Supplementary Information

XPC-PARP complexes engage the chromatin remodeler ALC1
to catalyze global genome DNA damage repair

Charlotte Blessing®?#, Katja Apelt*#, Diana van den Heuvel?,

Claudia Gonzalez Leal'2, Magdalena B. Rother3, Melanie van der Woude#,
Roman Gonzalez-Prieto®%7, Adi Yifrach®, Avital Parnas®, Rashmi G. Shah®,
Tia Tyrsett Kuo'-2, Daphne E.C. Boer?, Jin Cai'?, Angela Kragten?,
Hyun-Suk Kim'9, Orlando D. Scharer'®'", Alfred C.O. Vertegaal®, Girish M. Shah®,
Sheera Adar8, Hannes Lans?, Haico van Attikum?,

Andreas G. Ladurner'?'?" and Martijn S. Luijsterburg®”

' Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-
Martinsried, Germany

2 International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-
Martinsried, Germany

3 Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands

4 Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical
Center, Rotterdam, The Netherlands

5Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The
Netherlands

6 Genome Proteomics Laboratory, Andalusian Center For Molecular Biology and Regenerative
Medicine, Seville, Spain

7 Department of Cell Biology, University of Seville, Seville, Spain

8 Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-
Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel

9 Laboratory for Skin Cancer Research, CHU-Q: Laval University Hospital Research Centre of
Quebec (CHUL site), Quebec City, Canada

10 Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea

1 Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and
Technology, Ulsan, Republic of Korea
2 Eisbach Bio GmbH, Planegg-Martinsried, Germany

# Shared first authors
" Corresponding authors: AGL (andreas.ladurner@med.Imu.de), MSL (m.luijsterburg@lumc.nl)



mailto:andreas.ladurner@med.lmu.de
mailto:m.luijsterburg@lumc.nl

Blessing, Apelt et al.

Supplementary Figure 1

a

An XPC-PARP axis links ALC1 to global genome repair

XPC- DDB2-

KO «kDa

U20S(FRT) WT KO

XPC | s—

-150

—_—

DDB2 | s———

-50

Tubulin

-50

b XPC-KO
WT

+ XPC

DAPI

CPD

EdU

PARP1

- N w
L L !

