD1~12 at the B3LYP/6-31G (d) level. The HOMO and LUMO energy levels, as well as the energy gap are presented. The energy gap in the bracket was calculated from the onset absorption $E_g^{opt}=1240/\lambda_{a.e.\,(nm)}$ (Fig. S4).

Fig. S4. The UV-Vis Spectrum of SOD 1~12 and the respective bandgap energy estimations.

Fig. S5. Cytotoxicity assay of SOD 1~12 towards NIH/3T3 cells.

Fig. S6. The NIH-3T3 cell staining images of the SOD derivatives. Blue is the Hoechst in nuclei; red is SOD derivatives (excitation 453-490 nm, emission 730-780 nm). Scar bar: 10 μm.

Fig. S7. The best *in vivo* **fluorescent imaging filter set selection of SOD9. a.** The same SOD9 in 1.5 mL Eppendorf tube was imaged under different excitation wavelengths (vertical axis), and the emission light was collected under different cut-off filters (bandwidth ~10 nm, abscissa axis). **b.** The quantifications of (**a**) under the same excitation wavelength. The best excitation was chosen as 535 nm. The best emission filter was selected as 659 nm (bandwidth ~10 nm).

Fig. S8. Synthesis of (6-(5-((1E,3Z)-3-(2-((E)-4-(dimethylamino)styryl)-5-oxooxazol-4(5H)-ylidene)prop-1-en-1-yl)-2-methoxyphenoxy)hexyl)triphenylphosphonium bromide (SOD9-TPP). Reagents and conditions: (a) 1,6-Dibromohexane, K₂CO₃, Acetonitrile, 80°C; (b) Ethyl (triphenylphosphoranylidene)acetate, Et₃N, Acetonitrile, r.t.; (c) LiAlH₄, THF, -20°C; (d) MnO₂, DCM, r.t.; (e) S4, DIPEA, DCM, r.t.; (f) Triphenylphosphine, Toluene, 110°C.

Fig. S9. Fluorescence colocalization images of SOD9-TPP and MitoTracker Red in SCC090. Colocalization of SOD-TPP, mitochondrial specific probe (Mitotracker Red) in SCC090 cell lines.

Fig. S10. The SOD9-TPP cell uptake quantification by fluorescent imaging. The mean fluorescent intensities of SOD9-TPP in 3T3, U87MG, and SCC090 cell lines were compared with the same incubation concentration (3 μ M) and time (1 h) (n=6).

Fig. S11. Histological analysis of the major organs injected with SOD9-TPP. Representative H&E images of major organs including brain, heart, intestine, kidney, liver, lung, spleen, and stomach were collected from the mice treated with pH 7.4 PBS (Control group) or SOD9-TPP (SOD9-TPP group, 24 h post-injection, 5.0 mg/kg). No obvious organ damage or lesion was observed for SOD9-TPP injected mice. Scale bar: 250 µm.

Kidney & Adrenal gland

Fig. S12. Histological analysis of kidney and adrenal gland at the main paper Fig. 4g. The histological analysis identified the adrenal gland.

Movie S1. Real-time imaging of SOD9-TPP in the NIH/3T3 cells' mitochondria ($100 \times$ objective lens, excitation 453-490 nm, emission 730-780 nm).

Movie S2. Real-time monitoring of SOD9-TPP in the orthotopic HNSCC (SCC090) mouse with confocal fluorescent endomicroscopy after 2h i.v. injection (excitation 488 nm laser, emission 540 nm long-pass filter). SOD9-TPP was found in the tumor tissues.

Movie S3. Real-time monitoring of SOD9-TPP in the skull-opened mouse brain with confocal fluorescent endomicroscopy after i.v. injection (excitation 488 nm laser, emission 540 nm long-pass filter). SOD9-TPP was found in the blood vessel and the brain tissues.

General synthesis procedure and the chemical characterization of oxazolone derivatives (Fig. S1):

Ethyl (E)-(3-(4-(dimethylamino)phenyl)acryloyl)glycinate (S2).

To a solution of **S1** (10.00 g, 52.29 mmol) in 50 mL dichloromethane was added ethyl glycinate hydrochloride (7.30 g, 52.29 mmol), HATU (18.91 g, 78.44 mmol), and DIPEA (21.61 mL, 130.73 mmol). The resulting mixture was stirred at room temperature for 16 h. After this period, saturated aqueous NH₄Cl solution was added and extracted twice with dichloromethane. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under vacuum. The residue was purified by silica gel column using 30% ethyl acetate in petroleum ether as eluent to afford the title compound as a primrose yellow solid.

(E)-(3-(4-(dimethylamino)phenyl)acryloyl)glycine (S3).

To a solution of S2 (11.00 g, 39.81 mmol) in 20 mL methanol and 10 mL H₂O was added lithium hydrate (7.96 g, 199.03 mmol), and the reaction was stirred at room temperature overnight. After the reaction was completed, the mixture was concentrated under a vacuum and diluted with water. The diluted solution was adjusted to neutral with 1N hydrochloric acid. The precipitate was filtered using a Buchner funnel and washed with diethyl ether to afford the title compound as a yellow solid.

(E)-2-(4-(dimethylamino)styryl)oxazol-5(4H)-one (S4).

A solution of **S3** (5.00 g, 20.14 mmol) in 30 mL dichloromethane was added DCC (6.23 g, 30.21 mmol). The reaction was stirred at room temperature overnight. The resulting suspension was filtered, and the precipitate was washed with cold ethanol to afford the title compound as an orange solid.

(Z)-2-((E)-4-(dimethylamino)styryl)-4-(naphthalen-2-ylmethylene)oxazol-5(4H)-one (SOD1).

To a solution of S4 in 30 mL dichloromethane was added 2naphthaldehyde (339.14 mg, 2.17 mmol) and DIPEA (538.32 μ L, 3.26 mmol). The resulting mixture was stirred at room temperature overnight. Then the solvent was removed and the residue was purified by flash column chromatography using dichloromethane/methanol (100:1) as an eluent to afford the title compound as a red solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.45 (s, 1H), 8.41 (dd, J = 8.7, 1.7 Hz, 1H), 7.95 – 7.91 (m, 1H), 7.89 (d, J = 8.7 Hz, 1H), 7.87 – 7.83 (m, 1H), 7.67 (d, J = 15.9 Hz, 1H), 7.55 – 7.53 (m, 1H), 7.53 – 7.49 (m, 3H), 7.25 (s, 1H), 6.72 (d, J = 8.7 Hz, 2H), 6.64 (d, J = 16.0 Hz, 1H), 3.07 (s, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 168.1, 164.4, 152.2, 144.7, 134.5, 134.3, 133.4, 133.3, 132.0, 130.3, 129.2, 128.9, 128.7, 127.9, 127.9, 127.8, 126.7, 122.8, 112.1, 107.5, 40.3. HRMS (ESI) m/z [M + H]⁺ calcd for C₂₄H₂₁N₂O₂ 369.1598, found 369.1608.

(Z)-2-((E)-4-(dimethylamino)styryl)-4-(phenanthren-9ylmethylene)oxazol-5(4H)-one (SOD2).

