# XPC–PARP complexes engage the chromatin remodeler ALC1 to catalyze global genome DNA damage repair

Charlotte Blessing<sup>1,2,#</sup>, Katja Apelt<sup>3,#</sup>, Diana van den Heuvel<sup>3</sup>, Claudia Gonzalez Leal<sup>1,2</sup>, Magdalena B. Rother<sup>3</sup>, Melanie van der Woude<sup>4</sup>, Román González-Prieto<sup>5,6,7</sup>, Adi Yifrach<sup>8</sup>, Avital Parnas<sup>8</sup>, Rashmi G. Shah<sup>9</sup>, Tia Tyrsett Kuo<sup>1,2</sup>, Daphne E.C. Boer<sup>3</sup>, Jin Cai<sup>1,2</sup>, Angela Kragten<sup>3</sup>, Hyun-Suk Kim<sup>10</sup>, Orlando D. Schärer<sup>10,11</sup>, Alfred C.O. Vertegaal<sup>5</sup>, Girish M. Shah<sup>9</sup>, Sheera Adar<sup>8</sup>, Hannes Lans<sup>4</sup>, Haico van Attikum<sup>3</sup>, Andreas G. Ladurner<sup>1,2,12\*</sup>, and Martijn S. Luijsterburg<sup>3,\*</sup>

- <sup>1</sup> Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- <sup>2</sup> International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried, Germany
- <sup>3</sup> Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- <sup>4</sup> Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- <sup>5</sup> Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- <sup>6</sup> Genome Proteomics Laboratory, Andalusian Center For Molecular Biology and Regenerative Medicine, Seville, Spain
- <sup>7</sup> Department of Cell Biology, University of Seville, Seville, Spain
- <sup>8</sup> Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- <sup>9</sup> Laboratory for Skin Cancer Research, CHU-Q: Laval University Hospital Research Centre of Quebec (CHUL site), Quebec City, Canada
- <sup>10</sup> Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
- <sup>11</sup> Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- <sup>12</sup> Eisbach Bio GmbH, Planegg-Martinsried, Germany
- # Shared first authors
- \* Corresponding authors: AGL (andreas.ladurner@med.lmu.de), MSL (m.luijsterburg@lumc.nl)



d



**Supplementary Figure 1:** Repair defects in XPC-KO cells. (a) Western blot of U2OS (FRT) WT, XPC-KO and DDB2-KO cells. Two independent replicates of each IP experiment were performed obtaining similar results. (b) Representative images and (c) quantification of unscheduled DNA synthesis experiments in U2OS (FRT) WT, XPC-KO, XPC-KO + XPC-GFP cells upon UV-C irradiation. 191-254 cells were analyzed in 2 independent experiments. All cells are depicted as individual data points (grey). The median of each biological replicate is depicted as a colored point, while the bar represents the median of all data points. (d) Western blot of U2OS (FRT) WT and XPC-KO cells expressing PARP1-GFP or GFP-PARP2. Two independent replicates of each IP experiment were performed obtaining similar results. The scale bar in (b) is 5  $\mu$ m.