Relative EAU intensity

o
L

Wt
B XPC-KO
Bl XPC-KO + XPC-GFP

PARP2

XPC
-KO

XPC
-KO kDa

PARP1-GFP |

-150

GFP-PARP2

-100

XPC | wwmr s

- 150

Tubulin

-50




Blessing, Apelt et al. An XPC-PARP axis links ALC1 to global genome repair

Supplementary Figure 1: Repair defects in XPC-KO cells. (a) Western blot of U20S
(FRT) WT, XPC-KO and DDB2-KO cells. Two independent replicates of each IP
experiment were performed obtaining similar results. (b) Representative images and
(c) quantification of unscheduled DNA synthesis experiments in U20S (FRT) WT,
XPC-KO, XPC-KO + XPC-GFP cells upon UV-C irradiation. 191-254 cells were
analyzed in 2 independent experiments. All cells are depicted as individual data points
(grey). The median of each biological replicate is depicted as a colored point, while
the bar represents the median of all data points. (d) Western blot of U20S (FRT) WT
and XPC-KO cells expressing PARP1-GFP or GFP-PARP2. Two independent
replicates of each IP experiment were performed obtaining similar results. The scale
barin (b) is 5 ym.
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Supplementary Figure 2
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Supplementary Figure 2: Poly-(ADP-ribose) levels at UV lesions. (a)
Quantification of DDB2 levels 10 minutes after local UV-C irradiation (30 J/m2) by
immunofluorescence in U20S WT, PARP1-KO and PARP2-KO cells shown in Figure
4a. >100 cells were analyzed per condition from 3 independent experiments. (b)
Representative images of poly-(ADP-ribose) (PAR) levels 5 minutes after UV-C
irradiation (20 J/m?) by immunofluorescence (Millipore; MABE1031) in U20S WT,
PARP1-KO and PARP2-KO cells. This experiment was repeated three times obtaining
similar results. (c¢) Quantification of DDB2 levels 10 minutes after local UV-C irradiation
(30 J/m2) by immunofluorescence in U20S WT and XPC-KO cells shown in Figure
4e. >100 cells were analyzed per condition from 3 independent experiments. >100
cells were analyzed per condition from 3 independent experiments. (d) Quantification
of XPC levels 10 minutes after local UV-C irradiation (30 J/m2) by
immunofluorescence in U20S WT and DDB2-KO cells shown in Figure 4g. >100 cells
were analyzed per condition from 3 independent experiments. >100 cells were
analyzed per condition from 3 independent experiments. (e) Representative images
of PAR levels 5 minutes after UV-C irradiation (20 J/m?) by immunofluorescence
(Millipore; MABE1031) in U20S (FRT) WT, XPC-KO and DDB2-KO cells. This
experiment was repeated three times obtaining similar results. (f) Representative
images and (g, h) quantification of poly-(ADP-ribose) (PAR) levels (Trevigen, 4335-
MC-100) (g) or DDB2 levels (h) 10 minutes after local UV-C irradiation (30 J/m?) by
immunofluorescence in U20S WT or XPC-KO cells transfected with the indicated
siRNAs. The median of each biological replicate is depicted as a colored point, while
the bar represents the median of all data points. >100 cells were analyzed per
condition from 3 independent experiments. (i) Western blot of U20S WT and XPC-KO
cells transfected with the indicated siRNAs. Two independent replicates of each
western blot were performed obtaining similar results. The scale bar in (b, e, f) is 5
um.
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Supplementary Figure 3
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Supplementary Figure 3: CPD repair kinetics in PARP1/2-KO cells. (a)
Representative images of GFP-tagged ALC1, PARP1 or PARP2 recruitment to the
LacO array upon tethering to the indicated mCherry-LacR-macrodomain. Pictures
were taken before and 1 min after UV-C micro-irradiation. See Figure 5e for additional
pictures and quantifications. (b) Western blot of U20S WT, PARP1-KO or PARP2-KO
transfected with the indicated siRNAs. Three independent replicates of each western
blot were performed obtaining similar results. (¢) Clonogenic survival assays of U20S
WT, PARP1-KO or PARP2-KO transfected with the indicated siRNAs. The median of
each biological replicate is depicted as a grey point, while the colored bar represents
the median of 3 independent experiments. (d) Representative dot blots and (e)
quantification of CPD levels in U20S WT, PARP1-KO and PARP2-KO cells at different
time points after UV-C damage (20 J/m?). The data is depicted as mean + S.E.M. of 4
independent experiments. The scale barin (a) is 5 ym.
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Supplementary Figure 4: Recruitment of ALC1 in PARP1/2-KO cells. (a)
Western blot of U20S (FRT) ALC1-KO cells expressing GFP-ALC1 WT, GFP-ALC1
E175Q or GFP-ALC1 Amacrodomain. Two independent replicates of each western
blot were performed obtaining similar results. (b) Representative images and (c)
recruitment kinetics of GFP-ALC1 in U20S, PARP1-KO and PARP2-KO cells upon
UV-C irradiation. 53-60 cells were analyzed from 2 independent experiments (n=2).
The data are shown as mean + SEM. The scale barin (b) is 5 um.
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Supplementary Figure 5
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Supplementary Figure 5: Effects of ALC1-KO on nucleotide excision repair. (a,
b) Representative dot blots of 6-4PP (a) or CPD (b) in U20S WT, XPC-KO or ALC1-
KO. See Figure 8a, b for a quantification. (¢) Clonogenic survival assays of U20S
ALC1-KO and U20S (FRT) CSA-KO cells and the respective parental cell lines upon
llludin S treatment. The data is depicted as mean + S.E.M. from 3 independent
experiments. (d) Representative images and (e) quantification of recovery of RNA
synthesis assays after UV-C irradiation. 78-212 cells were analyzed in three
independent experiments. All cells are depicted as individual data points (grey). The
median of each biological replicate is depicted as a colored point, while the bar
represents the median of all data points. The scale bar in (d) is 5 pm.
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Supplementary Figure 6
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Supplementary Figure 6: Recruitment of XPC and DDB2 in ALC-deficient cells.
(a) Western blot of U20S (FRT) XPC-KO + XPC-GFP and XPC ALC1-dKO + XPC-
GFP cells, and U20S (FRT) DDB2-KO + GFP-DDB2 and DDB2 ALC1-dKO + GFP-
DDB2 cells. Two independent replicates of each western blot were performed
obtaining similar results. (b) Recruitment kinetics of XPC-GFP or GFP-DDB2 at sites
of local UV-C laser irradiation. 80-135 cells were analyzed in 3 independent
experiments. The data are shown as mean + SEM normalized to pre-damage GFP
intensity at micro-irradiation sites. (c) Representative image of cell expressing
PAGFP-H2A and mCherry-DDB2 that has been sequentially irradiated with UV-C and
UV-A lasers (upper track) or only with a UV-A laser (lower track). This experiment was
performed three times obtaining similar results. (d) Representative image of cell
expressing PAGFP-H2A and NBS1-mCherry that has been sequentially irradiated with
UV-C and UV-A lasers. This experiment was performed three times obtaining similar
results. (e) Quantification of XPC recruitment 10, 20 and 30 minutes after local UV-C
irradiation (30 J/m?) by immunofluorescence in U20S WT, ALC1-KO, ALC1-KO +
GFP-ALC1, ALC1-KO + GFP-ALC1 E175Q. Quantification of PAR levels in the same
cells is shown in Figure 9d. The median of each biological replicate is depicted as a
colored point, while the bar represents the median of all data points. >80 cells were
analyzed per condition from 3 independent experiments. The scale bar in (¢, d) is 5
pgm.
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Supplementary table 1. Cell lines

