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 Supplementary Figure 1 
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Supplementary Figure 1: Repair defects in XPC-KO cells. (a) Western blot of U2OS 
(FRT) WT, XPC-KO and DDB2-KO cells. Two independent replicates of each IP 
experiment were performed obtaining similar results. (b) Representative images and 
(c) quantification of unscheduled DNA synthesis experiments in U2OS (FRT) WT, 
XPC-KO, XPC-KO + XPC-GFP cells upon UV-C irradiation. 191-254 cells were 
analyzed in 2 independent experiments. All cells are depicted as individual data points 
(grey). The median of each biological replicate is depicted as a colored point, while 
the bar represents the median of all data points. (d) Western blot of U2OS (FRT) WT 
and XPC-KO cells expressing PARP1-GFP or GFP-PARP2. Two independent 
replicates of each IP experiment were performed obtaining similar results. The scale 
bar in (b) is 5 µm. 
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Supplementary Figure 2 
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Supplementary Figure 2: Poly-(ADP-ribose) levels at UV lesions. (a) 
Quantification of DDB2 levels 10 minutes after local UV-C irradiation (30 J/m2) by 
immunofluorescence in U2OS WT, PARP1-KO and PARP2-KO cells shown in Figure 
4a. >100 cells were analyzed per condition from 3 independent experiments. (b) 
Representative images of poly-(ADP-ribose) (PAR) levels 5 minutes after UV-C 
irradiation (20 J/m2) by immunofluorescence (Millipore; MABE1031) in U2OS WT, 
PARP1-KO and PARP2-KO cells. This experiment was repeated three times obtaining 
similar results. (c) Quantification of DDB2 levels 10 minutes after local UV-C irradiation 
(30 J/m2) by immunofluorescence in U2OS WT and XPC-KO cells shown in Figure 
4e. >100 cells were analyzed per condition from 3 independent experiments. >100 
cells were analyzed per condition from 3 independent experiments. (d) Quantification 
of XPC levels 10 minutes after local UV-C irradiation (30 J/m2) by 
immunofluorescence in U2OS WT and DDB2-KO cells shown in Figure 4g. >100 cells 
were analyzed per condition from 3 independent experiments. >100 cells were 
analyzed per condition from 3 independent experiments. (e) Representative images 
of PAR levels 5 minutes after UV-C irradiation (20 J/m2) by immunofluorescence 
(Millipore; MABE1031) in U2OS (FRT) WT, XPC-KO and DDB2-KO cells. This 
experiment was repeated three times obtaining similar results. (f) Representative 
images and (g, h) quantification of poly-(ADP-ribose) (PAR) levels (Trevigen, 4335-
MC-100) (g) or DDB2 levels (h) 10 minutes after local UV-C irradiation (30 J/m2) by 
immunofluorescence in U2OS WT or XPC-KO cells transfected with the indicated 
siRNAs. The median of each biological replicate is depicted as a colored point, while 
the bar represents the median of all data points. >100 cells were analyzed per 
condition from 3 independent experiments. (i) Western blot of U2OS WT and XPC-KO 
cells transfected with the indicated siRNAs. Two independent replicates of each 
western blot were performed obtaining similar results. The scale bar in (b, e, f) is 5 
µm. 
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Supplementary Figure 3 
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Supplementary Figure 3: CPD repair kinetics in PARP1/2-KO cells. (a) 
Representative images of GFP-tagged ALC1, PARP1 or PARP2 recruitment to the 
LacO array upon tethering to the indicated mCherry-LacR-macrodomain. Pictures 
were taken before and 1 min after UV-C micro-irradiation. See Figure 5e for additional 
pictures and quantifications. (b) Western blot of U2OS WT, PARP1-KO or PARP2-KO 
transfected with the indicated siRNAs. Three independent replicates of each western 
blot were performed obtaining similar results. (c) Clonogenic survival assays of U2OS 
WT, PARP1-KO or PARP2-KO transfected with the indicated siRNAs. The median of 
each biological replicate is depicted as a grey point, while the colored bar represents 
the median of 3 independent experiments. (d) Representative dot blots and (e) 
quantification of CPD levels in U2OS WT, PARP1-KO and PARP2-KO cells at different 
time points after UV-C damage (20 J/m2). The data is depicted as mean + S.E.M. of 4 
independent experiments. The scale bar in (a) is 5 µm. 
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Supplementary Figure 4 