Compound **SOD2** was prepared in a similar manner as described for compound **SOD1** as a red solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.13 (s, 1H), 8.76 (d, J = 9.7 Hz, 1H), 8.68 (d, J = 8.2 Hz, 1H), 8.34 (d, J = 9.8 Hz, 1H), 8.09 – 8.05 (m, 1H), 7.96 (s, 1H), 7.74 – 7.67 (m, 4H), 7.67 – 7.60 (m, 1H), 7.56 – 7.48 (m, 2H), 6.73 (d, J = 9.8 Hz, 1H), 8.09 – 8.05 (m, 2H), 6.73 (d, J = 9.8 Hz, 1H), 8.09 – 8.05 (m, 2H), 7.96 (s, 2H), 7.74 – 7.67 (m, 4H), 7.67 – 7.60 (m, 2H), 7.56 – 7.48 (m, 2H), 6.73 (d, J = 9.8 Hz, 2H), 8.09 – 8.05 (m, 2H), 7.74 – 7.67 (m, 2H), 7.67 – 7.60 (m, 2H), 7.56 – 7.48 (m, 2H), 6.73 (m, 2H), 7.56 – 7.48 (m, 2H), 6.73 (m, 2H), 7.56 – 7.48 (m, 2H), 6.73 (m, 2H), 7.56 – 7.48 (m, 2H), 7.56 – 7.50 (m, 2H

8.9 Hz, 2H), 6.67 (d, J = 15.9 Hz, 1H), 3.07 (s, 6H). ¹³C NMR (126 MHz, Chloroform-d) δ 167.9, 165.1, 152.1, 144.9, 135.5, 133.3, 131.5, 131.4, 130.7, 130.7, 130.4, 128.5, 128.4, 127.4, 127.1, 127.0, 124.6, 123.9, 123.4, 122.7, 112.4, 107.7, 40.5. HRMS (EI) m/z [M]⁺ calcd for C₂₈H₂₂ O₂N₂ 418.1676, found 418.1668.

(Z)-2-((E)-4-(dimethylamino)styryl)-4-((6-methoxynaphthalen-2-yl)methylene)oxazol-5(4H)-one (SOD3).

Compound **SOD3** was prepared in a similar manner as described for compound **SOD1** as a red solid. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.45 – 8.33 (m, 2H), 7.80 (dd, J = 22.7, 8.7 Hz, 2H), 7.65 (d, J = 16.0 Hz, 1H), 7.50 (d, J = 8.4 Hz, 2H), 7.23 (s, 1H), 7.20 – 7.09 (m, 2H), 6.73 (d, J = 8.2 Hz, 2H), 6.63 (d, J = 15.9 Hz, 1H), 3.95 (s, 3H), 3.07 (s, 6H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 168.2, 163.9,

159.5, 159.5, 151.9, 144.2, 135.9, 133.5, 133.3, 130.9, 130.2, 129.8, 129.5, 128.9, 128.7, 127.5, 119.5, 112.3, 107.8, 106.1, 55.6, 40.5. **HRMS** (EI) m/z [M]⁺ calcd for C₂₅H₂₂O₃N₂ 398.1625, found 398.1629.

(Z)-2-((E)-4-(dimethylamino)styryl)4-((1-bromonaphthalen-2-yl)methylene)-oxazol-5(4H)-one (SOD4).

Compound **SOD4** was prepared in a similar manner as described for compound **SOD1** as a black solid. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.85 (d, J = 8.7 Hz, 1H), 8.41 (d, J = 8.2 Hz, 1H), 7.93 (s, 1H), 7.85 (t, J = 7.8 Hz, 2H), 7.71 (d, J = 16.0 Hz, 1H), 7.60 (d, J = 8.0 Hz, 4H), 7.19 (s, 2H), 6.73 (d, J = 16.0 Hz, 1H), 3.13 (s,

6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 167.7, 145.5, 136.0, 135.8, 135.3, 135.0, 134.7, 134.1, 134.0, 132.7, 132.2, 130.5, 128.7, 128.3, 128.2, 127.9, 127.8, 127.3, 112.1, 107.2, 40.3. HRMS (EI) m/z [M]+ calcd for C₂₄H₁₉O₂N₂Br 446.0624, found 446.0631.

(Z)-2-((E)-4-(dimethylamino)styryl)-4-((E)-3phenylallylidene)oxazol-5(4H)-one (SOD5).

Compound **SOD5** was prepared in a similar manner as described for compound **SOD1** as a red solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 – 7.54 (m, 4H), 7.50 – 7.45 (m, 2H), 7.42 – 7.31 (m, 3H), 7.06 (d, *J* = 15.7 Hz, 1H), 6.99 (dd, *J* = 11.7, 1.0 Hz, 1H), 6.72 (d, *J* = 8.5 Hz, 2H), 6.54 (d, *J* = 15.9 Hz, 1H), 3.06 (s, 6H). ¹³C NMR

(126 MHz, Chloroform-*d*) δ 167.0, 163.2, 152.1, 144.3, 142.7, 136.4, 134.9, 130.2, 130.1, 129.7, 129.0, 127.9, 123.6, 122.9, 112.2, 107.3, 40.3. **HRMS** (ESI) m/z [M + H]⁺ calcd for C₂₂H₂₁N₂O₂ 345.1598, found 345.1603.

(Z)-2-((E)-4-(dimethylamino)styryl)-4-((E)-3-(4-

methoxyphenyl)allylidene)oxazol-5(4H)-one (SOD6).

Compound **SOD6** was prepared in a similar manner as described for compound **SOD1** as a red solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 (d, J = 15.9 Hz, 1H), 7.54 (d, J = 8.6 Hz, 2H), 7.52 – 7.42 (m, 3H), 7.05 (s, 1H), 7.00 (d, J = 11.0 Hz, 1H), 6.91 (d, J = 8.6 Hz, 2H), 6.74 (d, J = 8.3 Hz, 2H), 6.55 (d, J = 15.9 Hz, 1H), 3.85 (s, 3H), 3.06 (s, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 167.1,

162.7, 161.2, 152.1, 143.8, 142.7, 133.8, 130.9, 130.1, 129.6, 129.3, 122.9, 121.6, 114.6, 112.1, 107.4, 55.6, 40.3. **HRMS** (EI) m/z [M]⁺ calcd for $C_{23}H_{22}O_3N_2$ 374.1625, found 374.1624.

(Z)-4-((E)-3-(4-chlorophenyl)allylidene)-2-((E)-4-(dimethylamino)styryl)oxazol-5(4H)-one (SOD7). Compound SOD7 was prepared in a similar manner as described for compound SOD1 as a red solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 (d, J = 16.0 Hz, 1H), 7.50 (t, J = 9.1 Hz, 5H), 7.35 (d, J = 8.4 Hz, 2H), 6.98 (t, J = 13.4 Hz, 2H), 6.77 (d, J = 8.2 Hz, 2H), 6.54 (d, J = 15.9 Hz, 1H), 3.07 (s, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 166.8, 163.4, 144.6, 141.0, 135.5,

135.1, 134.9, 130.3, 129.8, 129.6, 129.5, 129.3, 129.0, 124.1, 112.5, 107.2, 40.5. **HRMS** (EI) m/z [M]⁺ calcd for C₂₂H₁₉O₂N₂Cl 378.1130, found 378.1137.

(Z)-2-((E)-4-(dimethylamino)styryl)-4-((E)-3-(4fluorophenyl)allylidene)oxazol-5(4H)-one (SOD8).

Compound **SOD8** was prepared in a similar manner as described for compound **SOD1** as a red solid. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.61 (d, J = 16.0 Hz, 1H), 7.58 – 7.54 (m, 2H), 7.54 – 7.48 (m, 1H), 7.48 – 7.45 (m, 2H), 7.07 (t, J = 8.6 Hz, 2H), 7.01 (d, J = 15.6 Hz, 1H), 6.96 (dd, J = 11.6, 1.1 Hz, 1H), 6.72 – 6.67 (m, 2H), 6.52 (d, J = 15.9 Hz, 1H), 3.06 (s, 6H). ¹³C **NMR** (126 MHz, Chloroform-*d*) δ 166.7, 163.5 (d, J = 254.5 Hz), 163.1, 162.4, 151.9, 144.3, 141.1, 134.7, 132.5 (d, J = 3.8 Hz), 130.1, 129.7, 129.5

(d, J = 7.6 Hz), 123.2, 116.0 (d, J = 21.4 Hz), 112.2, 107.1, 40.3. **HRMS** (ESI) m/z [M + H]⁺ calcd for C₂₂H₂₀FN₂O₂ 363.1503, found 363.1505.