- 75

- 100 - 37

Supplementary Figure 2: Poly-(ADP-ribose) levels at UV lesions. (a) Quantification of DDB2 levels 10 minutes after local UV-C irradiation (30 J/m2) by immunofluorescence in U2OS WT, PARP1-KO and PARP2-KO cells shown in Figure **4a**. >100 cells were analyzed per condition from 3 independent experiments. (b) Representative images of poly-(ADP-ribose) (PAR) levels 5 minutes after UV-C irradiation (20 J/m<sup>2</sup>) by immunofluorescence (Millipore; MABE1031) in U2OS WT, PARP1-KO and PARP2-KO cells. This experiment was repeated three times obtaining similar results. (c) Quantification of DDB2 levels 10 minutes after local UV-C irradiation (30 J/m2) by immunofluorescence in U2OS WT and XPC-KO cells shown in Figure 4e. >100 cells were analyzed per condition from 3 independent experiments. >100 cells were analyzed per condition from 3 independent experiments. (d) Quantification of XPC levels 10 minutes after local UV-C irradiation (30 J/m2) bv immunofluorescence in U2OS WT and DDB2-KO cells shown in Figure 4g. >100 cells were analyzed per condition from 3 independent experiments. >100 cells were analyzed per condition from 3 independent experiments. (e) Representative images of PAR levels 5 minutes after UV-C irradiation (20 J/m<sup>2</sup>) by immunofluorescence (Millipore; MABE1031) in U2OS (FRT) WT, XPC-KO and DDB2-KO cells. This experiment was repeated three times obtaining similar results. (f) Representative images and (g, h) quantification of poly-(ADP-ribose) (PAR) levels (Trevigen, 4335-MC-100) (g) or DDB2 levels (h) 10 minutes after local UV-C irradiation (30 J/m<sup>2</sup>) by immunofluorescence in U2OS WT or XPC-KO cells transfected with the indicated siRNAs. The median of each biological replicate is depicted as a colored point, while the bar represents the median of all data points. >100 cells were analyzed per condition from 3 independent experiments. (i) Western blot of U2OS WT and XPC-KO cells transfected with the indicated siRNAs. Two independent replicates of each western blot were performed obtaining similar results. The scale bar in (b, e, f) is 5 μm.

а



е

b





d





Supplementary Figure 3: CPD repair kinetics in PARP1/2-KO cells. (a) Representative images of GFP-tagged ALC1, PARP1 or PARP2 recruitment to the LacO array upon tethering to the indicated mCherry-LacR-macrodomain. Pictures were taken before and 1 min after UV-C micro-irradiation. See Figure 5e for additional pictures and quantifications. (b) Western blot of U2OS WT, PARP1-KO or PARP2-KO transfected with the indicated siRNAs. Three independent replicates of each western blot were performed obtaining similar results. (c) Clonogenic survival assays of U2OS WT, PARP1-KO or PARP2-KO transfected with the indicated siRNAs. The median of each biological replicate is depicted as a grey point, while the colored bar represents the median of 3 independent experiments. (d) Representative dot blots and (e) quantification of CPD levels in U2OS WT, PARP1-KO and PARP2-KO cells at different time points after UV-C damage (20 J/m<sup>2</sup>). The data is depicted as mean + S.E.M. of 4 independent experiments. The scale bar in (a) is 5 µm.



Supplementary Figure 4: Recruitment of ALC1 in PARP1/2-KO cells. (a) Western blot of U2OS (FRT) ALC1-KO cells expressing GFP-ALC1 WT, GFP-ALC1 E175Q or GFP-ALC1  $\Delta$ macrodomain. Two independent replicates of each western blot were performed obtaining similar results. (b) Representative images and (c) recruitment kinetics of GFP-ALC1 in U2OS, PARP1-KO and PARP2-KO cells upon UV-C irradiation. 53-60 cells were analyzed from 2 independent experiments (n=2). The data are shown as mean + SEM. The scale bar in (b) is 5 µm.



С



d





Supplementary Figure 5: Effects of ALC1-KO on nucleotide excision repair. (a, b) Representative dot blots of 6-4PP (a) or CPD (b) in U2OS WT, XPC-KO or ALC1-KO. See Figure 8a, b for a quantification. (c) Clonogenic survival assays of U2OS ALC1-KO and U2OS (FRT) CSA-KO cells and the respective parental cell lines upon Illudin S treatment. The data is depicted as mean + S.E.M. from 3 independent experiments. (d) Representative images and (e) quantification of recovery of RNA synthesis assays after UV-C irradiation. 78-212 cells were analyzed in three independent experiments. All cells are depicted as individual data points (grey). The median of each biological replicate is depicted as a colored point, while the bar represents the median of all data points. The scale bar in (d) is 5  $\mu$ m.