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Supplementary Figure 4: Recruitment of ALC1 in PARP1/2-KO cells. (a) 
Western blot of U2OS (FRT) ALC1-KO cells expressing GFP-ALC1 WT, GFP-ALC1 
E175Q or GFP-ALC1 ∆macrodomain. Two independent replicates of each western 
blot were performed obtaining similar results. (b) Representative images and (c) 
recruitment kinetics of GFP-ALC1 in U2OS, PARP1-KO and PARP2-KO cells upon 
UV-C irradiation. 53-60 cells were analyzed from 2 independent experiments (n=2). 
The data are shown as mean + SEM. The scale bar in (b) is 5 µm. 
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Supplementary Figure 5 
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Supplementary Figure 5: Effects of ALC1-KO on nucleotide excision repair. (a, 
b) Representative dot blots of 6-4PP (a) or CPD (b) in U2OS WT, XPC-KO or ALC1-
KO. See Figure 8a, b for a quantification. (c) Clonogenic survival assays of U2OS 
ALC1-KO and U2OS (FRT) CSA-KO cells and the respective parental cell lines upon 
Illudin S treatment. The data is depicted as mean + S.E.M. from 3 independent 
experiments. (d) Representative images and (e) quantification of recovery of RNA 
synthesis assays after UV-C irradiation. 78-212 cells were analyzed in three 
independent experiments. All cells are depicted as individual data points (grey). The 
median of each biological replicate is depicted as a colored point, while the bar 
represents the median of all data points. The scale bar in (d) is 5 µm. 
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Supplementary Figure 6 
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Supplementary Figure 6: Recruitment of XPC and DDB2 in ALC-deficient cells. 
(a) Western blot of U2OS (FRT) XPC-KO + XPC-GFP and XPC ALC1-dKO + XPC-
GFP cells, and U2OS (FRT) DDB2-KO + GFP-DDB2 and DDB2 ALC1-dKO + GFP-
DDB2 cells. Two independent replicates of each western blot were performed 
obtaining similar results. (b) Recruitment kinetics of XPC-GFP or GFP-DDB2 at sites 
of local UV-C laser irradiation. 80-135 cells were analyzed in 3 independent 
experiments. The data are shown as mean + SEM normalized to pre-damage GFP 
intensity at micro-irradiation sites. (c) Representative image of cell expressing 
PAGFP-H2A and mCherry-DDB2 that has been sequentially irradiated with UV-C and 
UV-A lasers (upper track) or only with a UV-A laser (lower track). This experiment was 
performed three times obtaining similar results. (d) Representative image of cell 
expressing PAGFP-H2A and NBS1-mCherry that has been sequentially irradiated with 
UV-C and UV-A lasers. This experiment was performed three times obtaining similar 
results. (e) Quantification of XPC recruitment 10, 20 and 30 minutes after local UV-C 
irradiation (30 J/m2) by immunofluorescence in U2OS WT, ALC1-KO, ALC1-KO + 
GFP-ALC1, ALC1-KO + GFP-ALC1 E175Q. Quantification of PAR levels in the same 
cells is shown in Figure 9d. The median of each biological replicate is depicted as a 
colored point, while the bar represents the median of all data points. >80 cells were 
analyzed per condition from 3 independent experiments. The scale bar in (c, d) is 5 
µm. 
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Supplementary table 1. Cell lines 
Cell lines Origin 
U2OS  Nicholas D Lakin (Ronson et al., 2018)  
U2OS 2-6-3 Susan Janicki (Janicki et al., 2004)  
U2OS PARP1-KO Nicholas D Lakin (Ronson et al., 2018)  
U2OS PARP2-KO  Nicholas D Lakin (Ronson et al., 2018)  
U2OS(FRT) Daniel Durocher (Panier et al., 2012) 
U2OS(FRT) ALC1-KO This study 
U2OS(FRT) ALC1-KO + GFP-ALC1E175Q This study 
U2OS(FRT) ALC1-KO + GFP-ALC1WT This study 
U2OS(FRT) ALC1-KO + GFP-ALC1ΔMACRO This study 
U2OS(FRT) CSA-KO  (van der Weegen et al., 2020) 
U2OS(FRT) DDB2 ALC1-dKO + GFP-DDB2 This study 
U2OS(FRT) DDB2-KO This study 
U2OS(FRT) DDB2-KO + GFP-DDB2 This study 
U2OS(FRT) DDB2-KO + GFP-ALC1 This study 
U2OS(FRT) GFP-ALC1 This study 
U2OS(FRT) GFP-NLS  Haico van Attikum (Luijsterburg et al., 2017) 
U2OS(FRT) PARP1-GFP This study 
U2OS(FRT) GFP-PARP2 This study 
U2OS(FRT) XPC ALC1-dKO + XPC-GFP This study 
U2OS(FRT) XPC-KO This study 
U2OS(FRT) XPC-KO + GFP-PARP2 This study 
U2OS(FRT) XPC-KO + PARP1-GFP This study 
U2OS(FRT) XPC-KO + XPC-GFP This study 
U2OS(FRT) XPC-KO + GFP-ALC1 This study 
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Supplementary table 2. Plasmids 
Plasmids Origin 
mCherry-LacR-NLS-C1-Macro H2A.1 (184aa-370aa) This study 
mCherry-LacR-NLS-Stop 
 