(Z)-2-((E)-4-(dimethylamino)styryl)-4-((E)-3-(3,4dimethoxyphenyl)allylidene)-oxazol-5(4H)-one (SOD9).

Compound **SOD9** was prepared in a similar manner as described for compound **SOD1** as a red solid.¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.60 (d, *J* = 15.9 Hz, 1H), 7.46 (d, *J* = 9.0 Hz, 2H), 7.43 (d, *J* = 11.9 Hz, 1H), 7.15 (d, *J* = 2.0 Hz, 1H), 7.12 (dd, *J* = 8.3, 1.9 Hz, 1H), 7.04 – 7.00 (m, 1H), 6.99 (d, *J* = 5.6 Hz, 1H), 6.87 (d, *J* = 8.3 Hz, 1H), 6.71 (d, *J* = 8.7 Hz, 2H), 6.54 (d, *J* = 15.9 Hz, 1H), 3.96 (s, 3H), 3.93 (s, 3H), 3.06 (s, 6H). ¹³C **NMR** (126 MHz, Chloroform-*d*) δ 167.1, 162.8, 152.1, 151.0, 149.5, 144.0, 143.1,

133.7, 130.8, 130.1, 129.5, 122.8, 122.8, 121.6, 112.1, 111.3, 109.3, 107.2, 56.2, 56.1, 40.3. **HRMS** (EI) m/z $[M]^+$ calcd for $C_{24}H_{25}N_2O_4$ 405.1809, found 405.18097.

(Z)-2-((E)-4-(dimethylamino)styryl)-4-((E)-3-(4bromophenyl)allylidene)-oxazol-5(4H)-one (SOD10). Compound SOD10 was prepared in a similar manner as described for compound SOD1 as a red solid. ¹H NMR (400 MHz, Chloroform-d) δ 7.63 (d, J = 15.5 Hz, 1H), 7.59 – 7.53 (m, 1H), 7.50 (t, J = 9.1 Hz, 4H), 7.44 (d, J = 8.3 Hz, 2H), 6.98 (d, J = 10.3Hz, 1H), 6.95 (d, J = 6.4 Hz, 1H), 6.76 (d, J = 8.3 Hz, 2H), 6.54 (d, J = 15.9 Hz, 1H), 3.07 (s, 6H). ¹³C NMR (126 MHz, Chloroform-

d) δ 166.8, 163.5, 152.2, 144.6, 140.9, 135.3, 132.6, 132.2, 130.3, 129.4, 129.2, 124.2, 123.8, 122.9, 112.2, 107.1, 40.4. **HRMS** (EI) m/z [M]⁺ calcd for C₂₂H₁₉O₂N₂Br 422.0624, found 422.0618.

(Z)-2-((E)-4-(dimethylamino)styryl)-4-((1H-indol-2yl)methylene)- oxazol-5(4H)-one (SOD11). Compound SOD11 was prepared in a similar manner as described for compound SOD1 as a black solid. ¹H NMR (400 MHz, Chloroform-d) δ 10.51 (s, 1H), 7.65 (s, 1H), 7.62 (d, J = 8.5 Hz, 1H), 7.53 – 7.48 (m, 2H), 7.46 (dd, J = 8.3, 1.1 Hz, 1H), 7.30 (ddd, J = 8.1, 6.9, 1.1 Hz, 1H), 7.15 (s, 1H), 7.12 (ddd, J = 8.0, 7.0, 1.0

Hz, 1H), 6.95 (d, J = 1.6 Hz, 1H), 6.71 (d, J = 8.9 Hz, 2H), 6.60 (d, J = 15.9 Hz, 1H), 3.07 (s, 6H). ¹³C **NMR** (126 MHz, Chloroform-*d*) δ 166.8, 163.0, 152.2, 144.4, 139.2, 134.2, 131.8, 130.3, 128.3, 125.7, 122.8, 122.1, 120.7, 118.3, 112.5, 112.2, 111.7, 107.1, 40.3 **HRMS** (ESI) m/z [M + H]⁺ calcd for C₂₂H₂₀N₃O₂ 358.155, found 358.1553.

(Z)-2-((E)-4-(dimethylamino)styryl)-4-(quinolin-2ylmethylene)oxazol-5(4H)-one (SOD12). Compound SOD12 was prepared in a similar manner as described for compound SOD11 as a black solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.86 (d, J = 8.6 Hz, 1H), 8.23 (d, J = 8.7 Hz, 1H).

Chloroform-*d*) δ 8.86 (d, J = 8.6 Hz, 1H), 8.23 (d, J = 8.7 Hz, 1H), 8.14 - 8.10 (m, 1H), 7.82 (s, 1H), 7.77 - 7.70 (m, 2H), 7.58 (s, 1H), 7.52 (d, J = 8.8 Hz, 2H), 7.43 (s, 1H), 6.71 (d, J = 8.9 Hz,

2H), 6.61 (d, J = 15.8 Hz, 1H), 3.08 (s, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 167.4, 165.9, 153.9, 152.5, 148.7, 146.2, 137.9, 136.3, 130.7, 130.0, 130.0, 128.2, 127.8, 127.6, 123.8, 122.5, 112.1, 106.8, 40.2. HRMS (EI) m/z [M]⁺ calcd for C₂₃H₁₉O₂N₃ 369.1472, found 369.1472.

Synthesis procedure and the chemical characterization of SOD9-TPP (Fig. S8):

To a solution of Isovanillin (5.00 g, 32.86 mmol) and K_2CO_3 (9.08 g, 65.73 mmol) in 100 mL acetonitrile was added 1,6-dibromohexane (10.08 mL, 65.73 mmol). The mixture was refluxed at 80°C for 3 h. After this period, the mixture was concentrated under vacuum and dissolved in CH₂Cl₂. The organic layer was washed with water, brine, dried over anhydrous Na₂SO₄, and concentrated under vacuum. The residue was purified by silica gel column using 33% ethyl acetate in petroleum ether as eluent to afford compound **B**.

To a solution of ethyl (triphenylphosphoranylidene)acetate (7.18 g, 20.62 mmol) and trimethylamine (3.31 mL, 23.79 mmol) in 100 mL acetonitrile was added compound **B** (5.00 g, 15.86 mmol) portion-wise. The reaction was stirred at room temperature overnight. After the reaction was completed, the mixture was concentrated under vacuum and purified by silica gel column using 15% ethyl acetate in petroleum ether as eluent to afford compound **C** as a white solid.

To a solution of LiAlH₄ (591.03 mg, 15.57 mmol) in 20 mL THF was added dropwise the solution of C (5.00 g, 12.98 mmol) in 30 mL THF at -20 °C. The resulting mixture was stirred at 0 °C for 1 hour. After the reaction was completed (monitored by TLC), the reaction was quenched by water and filtered through a Celite pad. The residue was concentrated under

vacuum and purified by silica gel column using 20% ethyl acetate in petroleum ether as eluent to afford compound **D**.

To a solution of **D** (3.17 g, 9.24 mmol) in 30 mL CH_2Cl_2 was added MnO_2 (8.03 g, 92.41 mmol). The reaction was stirred at room temperature overnight. The mixture was filtered through a Celite pad and concentrated under a vacuum. The residue was purified by silica gel column using 20% ethyl acetate in petroleum ether as eluent to afford compound **E**.