Supplementary Figure 6: Recruitment of XPC and DDB2 in ALC-deficient cells. (a) Western blot of U2OS (FRT) XPC-KO + XPC-GFP and XPC ALC1-dKO + XPC-GFP cells, and U2OS (FRT) DDB2-KO + GFP-DDB2 and DDB2 ALC1-dKO + GFP-DDB2 cells. Two independent replicates of each western blot were performed obtaining similar results. (b) Recruitment kinetics of XPC-GFP or GFP-DDB2 at sites of local UV-C laser irradiation. 80-135 cells were analyzed in 3 independent experiments. The data are shown as mean + SEM normalized to pre-damage GFP intensity at micro-irradiation sites. (c) Representative image of cell expressing PAGFP-H2A and mCherry-DDB2 that has been sequentially irradiated with UV-C and UV-A lasers (upper track) or only with a UV-A laser (lower track). This experiment was performed three times obtaining similar results. (d) Representative image of cell expressing PAGFP-H2A and NBS1-mCherry that has been sequentially irradiated with UV-C and UV-A lasers. This experiment was performed three times obtaining similar results. (e) Quantification of XPC recruitment 10, 20 and 30 minutes after local UV-C irradiation (30 J/m<sup>2</sup>) by immunofluorescence in U2OS WT, ALC1-KO, ALC1-KO + GFP-ALC1, ALC1-KO + GFP-ALC1 E175Q. Quantification of PAR levels in the same cells is shown in Figure 9d. The median of each biological replicate is depicted as a colored point, while the bar represents the median of all data points, >80 cells were analyzed per condition from 3 independent experiments. The scale bar in (c, d) is 5 μm.

# Supplementary table 1. Cell lines

| Cell lines                                     | Origin                                        |  |  |
|------------------------------------------------|-----------------------------------------------|--|--|
| U2OS                                           | Nicholas D Lakin (Ronson et al., 2018)        |  |  |
| U2OS 2-6-3                                     | Susan Janicki (Janicki et al., 2004)          |  |  |
| U2OS PARP1-KO                                  | Nicholas D Lakin (Ronson et al., 2018)        |  |  |
| U2OS PARP2-KO                                  | Nicholas D Lakin (Ronson et al., 2018)        |  |  |
| U2OS(FRT)                                      | Daniel Durocher (Panier et al., 2012)         |  |  |
| U2OS(FRT) ALC1-KO                              | This study                                    |  |  |
| U2OS(FRT) ALC1-KO + GFP-ALC1 <sup>E175Q</sup>  | This study                                    |  |  |
| U2OS(FRT) ALC1-KO + GFP-ALC1 <sup>WT</sup>     | This study                                    |  |  |
| U2OS(FRT) ALC1-KO + GFP-ALC1 <sup>∆MACRO</sup> | This study                                    |  |  |
| U2OS(FRT) CSA-KO                               | (van der Weegen et al., 2020)                 |  |  |
| U2OS(FRT) DDB2 ALC1-dKO + GFP-DDB2             | This study                                    |  |  |
| U2OS(FRT) DDB2-KO                              | This study                                    |  |  |
| U2OS(FRT) DDB2-KO + GFP-DDB2                   | This study                                    |  |  |
| U2OS(FRT) DDB2-KO + GFP-ALC1                   | This study                                    |  |  |
| U2OS(FRT) GFP-ALC1                             | This study                                    |  |  |
| U2OS(FRT) GFP-NLS                              | Haico van Attikum (Luijsterburg et al., 2017) |  |  |
| U2OS(FRT) PARP1-GFP                            | This study                                    |  |  |
| U2OS(FRT) GFP-PARP2                            | This study                                    |  |  |
| U2OS(FRT) XPC ALC1-dKO + XPC-GFP               | This study                                    |  |  |
| U2OS(FRT) XPC-KO                               | This study                                    |  |  |
| U2OS(FRT) XPC-KO + GFP-PARP2                   | This study                                    |  |  |
| U2OS(FRT) XPC-KO + PARP1-GFP                   | This study                                    |  |  |
| U2OS(FRT) XPC-KO + XPC-GFP                     | This study                                    |  |  |
| U2OS(FRT) XPC-KO + GFP-ALC1                    | This study                                    |  |  |

