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Sup Fig.S1 AOM-DSS mouse model was established. (A) Colorectum of control and 10-week group mice. There
is no tumor in colorectum of the control mouse (control) and there are tumors in colorectum of the AOM-DSS
treated mouse (10-week). (B) Mouse body weight measured during AOM-DSS mouse model building. Control
group were fed with water as control. When fed with DSS solution, mice lost their body weight. When fed with
distilled water, the body weight of mice recovered. (C) H&E staining of control, 2-week and 4-week mouse
colorectums. (D) Ki67 staining of control and 10-week mouse colorectums. (E) The inflammation intensity scores of
mouse colorectum (n=3). The scores were calculated by inflammation foci, crypt density and apoptosis crypt ratio
showed in the H&E staining. (F) The colorectum were divided equally into three parts. The distal part was nearby
anus and the proximal part was far away from anus. The figure shows tumor numbers of the three parts of
colorectum (n=3). Data are represented as means + SEM. Statistical significance was determined by unpaired 2-
tailed Student’s t test. * p-value < 0.05, ** p-value < 0.01.
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Sup. Fig. S2 Transcriptomic analysis of CRC tissues. (A) Read numbers of 15 RNA-seq samples. (B) Mapping
ratios of RNA-seq 15 samples. Control, green; 2-week, light green; 4-week, purple; 7-week, pink; 10-week, orange.
(C) Spearman correlation of RNA-seq data of 15 samples. The deeper color means a higher correlation. (D) DEG
numbers of each time point vs control. (E-H) Volcano plots display DEG fold change (log2) between 2-week vs
control (E), 4-week vs control (F), 7-week vs control (G), 10-week vs control (H). A threshold of 2 fold change and —
log10 p-value is used for defining significant changes. Red dots represent up-regulated genes, blue dots for down-
regulated genes and grey dots for genes not changed. (I) PCA using data of the current study and a previous report
(Abu-Remaileh, Cancer research, 2015). Data1 represents previous report. data2 represents our current data.
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Sup. Fig. S3 Epigenomic analysis of CRC tissues. (A) Mapping ratios of ChIP-Seq samples (five kinds of
histone modification and input at five-time points, total 90 samples). (B) Macs2 peak calling read numbers of
ChIP-Seq samples. (C) Peak numbers of ChIP-Seq samples. (D) Spearman correlation of chip-seq data. The
deeper color means a higher correlation. (E) PC analysis of ChIP-Seq data. (F-J) The ChIP-Seq intensity around
TSS regions (TSS + 5 kb) of H3K27ac (F), H3K4me1 (G), H3K4me3 (H), H3K9me3 (1), and H3K27me3 (J).
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Sup. Fig. S4 Chromatin state dynamics during inflammation-cancer transition. (A) Average gene
expression (FPKM) of genes within regions of particular chromatin states based on RNA-seq data at 2-week, 4-
week, 7-week and 10-week. (B) Percentage of chromatin state regions at control converted to heterochromatin
regions at 10-week. (C-E) Percentage of chromatin state regions at 10-week converted from control quiescent
state (C), repress state (D) and promoter state regions (E). (F-H) Stacked bar charts display chromatin states
regions (X axis) of 2-week (F), 4-week (G), and 7-week (H) converted from control regions (Colorful blocks). (I-L)
The percentage of control chromatin state regions (X axis) converted to 2-week (1), 4-week (J), 7-week (K) and
10-week (L) (Colorful blocks).
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Sup. Fig. S5 ChIP-Seq intensity of histone modifications for DEGs in four functional gene clusters.
(A-D) The average signals of H3K27ac (TSS + 3kb, A), H3K4me1 (TSS + 3kb, B), H3K4me3 (TSS =+ 3kb,
C), H3K27me3 (gene body + 10kb, D) and H3K9me3 (gene body + 10kb, E) enrichment of four RNA-seq