(van der Weegen et al., 2020) 
pcDNA5-FRT-TO-Hygro Invitrogen 
pcDNA5-FRT-TO-Hygro (NheI) This study 
pcDNA5-FRT-TO-Hygro- GFP-ALC1E175Q (Blessing et al., 2020) 
pcDNA5-FRT-TO-Hygro- GFP-ALC1WT (Blessing et al., 2020) 
pcDNA5-FRT-TO-Hygro- GFP-ALC1ΔMACRO This study 
pcDNA5-FRT-TO-Hygro- PARP1-GFP This study 
pcDNA5-FRT-TO-Hygro-GFP-PARP2 This study 
pcDNA5-FRT-TO-Puro-GFP-DDB2 This study 
pcDNA5-FRT-TO-Puro-GFP-NLS (Luijsterburg et al., 2017) 
pcDNA5-FRT-TO-Puro-XPC-GFP This study 
pDDB2-mCherry (Luijsterburg et al., 2012) 
pEGFP-PARP2 
 

(Blessing et al., 2020) 
pNBS1-mCherry (Luijsterburg et al., 2016) 
pOG44 Invitrogen 
pPAGFP-H2A (Luijsterburg et al., 2016) 
pPARP1-EGFP (Mortusewicz et al., 2007) 
pX458 (Cas9) Addgene #48138 

 

Supplementary table 3. Sequences of primers 
sgRNAs Sequence/Origin 
macroH2A1.1-GFP-fw GAATTCTACAGTCCTCTCCACCAAGAGC 
macroH2A1.1-GFP-rv GGATCCTTAGTCCAGCTTGGCCATTTCC 
pcDNA5/FRT/TO-Hygro-Nhe-fw ATCCAGCCTCCGGACGCTAGCGTTTAAAC 
pcDNA5/FRT/TO-Hygro-Nhe-rv   AAGTTTAAACGCTAGCGTCCGGAG 
pEGFP-PARP2-fw ATATATGCTAGCATGGTGAGCAAGGGCGAGGAG 
pEGFP-PARP2-rv ATATATGCGGCCGCTCACCACAGCTGAAGGAAATTAAACTG 
pPARP1-EGFP-fw ATATATGCGGCCGCATGGCGGAGTCTTCGGATAAGC 
pPARP1-EGFP-rv   ATATATCTCGAGTTACTTGTACAGCTCGTCCATGCC 

 
 