Cell lines Origin

u20S Nicholas D Lakin (Ronson et al., 2018)
U20S 2-6-3 Susan Janicki (Janicki et al., 2004)
U20S PARP1-KO Nicholas D Lakin (Ronson et al., 2018)
U20S PARP2-KO Nicholas D Lakin (Ronson et al., 2018)
U20S(FRT) Daniel Durocher (Panier et al., 2012)
U20S(FRT) ALC1-KO This study

U20S(FRT) ALC1-KO + GFP-ALC1E175Q This study

U20S(FRT) ALC1-KO + GFP-ALC1WT This study

U20S(FRT) ALC1-KO + GFP-ALC1AMACRO This study

U20S(FRT) CSA-KO (van der Weegen et al., 2020)
U20S(FRT) DDB2 ALC1-dKO + GFP-DDB2 This study

U20S(FRT) DDB2-KO This study

U20S(FRT) DDB2-KO + GFP-DDB2 This study

U20S(FRT) DDB2-KO + GFP-ALCA1 This study

U20S(FRT) GFP-ALCA1 This study

U20S(FRT) GFP-NLS Haico van Attikum (Luijsterburg et al., 2017)
U20S(FRT) PARP1-GFP This study

U20S(FRT) GFP-PARP2 This study

U20S(FRT) XPC ALC1-dKO + XPC-GFP This study

U20S(FRT) XPC-KO This study

U20S(FRT) XPC-KO + GFP-PARP2 This study

U20S(FRT) XPC-KO + PARP1-GFP This study

U20S(FRT) XPC-KO + XPC-GFP This study

U20S(FRT) XPC-KO + GFP-ALCA1 This study
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Supplementary table 2. Plasmids

An XPC-PARP axis links ALC1 to global genome repair

Plasmids Origin
mCherry-LacR-NLS-C1-Macro H2A.1 (184aa-370aa) This study
mCherry-LacR-NLS-Stop (van der Weegen et al., 2020)
pcDNAS-FRT-TO-Hygro Invitrogen
pcDNAS-FRT-TO-Hygro (Nhel) This study

pcDNA5-FRT-TO-Hygro- GFP-ALC1E175Q

(Blessing et al., 2020)

pcDNA5-FRT-TO-Hygro- GFP-ALC1WT

(Blessing et al., 2020)

pcDNA5-FRT-TO-Hygro- GFP-ALC1AMACRO This study
pcDNAS-FRT-TO-Hygro- PARP1-GFP This study
pcDNAS-FRT-TO-Hygro-GFP-PARP2 This study
pcDNAS-FRT-TO-Puro-GFP-DDB2 This study
pcDNA5-FRT-TO-Puro-GFP-NLS (Luijsterburg et al., 2017)
pcDNA5-FRT-TO-Puro-XPC-GFP This study

pDDB2-mCherry

(Luijsterburg et al., 2012)

pEGFP-PARP2

(Blessing et al., 2020)

pNBS1-mCherry

(Luijsterburg et al., 2016)

pOG44 Invitrogen

pPAGFP-H2A (Luijsterburg et al., 2016)
pPARP1-EGFP (Mortusewicz et al., 2007)
pX458 (Cas9) Addgene #48138