## Supplementary table 2. Plasmids

| Plasmids                                        | Origin                        |
|-------------------------------------------------|-------------------------------|
| mCherry-LacR-NLS-C1-Macro H2A.1 (184aa-370aa)   | This study                    |
| mCherry-LacR-NLS-Stop                           | (van der Weegen et al., 2020) |
| pcDNA5-FRT-TO-Hygro                             | Invitrogen                    |
| pcDNA5-FRT-TO-Hygro (Nhel)                      | This study                    |
| pcDNA5-FRT-TO-Hygro- GFP-ALC1E175Q              | (Blessing et al., 2020)       |
| pcDNA5-FRT-TO-Hygro- GFP-ALC1 <sup>WT</sup>     | (Blessing et al., 2020)       |
| pcDNA5-FRT-TO-Hygro- GFP-ALC1 <sup>∆MACRO</sup> | This study                    |
| pcDNA5-FRT-TO-Hygro- PARP1-GFP                  | This study                    |
| pcDNA5-FRT-TO-Hygro-GFP-PARP2                   | This study                    |
| pcDNA5-FRT-TO-Puro-GFP-DDB2                     | This study                    |
| pcDNA5-FRT-TO-Puro-GFP-NLS                      | (Luijsterburg et al., 2017)   |
| pcDNA5-FRT-TO-Puro-XPC-GFP                      | This study                    |
| pDDB2-mCherry                                   | (Luijsterburg et al., 2012)   |
| pEGFP-PARP2                                     | (Blessing et al., 2020)       |
| pNBS1-mCherry                                   | (Luijsterburg et al., 2016)   |
| pOG44                                           | Invitrogen                    |
| pPAGFP-H2A                                      | (Luijsterburg et al., 2016)   |
| pPARP1-EGFP                                     | (Mortusewicz et al., 2007)    |
| pX458 (Cas9)                                    | Addgene #48138                |

# Supplementary table 3. Sequences of primers

| sgRNAs                     | Sequence/Origin                           |
|----------------------------|-------------------------------------------|
| macroH2A1.1-GFP-fw         | GAATTCTACAGTCCTCTCCACCAAGAGC              |
| macroH2A1.1-GFP-rv         | GGATCCTTAGTCCAGCTTGGCCATTTCC              |
| pcDNA5/FRT/TO-Hygro-Nhe-fw | ATCCAGCCTCCGGACGCTAGCGTTTAAAC             |
| pcDNA5/FRT/TO-Hygro-Nhe-rv | AAGTTTAAACGCTAGCGTCCGGAG                  |
| pEGFP-PARP2-fw             | ATATATGCTAGCATGGTGAGCAAGGGCGAGGAG         |
| pEGFP-PARP2-rv             | ATATATGCGGCCGCTCACCACAGCTGAAGGAAATTAAACTG |
| pPARP1-EGFP-fw             | ATATATGCGGCCGCATGGCGGAGTCTTCGGATAAGC      |
| pPARP1-EGFP-rv             | ATATATCTCGAGTTACTTGTACAGCTCGTCCATGCC      |

## Supplementary table 4. Sequences of sgRNAs and siRNAs

| sgRNAs and siRNAs     | Sequence/Origin                                   |
|-----------------------|---------------------------------------------------|
| sgRNA ALC1            | CCATCGGGTTTTACTTTTCTCCC                           |
| sgRNA CSA             | CAACTTTGTGACTTGAAGTCTGG                           |
| sgRNA DDB2            | CCTAGCAGAAGATGTGACTCAGA                           |
| sgRNA XPC             | TGGGGGTTTCTCATCTTCAAAGG                           |
| siRNA Luciferase      | CGTACGCGGAATACTTCGA                               |
| siRNA non-target (NT) | ThermoFisher Silencer Negative Control #1, AM4611 |
| siRNA XPA             | CAGAGATGCTGATGATAAA                               |
| siRNA XPC             | TAGCAAATGGCTTCTATCGAA                             |