(Z)-4-((E)-3-(3-((6-bromohexyl)oxy)-4methoxyphenyl)allylidene)-2-((E)-4-(dimethylamino)styryl)oxazol-5(4H)-one (F).

Compound F (SOD9-Br) was prepared in a similar manner as described for compound SOD1. ¹H NMR (500 MHz, Chloroformd) δ 7.59 (d, J = 15.9 Hz, 1H), 7.48-7.38 (m, 3H), 7.14 (d, J = 2.1 Hz, 1H), 7.10 (dd, J = 8.3, 1.9 Hz, 1H), 7.00 (d, J = 8.3 Hz, 1H), 6.97 (d, J = 4.4 Hz, 1H), 6.86 (d, J = 8.3 Hz, 1H), 6.70 (d, J = 8.4 Hz, 2H), 6.53 (d, J = 15.9 Hz, 1H), 4.07 (t, J = 6.7 Hz, 2H), 3.90 (s, 3H), 3.45 (t, J = 6.8 Hz, 2H), 3.05 (s, 6H), 1.96 – 1.87 (m, 4H), 1.58-1.50 (m, 4H). ¹³C NMR (126 MHz, Chloroform-d) δ 167.1, 162.8, 152.1, 151.4, 149.0, 144.0, 143.3, 133.6, 130.9, 130.2, 129.4,

122.9, 122.8, 121.5, 112.1, 111.6, 110.9, 107.2, 69.1, 56.2, 40.3, 33.9, 32.9, 29.2, 28.1, 25.4. **HRMS** (ESI) $m/z [M + H]^+$ calcd for $C_{29}H_{34}BrN_2O_4$ 553.1696, found 553.1698.

(6-(5-((1*E*,3*Z*)-3-(2-((*E*)-4-(dimethylamino)styryl)-5-oxooxazol-4(5*H*)-ylidene)prop-1-en-1-yl)-2-methoxyphenoxy)hexyl)triphenylphosphonium bromide(SOD9-TPP).

(Z)-4-((E)-3-(3-((6-bromohexyl)oxy)-4-methoxyphenyl)allylidene)-2-((E)-4-(dimethylamino)styryl)oxazol-5(4H)-one was prepared in a similar manner as described for compound **SOD1** as a black solid. Then the black solid was dissolved in toluene and stirred with triphenylphosphine for 12h. After the reaction completed, the solvent was removed and the residue was purified by thin layer chromatography using dichloromethane/methanol (20:1) as an eluent to afford the title compound as a black solid.¹**H NMR** (400 MHz, Methanol-*d*₄) δ 7.90 – 7.71 (m, 15H), 7.60 (d, *J* = 15.9 Hz, 1H), 7.53 – 7.42 (m, 3H), 7.24 – 7.06 (m, 3H), 7.04 – 6.91 (m, 2H), 6.77 –

6.71 (m, 2H), 6.49 (d, J = 15.9 Hz, 1H), 4.05 (t, J = 6.2 Hz, 2H), 3.82 (s, 3H), 3.49 – 3.35 (m, 2H), 3.05 (s, 6H), 1.85 – 1.51 (m, 8H). **HRMS** (ESI) m/z [M]⁺ calcd for C₄₇H₄₈N₂O₄P 735.3346, found 735.3333.

NMR and MS spectrum data

(Z)-2-((E)-4-(dimethylamino)styryl)-4-(naphthalen-2-ylmethylene)oxazol-5(4H)-one (SOD1)

f1 (ppm)

(Z)-2-((E)-4-(dimethylamino)styryl)-4-(phenanthren-9-ylmethylene)oxazol-5(4H)-one (SOD2)

m/z	Intensity	Relative	Theo.	Delta	RDB	Composition
			Mass	(mmu)	equiv.	
51.0227	657629.0	1.53	51.0229	-0.18	3.5	C 4 H 3
77.0159	1562204.0	3.63	77.0134	2.48	5.5	C ₄ H ₁ N ₂
91.0504	461415.0	1.07	91.0502	0.20	0.5	C ₂ H ₇ O ₂ N ₂
101.0388	579640.0	1.35	101.0386	0.19	6.5	C ₈ H ₅
102.0464	1025248.0	2.38	102.0464	0.01	6.0	C 8 H 6
103.0543	1851834.0	4.31	103.0542	0.06	5.5	C ₈ H ₇
115.0543	520544.0	1.21	115.0542	0.04	6.5	C 9 H 7
116.0492	703367.0	1.64	116.0495	-0.25	6.5	C ₈ H ₆ N ₁
118.0654	334889.0	0.78	118.0651	0.30	5.5	C 8 H 8 N 1
119.0726	356709.0	0.83	119.0730	-0.37	5.0	C 8 H 9 N 1
128.0490	479450.0	1.11	128.0495	-0.43	7.5	C9H6N1
129.0561	367714.0	0.86	129.0573	-1.24	7.0	C9H7N1
130.0650	2545723.0	5.92	130.0651	-0.14	6.5	C9H8N1
131.0727	2850142.0	6.63	131.0730	-0.26	6.0	C 9 H 9 N 1
132.0781	449902.0	1.05	132.0781	-0.04	1.0	C 6 H 12 O 3
134.0968	1238033.0	2.88	134.0964	0.40	4.5	C9H12N1
144.0811	2222347.0	5.17	144.0808	0.36	6.5	C 10 H 10 N 1
145.0884	1426804.0	3.32	145.0886	-0.21	6.0	C 10 H 11 N 1
146.0962	9949440.0	23.14	146.0964	-0.27	5.5	C 10 H 12 N 1
147.1001	1230304.0	2.86	147.1016	-1.50	0.5	C7H15O3
158.0593	393541.0	0.92	158.0600	-0.72	7.5	C10 H8 O1 N1
158.0962	464755.0	1.08	158.0964	-0.23	6.5	C ₁₁ H ₁₂ N ₁
160.0744	839181.0	1.95	160.0757	-1.33	6.5	C 10 H 10 O 1 N 1
165.0692	362752.0	0.84	165.0699	-0.68	9.5	C13H9
171.0919	807470.0	1.88	171.0917	0.19	7.5	C ₁₁ H ₁₁ N ₂
172.0994	550633.0	1.28	172.0995	-0.06	7.0	C ₁₁ H ₁₂ N ₂
174.0919	43004672.0	100.00	174.0913	0.56	6.5	C ₁₁ H ₁₂ O ₁ N ₁
176.0617	342014.0	0.80	176.0621	-0.35	11.0	C14 H8
187.0532	375474.0	0.87	187.0542	-1.03	12.5	C 15 H 7
188.0938	1152124.0	2.68	188.0944	-0.64	7.0	C ₁₁ H ₁₂ O ₁ N ₂
189.0701	986158.0	2.29	189.0699	0.20	11.5	C 15 H 9
190.0669	698246.0	1.62	190.0651	1.79	11.5	C14 H8 N1
191.0861	353464.0	0.82	191.0855	0.61	10.5	C 15 H 11
200.0620	353369.0	0.82	200.0621	-0.09	13.0	C16 H8
202.0770	671688.0	1.56	202.0777	-0.69	12.0	C 16 H 10
214.0642	519844.0	1.21	214.0651	-0.91	13.5	C16 H8 N1
215.0711	324584.0	0.75	215.0703	0.80	8.5	C13 H11 O3
216.0797	1206354.0	2.81	216.0808	-1.08	12.5	C16 H10 N1
217.0873	913067.0	2.12	217.0886	-1.30	12.0	C ₁₆ H ₁₁ N ₁
229.0973	447325.0	1.04	229.0972	0.19	8.5	C13 H13 O2 N2
373.1645	425601.0	0.99	373.1672	-2.78	14.0	C24 H23 O3 N1
376.1910	490518.0	1.14	376.1907	0.28	12.5	C24 H26 O3 N1
417.1594	753462.0	1.75	417.1598	-0.33	19.5	C28 H21 O2 N2
418.1668	11111680.0	25.84	418.1676	-0.74	19.0	C 28 H 22 O 2 N 2