clusters at five-time points. Green represents control, light green for 2-week, purple for 4-week, pink for 7-
week, and orange for 10-week.
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Sup. Fig. S6 Identification of DEG profile using maSigPro based on H3K27ac signal. (A-F) Biological

process analysis of H3K27ac cluster 1 (A), 2 (B), 5 (C), 6 (D), 7 (E), 8 (F) and 9 (G) showed in figure 4A. (G-L)
KEGG analysis of H3K27ac cluster 1 (H), 2 (1), 5 (J), 6 (K), 7 (L), 8 (M) and 9 (N) showed in figure 4A. Bar plot
gradient color fill with p-value.
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Sup. Figure S7 Enhancer state regions are associated with Wnt pathway gene expression. (A) The histogram
shows chromatin states of Wnt signal pathway genes (n=44) belong to RNA-seq cluster 1 of Fig. 3A. (B) H3K27ac
average signals (genebody + 3 kb, RPKM) of Wnt pathway genes (n=24) which are with enhancer state at 10-week
in (A). (C) Boxplots show average expression (FPKM) of Wnt signal genes (n=24) in tumor tissues (n=599) and
normal tissues (n=42). The data sets of human colorectal cancer were downloaded from TCGA database. (D)
Heatmap (left panel) displays the expression of Wnt signal genes (n=24) and their corresponding chromatin states
at different time points (right panel). (E&F) AXINZ is shown as a representative gene. Its expression at five time
points of AOM/DSS mouse model (E) and in patient tumor (n=599) and normal tissues (n=42) (F). (G) UCSC
browser view for histone modifications and chromatin states of AXIN2. (H) UCSC browser view for H3K27ac
enrichment on around AXINZ2 in 3 pairs of normal tissues and patient CRC tissues. Statistical analysis was
performed using an unpaired Student’s t test. * p < 0.05, ** p < 0.01, *xx p < 0.001, ***x p < 0.0001, ns: no
significance.
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Sup. Fig.S8 Enhancer state is associated with selective activation of NF-kB pathway genes. (A)

Expression of NF-kB pathway target genes expression in 15 samples of the mouse model. (B-D) Biological
process analysis of genes in cluster 1 (B), cluster 2 (C) and cluster 3 (D) showed in figure 5A. (E) The histogram
shows the chromatin states of NF-kB pathway genes (n=241) belong to H3K27ac cluster 4 (Fig. 4A) at five-time
points. (F) The percentage of NF-kB downstream genes with enhancer state at 10-week (E) converted from control

chromatin states.
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Sup. Fig. 89 Functional validation of predicted transcription factors in CRC. (A-C) MAZ (A), RUNX1 (B) and
MAFK (C) expression (FPKM) at five time points in AOM-DSS induced CRC tissues. (D-O) Transwell and cell
survival analysis of HCT116 cells after knockdown of MAZ (D-G), RUNX1 (H-K) and MAFK (L-O) by siRNAs. The
results in all experiments represent the means (+SD) of at least three independent biological replicates. Statistical
analysis was performed using an unpaired Student’s t test. * means p-value < 0.05, ** for p-value < 0.01.
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Sup. Fig. $10 Otx2 is a tumor suppressive transcription factor. (A-E) OTX2 was knocked down by siRNAs in
HCT116 cells. Cell migration was measured with transwell assay (A&B), and proliferation was measured with
MTT assay (C). (E-I) OTX2 was knocked down by sgRNAs in RKO cells. Cell migration was measured with
transwell assay (F&G), and proliferation was measured with MTT assay (H). The results in all experiments
represent the means (+SD) of at least three independent biological replicates. Statistical analysis was performed
using an unpaired Student’s t test. * p-value < 0.05, ** p-value < 0.01. (J&K) The UCSC browser view to show
Otx2 binding, H3K27ac, H3K4me1 and H3K4me3 enrichment around Cd52 (J) and Mta3 (K).