# Supplementary table 5. Antibodies

| Antibodies            | Host        | Manufacturer                          | Use                | Antibody  |
|-----------------------|-------------|---------------------------------------|--------------------|-----------|
| 6-4PP                 | Mouse       | Cosmo bio, NM-DND-002                 | Immunoblot: 1:2000 | N/A       |
| ALC1                  | Rabbit      | Homemade                              | WB: 1:1000         | aML#144   |
| Alexa 488             | Goat        | Thermo fisher Scientific              | IF: 1:1000         | aML#012   |
| anti-rabbit IgG       |             | A-11034                               |                    |           |
| Alexa 488             | Goat        | Thermo fisher Scientific              | IF: 1:1000         | aML#013   |
| anti-mouse IgG        |             | A-11029                               |                    |           |
| Alexa 555             | Goat        | Thermo fisher Scientific              | IF: 1:1000         | aML#014   |
| anti-rabbit IgG       |             | A-21429                               |                    |           |
| Alexa 555             | Goat        | Thermo fisher Scientific              | IF: 1:1000         | aML#015   |
| anti-mouse IgG        |             | A-21424                               |                    |           |
| Alexa 555             | Donkey      | Thermo fisher Scientific              | IF: 1:1000         | aML#171   |
| anti-mouse IgG        |             | A-31570                               |                    |           |
| Alexa 647             | Goat        | Thermo fisher Scientific              | IF: 1:1000         | aML#016   |
| anti-rabbit IgG       |             | A-21245                               | 15 4 4000          | NH //0.47 |
| Alexa 647             | Goat        | Thermo fisher Scientific              | IF: 1:1000         | aML#017   |
| anti-mouse IgG        | Development | A-21235                               |                    | - 14470   |
| Alexa 647             | Donkey      |                                       | IF: 1:1000         | alviL#176 |
| CE690 opti robbit laC | Coat        | A32049<br>Biotium \//\/B #20067       | W/P: 1:10000       | oMI #010  |
| CF000 anti-rabbit igG | Goat        | Biolium, VVR #20067                   | VVB. 1.10000       | alviL#010 |
| CF770 anti-mouse IgG  | Goat        | Biotium, VWR #20077                   | WB: 1:10000        | aML#009   |
| CPD                   | Mouse       | Cosmo Bio (TDM2 clone); CAC-          | IF: 1:1000         | N/A       |
|                       |             | NM-DND-001                            | Immunoblot: 1:4000 |           |
| DDB2                  | Goat        | R&D Systems Netherlands;<br>AF3297-SP | WB: 1:1000         | aML#107   |
| GFP                   | Goat        | Homemade                              | WB: 1:2000         | N/A       |
| GFP                   | Mouse       | Roche, 11814460001                    | WB: 1:1000         | aML#011   |
| PAR                   | Mouse       | Mouse monoclonal 10H (ascites)        | WB: 1:500          | N/A       |
| PAR                   | Mouse       | Trevigen, 4335-MC-100                 | IF: 1:1000         | aML#174   |
| PAR-binding reagent   | Rabbit      | Millipore; MABE1031                   | IF: 1:500          | N/A       |
| PAR-binding reagent   | Rabbit      | Millipore; MABE1016                   | WB: 1:1000         | N/A       |
| PARP1                 | Rabbit      | Cell signalling; #9542S               | WB: 1:1000         | aML#060   |
| PARP1                 | Rabbit      | Homemade                              | WB: 1:10,000       | N/A       |
| PARP1                 | Mouse       | C2-10: Enzo:<br>BMI -SA250-0050       | WB: 1:2000         | N/A       |
| PARP2                 | Mouse       | Enzo: clone: 4G8                      | WB· 1·200          | aMI #126  |
| 17442                 | Modeo       | (AI X-804-639-1 001)                  | 112.1.200          |           |
| PARP2                 | Rabbit      | Active Motif: Cat# 39743              | WB: 1:1000         | N/A       |
| Tubulin               | Mouse       | Sigma; T6199                          | WB: 1:1000         | aML#008   |
| ХРА                   | Rabbit      | Gift from Rick Wood (CJ1)             | WB: 1 in 10.000    | aML#079   |
| XPB (ERCC3, p89)      | Mouse       | Millipore, MABE1123                   | WB: 1 in 2000      | aML#101   |
| XPC                   | Rabbit      | Novus Biologicals: NB100-58801        | WB: 1:1000         | aML#077   |
| XPC                   | Rabbit      | Gene Tex: GTX70309                    | WB: 1:1000         | N/A       |
|                       |             |                                       |                    | 1         |