(Z)-2-((E)-4-(dimethylamino)styryl)-4-((6-methoxynaphthalen-2-yl)methylene)oxazol-5(4H)-one (SOD3)

m/z	Intensity	Relative	Theo. Mass	Delta (mmu)	RDB equiv.	Composition
51.0087	532121.0	2.41	51.0077	1.07	-0.5	НзОз
55.0515	399775.0	1.81	55.0542	-2.75	1.5	C4H7
56.0600	211258.0	0.96	56.0621	-2.01	1.0	C4 H8
57.0684	473693.0	2.15	57.0699	-1.45	0.5	C4 H9
60.0202	326970.0	1.48	60.0206	-0.40	1.0	C ₂ H ₄ O ₂
63.0229	430054.0	1.95	63.0229	0.00	4.5	C 5 H 3
65.0385	192683.0	0.87	65.0386	-0.05	3.5	C ₅ H ₅
69.0702	278051.0	1.26	69.0699	0.28	1.5	C ₅ H ₉
71.0845	175635.0	0.80	71.0855	-1.02	0.5	C 5 H 11
73.0278	259572.0	1.18	73.0284	-0.59	1.5	C3H5O2
74.0141	256582.0	1.16	74.0151	-1.00	6.0	C 6 H 2
75.0218	324934.0	1.47	75.0229	-1.14	5.5	C 6 H 3
76.0300	322708.0	1.46	76.0308	-0.75	5.0	C 6 H 4
77.0377	1079351.0	4.90	77.0386	-0.86	4.5	C 6 H 5
79.0538	199330.0	0.90	79.0542	-0.44	3.5	C 6 H 7
87.0445	182727.0	0.83	87.0441	0.40	1.5	C4H7O2
89.0386	403210.0	1.83	89.0386	0.05	5.5	C7 H 5
91.0542	303624.0	1.38	91.0542	-0.07	4.5	C7 H7
101.0390	299998.0	1.36	101.0386	0.44	6.5	C 8 H 5
102.0467	662432.0	3.00	102.0464	0.35	6.0	CsH6
103.0547	1136952.0	5.16	103.0542	0.42	5.5	C 8 H 7
115.0547	426015.0	1.93	115.0542	0.49	6.5	C9H7
116.0503	387275.0	1.76	116.0495	0.84	6.5	C 8 H 6 N 1
126.0461	346658.0	1.57	126.0464	-0.34	8.0	C10 H6
127.0538	223790.0	1.02	127.0542	-0.47	7.5	C10 H7
128.0500	264597.0	1.20	128.0495	0.53	7.5	C 9 H 6 N 1
129.0565	233999.0	1.06	129.0573	-0.85	7.0	C 9 H 7 N 1
130.0652	1502567.0	6.82	130.0651	0.03	6.5	C 9 H 8 N 1
131.0728	1571301.0	7.13	131.0730	-0.16	6.0	C 9 H 9 N 1
132.0792	265870.0	1.21	132.0781	1.07	1.0	C 6 H 12 O 3
134.0967	305914.0	1.39	134.0964	0.23	4.5	C 9 H 12 N 1
139.0542	216983.0	0.98	139.0542	-0.02	8.5	C11 H7
144.0811	1235139.0	5.60	144.0808	0.28	6.5	C10 H10 N1
145.0880	733042.0	3.33	145.0886	-0.62	6.0	C ₁₀ H ₁₁ N ₁
146.0962	5376846.0	24.39	146.0964	-0.22	5.5	C10 H12 N1
147.0996	628113.0	2.85	147.1016	-1.97	0.5	C7H15O3
149.0233	1054446.0	4.78	149.0233	0.02	6.5	C8H5O3
153.0573	798818.0	3.62	153.0573	-0.05	9.0	C ₁₁ H ₇ N ₁
154.0636	223058.0	1.01	154.0624	1.18	4.0	C 8 H 10 O 3
158.0593	196150.0	0.89	158.0600	-0.76	7.5	C10 H8 O1 N1
158.0956	402001.0	1.82	158.0964	-0.88	6.5	C ₁₁ H ₁₂ N ₁
160.0746	585206.0	2.65	160.0757	-1.14	6.5	C10 H10 O1 N1
171.0914	370544.0	1.68	171.0917	-0.31	7.5	C ₁₁ H ₁₁ N ₂
172.0988	236830.0	1.07	172.0995	-0.67	7.0	C ₁₁ H ₁₂ N ₂
174.0913	22044672.0	100.00	174.0913	-0.08	6.5	C ₁₁ H ₁₂ O ₁ N ₁
196.0757	472420.0	2.14	196.0757	-0.03	9.5	C ₁₃ H ₁₀ O ₁ N ₁
197.0818	212657.0	0.96	197.0835	-1.76	9.0	C ₁₃ H ₁₁ O ₁ N ₁
398.1629	5496406.0	24.93	398.1625	0.41	16.0	C 25 H 22 O 3 N 2

m/z	Intensity	Relative	Theo.	Delta	RDB	Composition
			Mass	(mmu)	equiv.	
51.0090	718475.0	0.92	51.0104	-1.32	4.0	C ₃ H ₁ N ₁
60.0656	489501.0	0.62	60.0682	-2.64	0.0	C ₂ H ₈ N ₂
63.0581	717203.0	0.91	63.0553	2.83	-0.5	C1H7O1N2
101.0388	648724.0	0.83	101.0386	0.20	6.5	C 8 H 5
102.0467	1479317.0	1.89	102.0464	0.32	6.0	C 8 H 6
103.0550	2575239.0	3.29	103.0542	0.77	5.5	C 8 H 7
105.0588	531740.0	0.68	105.0573	1.49	5.0	C7H7N1
115.0551	929066.0	1.19	115.0542	0.86	6.5	С9Н7
116.0503	954415.0	1.22	116.0495	0.82	6.5	C 8 H 6 N 1
119.0728	663100.0	0.85	119.0730	-0.15	5.0	C 8 H 9 N 1
128.0491	644016.0	0.82	128.0495	-0.35	7.5	C 9 H 6 N 1
129.0567	654830.0	0.84	129.0573	-0.62	7.0	C 9 H 7 N 1
130.0654	3680354.0	4.70	130.0651	0.27	6.5	C 9 H 8 N 1
131.0726	4372621.0	5.58	131.0730	-0.37	6.0	C 9 H 9 N 1
134.0968	782279.0	1.00	134.0964	0.41	4.5	C 9 H 12 N 1
138.0461	918029.0	1.17	138.0464	-0.26	9.0	C 11 H 6
139.0539	1053015.0	1.34	139.0542	-0.35	8.5	C 11 H 7
144.0816	4056402.0	5.17	144.0808	0.83	6.5	C 10 H 10 N 1
145.0883	2679628.0	3.42	145.0886	-0.30	6.0	C ₁₀ H ₁₁ N ₁
146.0965	17638144.0	22.50	146.0964	0.08	5.5	C 10 H 12 N 1
149.0237	2287010.0	2.92	149.0260	-2.31	11.0	C ₁₁ H ₃ N ₁
158.0964	2048207.0	2.61	158.0964	-0.04	6.5	C ₁₁ H ₁₂ N ₁
160.0748	813417.0	1.04	160.0757	-0.92	6.5	C ₁₀ H ₁₀ O ₁ N ₁
164.0493	1951420.0	2.49	164.0495	-0.17	10.5	C 12 H 6 N 1
165.0569	1650181.0	2.11	165.0573	-0.40	10.0	C ₁₂ H ₇ N ₁
166.0643	893824.0	1.14	166.0651	-0.81	9.5	C ₁₂ H ₈ N ₁
171.0917	1181481.0	1.51	171.0917	0.02	7.5	C ₁₁ H ₁₁ N ₂
172.0986	695765.0	0.89	172.0995	-0.87	7.0	C ₁₁ H ₁₂ N ₂
174.0912	78385152.0	100.00	174.0913	-0.11	6.5	C ₁₁ H ₁₂ O ₁ N ₁
176.0973	577255.0	0.74	176.0944	2.84	6.0	C ₁₀ H ₁₂ O ₁ N ₂
183.0676	1419934.0	1.81	183.0679	-0.26	9.0	C ₁₂ H9O1N1
184.0731	1730747.0	2.21	184.0757	-2.64	8.5	C ₁₂ H ₁₀ O ₁ N ₁
229.0971	856610.0	1.09	229.0972	-0.09	8.5	C ₁₃ H ₁₃ O ₂ N ₂
339.1485	1558419.0	1.99	339.1492	-0.68	15.5	C ₂₃ H ₁₉ O ₁ N ₂
367.1429	36165120.0	46.14	367.1441	-1.18	16.5	C ₂₄ H ₁₉ O ₂ N ₂
368.1459	10220800.0	13.04	368.1458	0.08	5.0	C ₁₈ H ₂₉ O ₁ N ₂ ⁷⁹ Br ₁
446.0631	9491456.0	12.11	446.0624	0.67	16.0	C ₂₄ H ₁₉ O ₂ N ₂ ⁷⁹ Br ₁

