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MINE estimates mutual information by calculating the KL Divergence between the marginal distributions 
and the joint distribution. This KL divergence represents the distance between these distributions, which is 
nonnegative such that 0 represents complete independence. MINE uses the Donsker-Varadahn representation 
of the KL Divergence to evaluate a function that maps samples of the data to the set of all real numbers. Gradient 
ascent finds the parameterization of this function which maximizes the mutual information for a tight lower bound. 

To validate MINE’s estimates before applying it to the real data, we evaluated MINE on multivariate gaussian 
distributions with an analytically calculable mutual information between toy genes and toy Ca2+ (I(TG;TC)). The 
“toy” data was created using a standard additive white gaussian noise (AWGN) model with tunable dependency, 
entropy, and dimensionality (SF 1). A multivariate gaussian distribution (5128,16) was defined based on a 
specified covariance structure (SF 1B). The covariance of the distribution is somewhat arbitrary; it is only required 
that the matrix is invertible and tunable over a range of dependencies. The covariance structure is shown as 4 
symmetrical quadrants in the matrix: the off diagonal quadrants are -α and the on-diagonal quadrants are α (SF 
1A). Toy signals were created by applying a tunable amount of noise to the toy genes (SF 1C).
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Appendix Figure S1. Additive White Gaussian Noise (AWGN) Toy Model. A) Covariance matrix 
for toy data. Quadrant values are determined by a hyperparameter α, where off-diagonal quadrants 
are set to -α and on-diagonal quadrants are set to α, with variance set to 1. B) Toy genes are 
determined by the covariance matrix. C) Toy signals are calculated by adding a 

tunable amount of noise to the toy gene matrix: .



Evaluating MINE on the toy data, we found that the model occasionally produces a non-converging, biased 
mutual information estimate that increases linearly with training (SF 2A). To quantify and remove this bias, 
we fit MINE’s output to a statistical model: , where , , , and 
are the fitting parameters and  is the number of iterations. Finding the optimal  factors out the linear 
bias  and produces a converging and accurate estimate of the analytically determined I(TG;TC) (SF 2B). 
The mean over the three replicates yields a final slope of 5.8e-6, showing reliable, asymptotic convergence 
to the true mutual information value. Applying this solution allowed rigorous definition of a convergence 
criterion that adaptively determines when training can conclude (SF 2C). This criterion uses moving averages 
to determine convergence, and expectedly results in higher residuals for fits with fewer iterations (SF 2D). 
Stricter convergence thresholds can fail to converge because of noise in the output; 1.4 was chosen as the 
final threshold due to its high yield, fast convergence, and low mean residual (SF 2E). In addition to the low 
residuals, we also found a pearson correlation of 0.97 across a range of I(TG;TC) (SF 2F). These results 
support the use of our bias-corrected MINE with the chosen hyperparameters.
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Appendix Figure S2. Fitting Model on Toy Data. A) Blue points are the raw output from MINE. The model occasionally failed to 
converge at the analytical I(TG;TC) value, as shown. Bias correction fit using BFGS optimization is shown in red. B) Blue points show 
the bias correction estimate of the true I(TG;TC) during training from 3 replicates. The dotted black line shows the true, analytical 
I(TG;TC) value. C) An adaptive convergence criterion based on the difference between moving averages was used to decrease training 
time. Higher convergence thresholds, i.e. larger differences between moving averages, result in fewer iterations. D) Faster convergence 
expectedly results in poorer fits with higher residuals on average. E) If the convergence threshold is too stringent, the optimization 
algorithm may be unable to find a suitable fit for bias correction. The yield was calculated over many toy datasets with a range of 
parameter values. F) Toy models with a large range of analytical mutual information values were fit using bias-corrected MINE, pearson 
r = 0.97.



We then applied bias-corrected MINE to the full data. We found that the bias correction works well on the real 
data and eventually converges on a single value (SF 3A). To verify that the results are not limited by sample 
size, we performed a jackknife correction (SF 3B). The jackknife extrapolation to infinite sample size yielded a 
result well within the error bars of the estimate at the full sample size. This result indicates that sample size is 
not limiting.

Appendix Figure S3. Bias-Corrected MINE on Real Data. A) Full data was fit using bias-correction and the estimate of I(G;Ca2+) is 
shown in blue. The dotted black line is the mean of several samples. B) Jackknife of the data with 7 sample sizes ranging from 3369 
to 5128 (all cells). The intercept shown is the extrapolation at infinite sample size, which is well within the estimate of 2.5 ± 0.4 bits.
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To estimate the upper bound on the MI, we used FFT spectral entropy. This calculation begins by creating 
an FFT periodogram (Fig 1D). The Shannon entropy of the resulting distribution of power spectral densities 
represents the spectral entropy. To verify that spectral entropy produces an invariant measurement of 
entropy unlike other differential entropy metrics, we first applied various transformations to the signals. These 
transformations did not change the final entropy, whereas smoothing by convolution did degrade the entropy, 
as expected (SF 4A). Furthermore, we applied linear interpolations to change the dimensionality and found 
that most of the entropy comes from low frequencies which are well preserved even with dramatic reduction 
in timepoints (SF 4B). Increasing the dimensionality by interpolation did not change the entropy estimate. 
Therefore, we conclude that spectral entropy is a robust, invariant measure of signal information.

Appendix Figure S4: FFT Spectral Entropy Robustness. A) FFT spectral entropy is robust to translations and rescaling; unlike 
other measures of differential entropy, it does not depend on the scale of the data. Smoothing the data by convolution expectedly results 
in a loss of information due to removal of high frequencies. B) The dotted black line shows the true dimensionality and the blue line shows 
spectral entropy as a function of dimensionality. FFT spectral entropy is robust to interpolations that change the dimensionality of the 
data that do not affect the distribution of frequencies. Expectedly, reducing dimensionality results in a loss of high frequency information, 
though most of the information is at relatively low or mid frequencies.

To estimate the amount of extra information assuming no redundancy between elements, we calculated the 

NRI as a function of gene set size. For I(Gi;Ca2+), the NRI is simply defined as  because each gene 
occurs only once. This equation can be generalized to gene sets of any size by dividing I({G0, …, Gn};Ca2+) by 
the number of times a gene appears in a particular set. Replacing the sum with an expected value multiplied by 
the number of sets is also useful to avoid having to calculate the value of each element. Equation 2 defines the 
generalization and is used to calculate the redundancy explained in Equation 3, which represents the fraction 
of redundant information at a given gene set size. 
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