Supplementary table 4. Sequences of sgRNAs and siRNAs 

sgRNAs and siRNAs Sequence/Origin 
sgRNA ALC1 CCATCGGGTTTTACTTTTCTCCC 

 sgRNA CSA CAACTTTGTGACTTGAAGTCTGG 
sgRNA DDB2 CCTAGCAGAAGATGTGACTCAGA 

 sgRNA XPC TGGGGGTTTCTCATCTTCAAAGG 
CCTAGCAGAAGATGTGACTCAGA 
 

siRNA Luciferase CGTACGCGGAATACTTCGA 
siRNA non-target (NT) ThermoFisher Silencer Negative Control #1, AM4611 
siRNA XPA CAGAGATGCTGATGATAAA 
siRNA XPC TAGCAAATGGCTTCTATCGAA 
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Supplementary table 5. Antibodies 
Antibodies Host Manufacturer Use Antibody 

identifier 
6-4PP Mouse Cosmo bio, NM-DND-002 Immunoblot: 1:2000 N/A 

ALC1 Rabbit Homemade WB: 1:1000 aML#144 

Alexa 488  
anti-rabbit IgG 

Goat Thermo fisher Scientific 
A-11034 

IF: 1:1000 aML#012 

Alexa 488  
anti-mouse IgG 

Goat Thermo fisher Scientific 
A-11029 

IF: 1:1000 aML#013 

Alexa 555  
anti-rabbit IgG 

Goat Thermo fisher Scientific 
A-21429 

IF: 1:1000 aML#014 

Alexa 555  
anti-mouse IgG 

Goat Thermo fisher Scientific 
A-21424 

IF: 1:1000 aML#015 

Alexa 555  
anti-mouse IgG 

Donkey Thermo fisher Scientific 
A-31570 

IF: 1:1000 aML#171 

Alexa 647  
anti-rabbit IgG 

Goat Thermo fisher Scientific 
A-21245 

IF: 1:1000 aML#016 

Alexa 647  
anti-mouse IgG 

Goat Thermo fisher Scientific 
A-21235 

IF: 1:1000 aML#017 

Alexa 647  
anti-goat IgG 

Donkey Thermo fisher Scientific 
A32849 

IF: 1:1000 aML#176 

CF680 anti-rabbit IgG Goat Biotium, VWR #20067 WB: 1:10000 aML#010 

CF770 anti-mouse IgG Goat Biotium, VWR #20077 WB: 1:10000 aML#009 

CPD Mouse Cosmo Bio (TDM2 clone); CAC-
NM-DND-001 

IF: 1:1000 
Immunoblot: 1:4000 

N/A 

DDB2 Goat R&D Systems Netherlands; 
AF3297-SP 

WB: 1:1000 aML#107 

GFP Goat Homemade WB: 1:2000 N/A 

GFP Mouse Roche, 11814460001 WB: 1:1000 aML#011 

PAR Mouse Mouse monoclonal 10H (ascites) 
(Homemade) 

WB: 1:500 N/A 

PAR Mouse Trevigen, 4335-MC-100 IF: 1:1000 aML#174 

PAR-binding reagent Rabbit Millipore; MABE1031 IF: 1:500 N/A 

PAR-binding reagent Rabbit Millipore; MABE1016 WB: 1:1000 N/A 

PARP1 Rabbit Cell signalling; #9542S WB: 1:1000 aML#060 

PARP1 Rabbit Homemade WB: 1:10,000 N/A 

PARP1 Mouse C2-10: Enzo:  
BML-SA250-0050 

WB: 1:2000 N/A 

PARP2 Mouse Enzo; clone: 4G8  
(ALX-804-639-L001) 

WB: 1:200 aML#126 

PARP2 Rabbit Active Motif: Cat# 39743 WB: 1:1000 N/A 

Tubulin Mouse Sigma; T6199 WB: 1:1000 aML#008 

XPA Rabbit Gift from Rick Wood (CJ1) WB: 1 in 10.000 aML#079 

XPB (ERCC3, p89) Mouse Millipore, MABE1123  WB: 1 in 2000 aML#101 

XPC Rabbit Novus Biologicals: NB100-58801 WB: 1:1000 
IF: 1:500 

aML#077 

XPC Rabbit Gene Tex: GTX70309 WB: 1:1000 N/A 
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