(Z)-2-((E)-4-(dimethylamino)styryl)-4-((E)-3-phenylallylidene)oxazol-5(4H)-one (SOD5)

Fragmento 17	r Voltage 5	Coll	ision Energ	J Y	Ionizatio ES	n Mode I							
x10 ⁵ +E	GI Scan (rt: 0.	7 min) Fr	ag=175.0V	ESIH_2	0180411_L	.H_LLJ_07.d							
5.5-													
5-				345.1	603								
4.5-													
4 -													
3.5-													
3-													
2.5-													
2-													
1.5-					346.1	635							
1-													
0.5-			344.151	8		347.166	88						
0-	342	343	344	345	346	347	348	349	350	351	352	353	
					Co	unts vs. Mas	s-to-Charge	e (m/z)					

m/z Calc m/z Diff (mDa) Diff (ppm) Ion Formula Ion 345.1603 345.1598 -0.53 -1.55 C22 H21 N2 O2 (M+H)+	Formula Calculator Results							
345.1603 345.1598 -0.53 -1.55 C22 H21 N2 O2 (M+H)+	m/z	Calc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion		
	345.1603	345.1598	-0.53	-1.55	C22 H21 N2 O2	(M+H)+		

m/2= 40-0	Tetersitu	Deletine	The	Delte	DDD	Composition
m/z	Intensity	Relative	Mage	(mmu)	RDB equiv	Composition
51.0239	868633.0	2.32	51.0229	0.98	3.5	C 4 H a
60.0232	275857.0	0.74	60.0206	2.59	1.0	C 2 H 4 O 2
63.0238	705498.0	1.88	63.0229	0.86	4.5	C5 H3
65.0389	348534.0	0.93	65.0386	0.35	3.5	C 5 H 5
74.0138	355214.0	0.95	74.0151	-1.30	6.0	C6H2
75.0219	502668.0	1.34	75.0229	-1.07	5.5	C 6 H 3
76.0301	577700.0	1.54	76.0308	-0.64	5.0	C 6 H 4
77.0380	1876484.0	5.01	77.0386	-0.57	4.5	C6H5
78.0457	379737.0	1.01	78.0464	-0.67	4.0	C 6 H 6
79.0540	324075.0	0.86	79.0542	-0.26	3.5	C 6 H 7
89.0384	712336.0	1.90	89.0386	-0.16	5.5	C7H5
91.0539	665263.0	1.78	91.0542	-0.37	4.5	C7H7
101.0392	586765.0	1.57	101.0386	0.57	6.5	C 8 H 5
102.0469	1398878.0	3.73	102.0464	0.48	6.0	C 8 H 6
103.0554	2037138.0	5.44	103.0542	1.16	5.5	C 8 H 7
104.0508	277002.0	0.74	104.0495	1.33	5.5	C7H6N1
115.0546	1046940.0	2.79	115.0542	0.38	6.5	C9H7
116.0498	780879.0	2.08	116.0495	0.35	6.5	C 8 H 6 N 1
118.0654	290233.0	0.77	118.0651	0.31	5.5	C ₈ H ₈ N ₁
119.0725	382822.0	1.02	119.0730	-0.43	5.0	C 8 H 9 N 1
128.0495	687050.0	1.83	128.0495	0.03	7.5	C 9 H 6 N 1
129.0573	570066.0	1.52	129.0573	0.02	7.0	C 9 H 7 N 1
130.0656	2489330.0	6.64	130.0651	0.51	6.5	C 9 H 8 N 1
131.0491	268382.0	0.72	131.0491	-0.01	6.5	C 9 H 7 O 1
131.0726	2533255.0	6.76	131.0730	-0.33	6.0	C 9 H 9 N 1
132.0786	393222.0	1.05	132.0781	0.54	1.0	C 6 H 12 O 3
134.0967	789149.0	2.11	134.0964	0.30	4.5	C 9 H 12 N 1
144.0811	2161247.0	5.77	144.0808	0.29	6.5	C 10 H 10 N 1
145.0883	1265069.0	3.38	145.0886	-0.32	6.0	C 10 H 11 N 1
146.0967	9352960.0	24.96	146.0964	0.32	5.5	C 10 H 12 N 1
147.1003	1252791.0	3.34	147.1016	-1.31	0.5	C7H15O3
149.0237	1382912.0	3.69	149.0233	0.36	6.5	C 8 H 5 O 3
158.0595	336512.0	0.90	158.0600	-0.53	7.5	C 10 H 8 O 1 N 1
158.0958	361098.0	0.96	158.0964	-0.66	6.5	C ₁₁ H ₁₂ N ₁
159.0662	255214.0	0.68	159.0679	-1.63	7.0	C 10 H 9 O 1 N 1
160.0748	637687.0	1.70	160.0757	-0.85	6.5	C 10 H 10 O 1 N 1
171.0915	421085.0	1.12	171.0917	-0.14	7.5	C ₁₁ H ₁₁ N ₂
172.0746	468413.0	1.25	172.0757	-1.09	7.5	C ₁₁ H ₁₀ O ₁ N ₁
172.0988	903620.0	2.41	172.0995	-0.68	7.0	C ₁₁ H ₁₂ N ₂
173.0830	372326.0	0.99	173.0835	-0.49	7.0	C ₁₁ H ₁₁ O ₁ N ₁
174.0913	37478912.0	100.00	174.0913	-0.03	6.5	C ₁₁ H ₁₂ O ₁ N ₁
253.1463	1375437.0	3.67	253.1461	0.15	9.0	C 17 H 19 O 1 N 1
330.1712	296849.0	0.79	330.1727	-1.47	13.0	C ₂₂ H ₂₂ O ₁ N ₂
374.1624	8271454.0	22.07	374.1625	-0.13	14.0	C ₂₃ H ₂₂ O ₃ N ₂