## Supplementary references

- Blessing, C., I.K. Mandemaker, C. Gonzalez-Leal, J. Preisser, A. Schomburg, and A.G. Ladurner. 2020. The Oncogenic Helicase ALC1 Regulates PARP Inhibitor Potency by Trapping PARP2 at DNA Breaks. Mol Cell. 80:862-875 e866.
- Janicki, S.M., T. Tsukamoto, S.E. Salghetti, W.P. Tansey, R. Sachidanandam, K.V. Prasanth, T. Ried, Y. Shav-Tal, E. Bertrand, R.H. Singer, and D.L. Spector. 2004. From silencing to gene expression: real-time analysis in single cells. Cell. 116:683-698.
- Luijsterburg, M.S., I. de Krijger, W.W. Wiegant, R.G. Shah, G. Smeenk, A.J. de Groot, A. Pines, A.C. Vertegaal, J.J. Jacobs, G.M. Shah, and H. van Attikum. 2016. PARP1 Links CHD2-Mediated Chromatin Expansion and H3.3 Deposition to DNA Repair by Non-homologous End-Joining. Mol Cell. 61:547-562.
- Luijsterburg, M.S., M. Lindh, K. Acs, M.G. Vrouwe, A. Pines, H. van Attikum, L.H. Mullenders, and N.P. Dantuma. 2012. DDB2 promotes chromatin decondensation at UV-induced DNA damage. J Cell Biol. 197:267-281.
- Luijsterburg, M.S., D. Typas, M.C. Caron, W.W. Wiegant, D. van den Heuvel, R.A. Boonen, A.M. Couturier, L.H. Mullenders, J.Y. Masson, and H. van Attikum. 2017. A PALB2interacting domain in RNF168 couples homologous recombination to DNA breakinduced chromatin ubiquitylation. eLife. 6.
- Mortusewicz, O., J.C. Ame, V. Schreiber, and H. Leonhardt. 2007. Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells. Nucleic Acids Res.
- Panier, S., Y. Ichijima, A. Fradet-Turcotte, C.C. Leung, L. Kaustov, C.H. Arrowsmith, and D. Durocher. 2012. Tandem protein interaction modules organize the ubiquitindependent response to DNA double-strand breaks. Mol Cell. 47:383-395.
- Ronson, G.E., A.L. Piberger, M.R. Higgs, A.L. Olsen, G.S. Stewart, P.J. McHugh, E. Petermann, and N.D. Lakin. 2018. PARP1 and PARP2 stabilise replication forks at base excision repair intermediates through Fbh1-dependent Rad51 regulation. Nat Commun. 9:746.
- van der Weegen, Y., H. Golan-Berman, T.E.T. Mevissen, K. Apelt, R. Gonzalez-Prieto, J. Goedhart, E.E. Heilbrun, A.C.O. Vertegaal, D. van den Heuvel, J.C. Walter, S. Adar, and M.S. Luijsterburg. 2020. The cooperative action of CSB, CSA, and UVSSA target TFIIH to DNA damage-stalled RNA polymerase II. Nat Commun. 11:2104.