Supplementary table 3. Sequences of primers

sgRNAs

Sequence/Origin

macroH2A1.1-GFP-fw

GAATTCTACAGTCCTCTCCACCAAGAGC

macroH2A1.1-GFP-rv

GGATCCTTAGTCCAGCTTGGCCATTTCC

pcDNAS/FRT/TO-Hygro-Nhe-fw

ATCCAGCCTCCGGACGCTAGCGTTTAAAC

pcDNAS5/FRT/TO-Hygro-Nhe-rv

AAGTTTAAACGCTAGCGTCCGGAG

pEGFP-PARP2-fw

ATATATGCTAGCATGGTGAGCAAGGGCGAGGAG

pEGFP-PARP2-rv

ATATATGCGGCCGCTCACCACAGCTGAAGGAAATTAAACTG

pPARP1-EGFP-fw

ATATATGCGGCCGCATGGCGGAGTCTTCGGATAAGC

PPARP1-EGFP-rv

ATATATCTCGAGTTACTTGTACAGCTCGTCCATGCC

Supplementary table 4. Sequences of sgRNAs and siRNAs

sgRNAs and siRNAs

Sequence/Origin

sgRNA ALCA1 CCATCGGGTTTTACTTTTCTCCC

sgRNA CSA CAACTTTGTGACTTGAAGTCTGG

sgRNA DDB2 CCTAGCAGAAGATGTGACTCAGA

sgRNA XPC TGGGGGTTTCTCATCTTCAAAGG

siRNA Luciferase CGTACGCGGAATACTTCGA

siRNA non-target (NT) ThermoFisher Silencer Negative Control #1, AM4611
siRNA XPA CAGAGATGCTGATGATAAA

siRNA XPC TAGCAAATGGCTTCTATCGAA
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Supplementary table 5. Antibodies

Antibodies Host Manufacturer Use Antibody
identifier

6-4PP Mouse | Cosmo bio, NM-DND-002 Immunoblot: 1:2000 N/A

ALC1 Rabbit | Homemade WB: 1:1000 aML#144

Alexa 488 Goat Thermo fisher Scientific IF: 1:1000 aML#012

anti-rabbit IgG A-11034

Alexa 488 Goat Thermo fisher Scientific IF: 1:1000 aML#013

anti-mouse IgG A-11029

Alexa 555 Goat Thermo fisher Scientific IF: 1:1000 aML#014

anti-rabbit IgG A-21429

Alexa 555 Goat Thermo fisher Scientific IF: 1:1000 aML#015

anti-mouse 1gG A-21424

Alexa 555 Donkey | Thermo fisher Scientific IF: 1:1000 aML#171

anti-mouse IgG A-31570

Alexa 647 Goat Thermo fisher Scientific IF: 1:1000 aML#016

anti-rabbit IgG A-21245

Alexa 647 Goat Thermo fisher Scientific IF: 1:1000 aML#017

anti-mouse 1gG A-21235

Alexa 647 Donkey | Thermo fisher Scientific IF: 1:1000 aML#176

anti-goat 19G A32849

CF680 anti-rabbit IgG Goat Biotium, VWR #20067 WAB: 1:10000 aML#010

CF770 anti-mouse IgG Goat Biotium, VWR #20077 WB: 1:10000 aML#009

CPD Mouse | Cosmo Bio (TDM2 clone); CAC- | IF: 1:1000 N/A
NM-DND-001 Immunoblot: 1:4000

DDB2 Goat R&D Systems Netherlands; | WB: 1:1000 aML#107
AF3297-SP

GFP Goat Homemade WB: 1:2000 N/A

GFP Mouse | Roche, 11814460001 WB: 1:1000 aML#011

PAR Mouse | Mouse monoclonal 10H (ascites) | WB: 1:500 N/A
(Homemade)

PAR Mouse | Trevigen, 4335-MC-100 IF: 1:1000 aML#174

PAR-binding reagent Rabbit Millipore; MABE1031 IF: 1:500 N/A

PAR-binding reagent Rabbit | Millipore; MABE1016 WB: 1:1000 N/A

PARP1 Rabbit | Cell signalling; #9542S WB: 1:1000 aML#060

PARP1 Rabbit Homemade WB: 1:10,000 N/A

PARP1 Mouse | C2-10: Enzo: WB: 1:2000 N/A
BML-SA250-0050

PARP2 Mouse | Enzo; clone: 4G8 WB: 1:200 aML#126
(ALX-804-639-L001)

PARP2 Rabbit | Active Motif: Cat# 39743 WB: 1:1000 N/A

Tubulin Mouse | Sigma; T6199 WB: 1:1000 aML#008

XPA Rabbit | Gift from Rick Wood (CJ1) WB: 1in 10.000 aML#079

XPB (ERCC3, p89) Mouse | Millipore, MABE1123 WB: 1 in 2000 aML#101

XPC Rabbit | Novus Biologicals: NB100-58801 WB: 1:1000 aML#077

IF: 1:500
XPC Rabbit | Gene Tex: GTX70309 WB: 1:1000 N/A
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