(Z)-4-((E)-3-(4-chlorophenyl)allylidene)-2-((E)-4-(dimethylamino)styryl)oxazol-5(4H)-one (SOD7)

m/z	Intensity	Relative	Theo.	Delta	RDB	Composition
55 0150	1091037 0	1 75	55 0179	(mmu) =2.95	equiv. 2 5	C . H . O .
55.0514	3497799 0	5.64	55 0542	-2.05	1 5	C 1 H 2
56 0599	1149753 0	1 96	56 0621	-2.04	1.0	C 4 H o
57 0691	4221560 0	6 04	57 0600	-2.23	1.0	C4H8 C4H8
60 0195	1429317 0	2 31	60 0206	-1.07	1 0	Cally
67 0543	1460969 0	2.31	67 0542	0.03	2.5	C 2 H 4 O 2
69 0621	726967 0	1 19	69 0621	0.03	2.0	C5 H o
69.0700	2105225 0	5.02	60.0021	0.03	1.5	Colla
70.0764	916502.0	1.48	70.0777	-1.31	1.0	Callia
71.0842	2614743.0	4.23	71.0855	-1 38	0.5	Callin
73 0276	1823240 0	2 95	73 0284	-0.85	1 5	Calle Oa
77 0383	1422924 0	2.30	77.0386	-0.27	4.5	C 4 H 6
79.0539	783297.0	1.27	79.0542	-0.37	3.5	Colla
81 0699	1634437 0	2 64	81 0699	0.05	2.5	C (Ho
82 0775	985077 0	1 59	82 0777	-0.16	2.0	Colling
83.0492	546180.0	0.88	83.0491	0.05	2.5	C5 H2 O1
83 0855	2475463 0	4 00	83 0855	-0.02	1 5	C (H1)
84 0570	886031 0	1 43	84 0570	0.02	2.0	Ce He Os
85.1012	1609564.0	2.60	85.1012	0.03	0.5	C c H to
87.0440	714690.0	1.16	87.0441	-0.05	1.5	C4H2O2
91.0539	908773.0	1.47	91.0542	-0.37	4.5	C 2 H 2
93 0697	563164 0	0 91	93 0699	-0.18	3 5	C 7 H 0
95.0857	1508738.0	2.44	95.0855	0.13	2.5	C 7 H 11
96.0934	707438.0	1.14	96.0934	0.00	2.0	C 7 H 12
97.0649	681484.0	1.10	97.0648	0.08	2.5	C 6 H 9 O 1
97.1012	1911630.0	3.09	97.1012	0.03	1.5	C 2 H 12
98.0726	1153460.0	1.86	98.0726	0.00	2.0	C6H10O1
102.0413	869747.0	1.41	102.0424	-1.09	2.0	CaHe Oa Na
111.0943	972799.0	1.57	111.0917	2.62	2.5	C 6 H 11 N 2
116.0371	823023.0	1.33	116.0369	0.16	7.0	C7H4N2
129.0568	932246.0	1.51	129.0573	-0.45	7.0	C 9 H 7 N 1
129.0925	775218.0	1.25	129.0910	1.50	1.5	C7H13O2
130.0656	2478198.0	4.01	130.0651	0.47	6.5	C 9 H 8 N 1
131.0724	2756536.0	4.46	131.0730	-0.58	6.0	C9H9N1
134.0964	843156.0	1.36	134.0964	0.01	4.5	C 9 H 12 N 1
140.0496	1078015.0	1.74	140.0495	0.16	8.5	C 10 H 6 N 1
144.0817	2393784.0	3.87	144.0808	0.97	6.5	C ₁₀ H ₁₀ N ₁
145.0890	1666148.0	2.69	145.0886	0.38	6.0	C 10 H 11 N 1
146.0969	10940928.0	17.69	146.0964	0.49	5.5	C 10 H 12 N 1
149.0229	797578.0	1.29	149.0238	-0.96	2.0	C5H8O2N135Cl1
172.0995	722260.0	1.17	172.0995	-0.02	7.0	C ₁₁ H ₁₂ N ₂
174.0920	61854208.0	100.00	174.0918	0.17	2.0	C 8 H 15 N 2 35Cl 1
189.0559	630689.0	1.02	189.0551	0.83	3.0	C 8 H 12 O 2 N 1 35Cl 1
255.1124	843729.0	1.36	255.1128	-0.43	9.5	C 15 H 15 O 2 N 2
257.0969	1730301.0	2.80	257.0966	0.31	9.0	C ₁₆ H ₁₆ N ₁ 35Cl ₁
378.1137	17430016.0	28.18	378.1130	0.79	14.0	C ₂₂ H ₁₉ O ₂ N ₂ 35Cl ₁

(Z)-2-((E)-4-(dimethylamino)styryl)-4-((E)-3-(4-fluorophenyl)allylidene)oxazol-5(4H)-one (SOD8)

				Ion i ormana	1011
363.1505	363.1503	-0.14	-0.4	C22 H20 F N2 O2	(M+H)+

(Z)-2-((E)-4-(dimethylamino)styryl)-4-((E)-3-(3,4-dimethoxyphenyl)allylidene)-oxazol-5(4H)-one (SOD9)

m/z	Calc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
405.1809	405.1809	0.01	0.03	C24 H25 N2 O4	(M+H)+

T: +	c EI	Full	ms	I	49.50-800.50]
m/z=	48-	803			

m/z	Intensity	Relative	Theo.	Delta	RDB	Composition
	_		Mass	(mmu)	equiv.	-
57.0718	224521.0	1.72	57.0699	1.88	0.5	C ₄ H ₉
61.0081	157314.0	1.20	61.0073	0.80	5.5	C 5 H 1
62.0158	229101.0	1.75	62.0151	0.74	5.0	C 5 H 2
63.0232	537337.0	4.12	63.0229	0.30	4.5	C 5 H 3
65.0387	191601.0	1.47	65.0386	0.11	3.5	C 5 H 5
74.0138	311893.0	2.39	74.0151	-1.32	6.0	C 6 H 2
75.0217	425442.0	3.26	75.0229	-1.22	5.5	C 6 H 3
76.0294	325920.0	2.50	76.0308	-1.39	5.0	C 6 H 4
77.0378	1087366.0	8.33	77.0386	-0.80	4.5	C 6 H 5
78.0450	154706.0	1.18	78.0464	-1.40	4.0	С 6 Н 6
79.0537	172200.0	1.32	79.0542	-0.55	3.5	C 6 H 7
89.0387	426238.0	3.26	89.0386	0.08	5.5	C7H5
91.0542	278465.0	2.13	91.0542	0.00	4.5	C 7 H 7
101.0385	338038.0	2.59	101.0386	-0.09	6.5	C 8 H 5
102.0462	631294.0	4.84	102.0464	-0.15	6.0	С 8 Н 6
103.0547	949072.0	7.27	103.0542	0.47	5.5	C 8 H 7
104.0508	190520.0	1.46	104.0495	1.29	5.5	C7H6N1
105.0586	168828.0	1.29	105.0573	1.29	5.0	C7H7N1
113.0398	255978.0	1.96	113.0386	1.25	7.5	C ₉ H ₅
114.0473	461256.0	3.53	114.0464	0.92	7.0	С 9 Н 6
115.0549	437847.0	3.35	115.0542	0.63	6.5	С9Н7
116.0498	372103.0	2.85	116.0495	0.36	6.5	C 8 H 6 N 1
118.0640	168319.0	1.29	118.0651	-1.15	5.5	C 8 H 8 N 1
119.0724	188739.0	1.45	119.0730	-0.56	5.0	C 8 H 9 N 1
128.0494	236608.0	1.81	128.0495	-0.11	7.5	C 9 H 6 N 1
129.0569	219973.0	1.68	129.0573	-0.36	7.0	C 9 H 7 N 1
130.0648	1291309.0	9.89	130.0651	-0.29	6.5	C 9 H 8 N 1
131.0729	1318663.0	10.10	131.0730	-0.10	6.0	C 9 H 9 N 1
134.0959	280087.0	2.15	134.0964	-0.54	4.5	C9H12N1
140.0497	637941.0	4.89	140.0495	0.21	8.5	C 10 H 6 N 1
141.0570	1051011.0	8.05	141.0573	-0.29	8.0	C 10 H 7 N 1
142.0632	223980.0	1.72	142.0651	-1.91	7.5	C 10 H 8 N 1
144.0804	1164242.0	8.92	144.0808	-0.41	6.5	C 10 H 10 N 1
145.0882	652986.0	5.00	145.0886	-0.40	6.0	C 10 H 11 N 1
146.0962	4123450.0	31.58	146.0964	-0.18	5.5	C 10 H 12 N 1
149.0236	440614.0	3.37	149.0260	-2.39	11.0	C ₁₁ H ₃ N ₁
160.0749	198917.0	1.52	160.0757	-0.80	6.5	C ₁₀ H ₁₀ O ₁ N ₁
171.0911	169210.0	1.30	171.0917	-0.55	7.5	C ₁₁ H ₁₁ N ₂
172.0747	144592.0	1.11	172.0757	-0.95	7.5	C ₁₁ H ₁₀ O ₁ N ₁
172.0981	317173.0	2.43	172.0995	-1.38	7.0	C ₁₁ H ₁₂ N ₂
174.0914	13056512.0	100.00	174.0913	0.02	6.5	C ₁₁ H ₁₂ O ₁ N ₁
301.0472	248122.0	1.90	301.0461	1.10	9.0	C ₁₆ H ₁₆ N ₁ ⁷⁹ Br ₁
303.0449	252002.0	1.93	303.0441	0.82	19.5	C 22 H 7 O 2
422.0618	1453713.0	11.13	422.0624	-0.68	14.0	C ₂₂ H ₁₉ O ₂ N ₂ ⁷⁹ Br ₁

(Z)-2-((E)-4-(dimethylamino)styryl)-4-((1H-indol-2-yl)methylene)- oxazol-5(4H)-one (SOD11)

User	Spectra	

m/z	Calc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
358.1553	358.155	-0.31	-0.87	C22 H20 N3 O2	(M+H)+

(Z)-2-((E)-4-(dimethylamino)styryl)-4-((1H-indol-2-yl)methylene)- oxazol-5(4H)-one (SOD12)

m/z	Intensity	Relative	Theo.	Delta	RDB	Composition
51.0236	830688.0	5.10	51.0229	0.71	equiv. 3.5	C . H a
63 0464	675409 0	4 15	63 0441	2 32	-0.5	Co Ha Oo
69 0695	279355 0	1.72	69 0699	-0.35	1 5	C = H =
73 0099	219255 0	1.05	73 0073	2 64	6.5	C 2 H 2
89 0268	588991 0	3 62	89 0260	0.81	6.0	C c Ha Na
91 0489	433871 0	2.66	91 0502	-1.26	0.5	Co Ha Oo No
101 0383	828144 0	5.09	101 0386	-0.28	6.5	Co He
102 0465	1001648 0	6 15	102 0464	0.20	6.0	Colle
103.0541	1498910.0	9.21	103.0542	-0.17	5.5	Ce H2
115.0534	594335.0	3.65	115.0542	-0.83	6.5	CoH7
116.0489	602604.0	3.70	116.0495	-0.58	6.5	Co H < N1
119.0726	279833.0	1.72	119.0730	-0.36	5.0	Ce Ho N1
128.0499	1439082.0	8.84	128.0495	0.46	7.5	CoHeN1
129.0570	878271.0	5.39	129.0573	-0.27	7.0	CoH7N1
130.0654	2082844.0	12.79	130.0651	0.29	6.5	Co Ho N1
131.0730	1891719.0	11.62	131.0730	0.02	6.0	C 9 H 9 N 1
132.0784	279992.0	1.72	132.0768	1.62	1.5	C4H10O2N3
134.0969	534825.0	3.28	134.0964	0.52	4.5	C 9 H 12 N 1
140.0500	760873.0	4.67	140.0495	0.48	8.5	C ₁₀ H ₆ N ₁
142.0654	333299.0	2.05	142.0651	0.32	7.5	C 10 H 8 N 1
143.0731	456613.0	2.80	143.0730	0.18	7.0	C 10 H 9 N 1
144.0815	1702280.0	10.46	144.0808	0.72	6.5	C 10 H 10 N 1
145.0882	1124389.0	6.91	145.0886	-0.40	6.0	C 10 H 11 N 1
146.0963	6062561.0	37.24	146.0964	-0.13	5.5	C 10 H 12 N 1
147.1004	850853.0	5.23	147.1002	0.21	1.0	C 5 H 1 3 O 2 N 3
149.0233	770797.0	4.73	149.0220	1.30	7.0	C 6 H 3 O 2 N 3
154.0650	466091.0	2.86	154.0651	-0.10	8.5	C ₁₁ H ₈ N ₁
168.0680	604703.0	3.71	168.0682	-0.19	9.0	C ₁₁ H ₈ N ₂
171.0918	489501.0	3.01	171.0917	0.14	7.5	C ₁₁ H ₁₁ N ₂
172.0755	300698.0	1.85	172.0757	-0.24	7.5	C ₁₁ H ₁₀ O ₁ N ₁
172.0985	353051.0	2.17	172.0995	-1.04	7.0	C ₁₁ H ₁₂ N ₂
174.0916	16281856.0	100.00	174.0913	0.28	6.5	C ₁₁ H ₁₂ O ₁ N ₁
182.0599	2288632.0	14.06	182.0600	-0.11	9.5	C ₁₂ H ₈ O ₁ N ₁
189.1026	285049.0	1.75	189.1022	0.37	6.5	C ₁₁ H ₁₃ O ₁ N ₂
190.1097	321944.0	1.98	190.1101	-0.35	6.0	C ₁₁ H ₁₄ O ₁ N ₂
213.1018	434444.0	2.67	213.1022	-0.43	8.5	C ₁₃ H ₁₃ O ₁ N ₂
312.1511	819461.0	5.03	312.1509	0.20	14.0	C ₂₃ H ₂₀ O ₁
313.1564	378623.0	2.33	313.1573	-0.99	14.0	C ₂₁ H ₁₉ N ₃
327.1493	336607.0	2.07	327.1492	0.08	14.5	C ₂₂ H ₁₉ O ₁ N ₂
340.1446	946686.0	5.81	340.1444	0.13	15.5	C 22 H 18 O1 N 3
341.1517	939466.0	5.77	341.1523	-0.60	15.0	C 22 H 19 O1 N 3
369.1472	2281316.0	14.01	369.1472	0.03	16.0	C 23 H 19 O 2 N 3
371.1617	314247.0	1.93	371.1628	-1.08	15.0	C ₂₃ H ₂₁ O ₂ N ₃

(6-(5-((1*E*,3*Z*)-3-(2-((*E*)-4-(dimethylamino)styryl)-5-oxooxazol-4(5*H*)-ylidene)prop-1-en-1-yl) -2-methoxyphenoxy)hexyl)triphenylphosphonium bromide(SOD9-TPP)

User Spectra

