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Figure S1. The SEM images of Co-HMT/ATO. a) The SEM image recorded at 

secondary electron imaging mode. b) The SEM image recorded at backscattered 

electron imaging mode. The lighter regions in Figure S1b correspond to heavier 

elements: Sn and Sb. 

 

 

Figure S2. The SEM image of Ru-Co-HMT/ATO. 

 

 

Figure S3. a) The high-angle annular dark-field (HAADF) image of Ru-Co-HMT/ATO. 

The lighter regions correspond to the ATO substrate due to its higher Z contrast. As can 

be seen, the ATO is surrounded by a darker layer, which is the amorphous Ru-Co-HMT. 
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b)-c) The elements mapping images of Ru-Co-HMT/ATO. As shown in it, the 

distribution of Ru is observed to be broader than Sn, proving the Ru has resided in the 

amorphous Ru-Co-HMT layer.  

 

 

Figure S4. a) The TEM image of ATO. b) The high-resolution TEM image of ATO. 

As can be seen, the ATO consists of nanoparticles smaller than 10 nm. 

 

 

Figure S5. a) The high-angle annular dark-field (HAADF) image of s-RuO2/ATO. b)-

c) The elements mapping images of s-RuO2/ATO. 
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Figure S6. a) The TEM image of n-RuO2/ATO. b) The HAADF image of n-RuO2/ATO. 

c) The elements mapping images of Ru and Sn. 

 

 

Figure S7. The TEM images of n-RuO2 and s-RuO2. As can be seen, part of the 

nanorods have sizes even broader than 30 nm. 
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Figure S8. The nanorod widths of n-RuO2/ATO and s-RuO2/ATO. This data was 

obtained by counting 30 nanorods. 

 

 

Figure S9. The LSV curves s-RuO2/ATO with different ATO mass in the precursors 

from 100-400 mg ATO. 
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Figure S10. The ECSA of n-RuO2, s-RuO2, n-RuO2-ATO, and s-RuO2/ATO. The 

ECSA is calculated by: ECSA =
∫ vdi

υ
, where the v, i, and υ are voltage, current, and 

scan rate. 

 

 

Figure S11. The CV curves of ATO. The load mass is 0.75 mg cm-2, equal to the ATO 

fractions in s-RuO2/ATO and n-RuO2/ATO. 
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Figure S12. The ECSA Normalized LSV curves of n-RuO2, s-RuO2, n-RuO2-ATO, and 

s-RuO2/ATO. 

 

 

Figure S13. a) The LSV curves of EG-n-RuO2 and EG-s-RuO2. b) The LSV curves of 

n-RuO2/C and s-RuO2/C. 
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Figure S14. The CV curves of s-RuO2/ATO before and after 12 h chronopotentiometry 

test. 

 

 

Figure S15. The long-term chronopotentiometry of s-RuO2/ATO tested on Ti felt. The 

electrolyte, ink preparation, load mass of s-RuO2/ATO, and reference electrode were 

the same as the RDE test, except an H-cell was used. A Nafion membrane (Nafion 212) 

was also used to separate the anode and cathode cell apartments. 
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Figure S16. The Fitted XRD patterns (22-30 degree) of n-RuO2-ATO, s-RuO2/ATO, 

and ATO. All the ATO peaks were set to be fixed in positions and FWHMs.  

 

 

Figure S17. The FWHM of ruthenium oxide peaks (110) for n-RuO2, s-RuO2, n-RuO2-

ATO, and s-RuO2/ATO. Here, we should note that existing tensile strains would also 

broaden the peaks. 
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Figure S18. The XRD patterns of the annealed n-RuO2 and the annealed s-RuO2. 

Notably, the FWHMs and peak positions of the annealed s-RuO2 return identical to n-

RuO2.  

 

 

Figure S19. a) TEM images of n-RuO2/ATO, s-RuO2, and s-RuO2/ATO. The inserted 

arrows are vertical to 110 planes. 
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Figure S20. The intensity profiles alone the inserted arrow directions in figure S19. 

The average planear distances are 3.20, 3.23, and 3.23 Å for n-RuO2/ATO, s-

RuO2/ATO, and s-RuO2.  

 

 

 

Figure S21. The HRTEM images of s-RuO2/ATO and s-RuO2. Grain boundaries can 

be observed in them. 
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Figure S22. The high-resolution TEM image of s-RuO2/ATO used for GPA.  

 

 

Figure S23. a) The high-resolution TEM image of s-RuO2 used for GPA. b) the axial 

strain distribution obtained by GPA. The yellow lines in (a) indicate the stacking fault. 
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Figure S24. a) The high-resolution TEM image of s-RuO2/ATO after 

chronopotentiometry. b) the intensity profile along the inserted arrow direction in S24a. 

For comparison, intensity profiles in Figure S20 were also plotted here. The average 

interplanar distance of s-RuO2/ATO post CP is 3.22 Å. 

 

 

Figure S25. The Raman spectra of s-RuO2 and Commercial RuO2. 
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Figure S26. The XPS spectra of n-RuO2/ATO and s-RuO2. 

 

 

Figure S27. The free energy diagram of the strained RuO2 with full coverage of bridge-

O. 
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Figure S28. The free energy diagram of the RuO2 with full coverage of bridge-O. 

 

 

 

Figure S29. The real picture of our PEMWE.  

 

Table S1. The elemental weight ratios from ICP-MS. 

Samples Ru (wt%) Co (wt%) 

Co-HMT -/- 16.9% 

Co-HMT/ATO -/- 9.7% 

n-RuO2/ATO 17.2 2.8 

s-RuO2/ATO 19.4 2.4 
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n-RuO2 63.1 7.2 

s-RuO2 64.0 6.4 

 

 

Table 2. The previous reports related to Ru OER. 

Samples Electrolytes η10 (mV) References 

Amorphous-RuO2 0.1 M HClO4 205 Angew. Chem. Int. Ed. 2021, 60, 

18821-18829. 

Co-doped RuO2 1 M KOH  200 Angew. Chem. Int. Ed. 2022, 61, 

e202114951. 

RuO2/(Co,Mn)3O4 0.5 M H2SO4 270 Appl. Catal. B 2021, 297. 

PtCo coated 

RuO2/C 

0.1 M HClO4 212 Energy Environ. Sci., 2022, 15, 

1119–1130 

SrRuIr ternary 

oxide 

0.5 M H2SO4 190  J. Am. Chem. Soc. 2021, 143, 6482-

6490. 

RuO2 Nano sheets 0.5 M H2SO4 199  Energy Environ. Sci. 2020, 13, 

5143-5151. 

Co-doped RuO2 0.5 M H2SO4 169 iScience 2020, 23, 100756. 

Ru single atoms 

on γ-MnO2 

0.1 M HClO4 161 Nat. Catal. 2021, 4, 1012-1023. 

Pt-doped RuO2 0.5 M H2SO4 228 Sci. Adv. 2022, 8, eabl9271. 

s-RuO2/ATO 0.1 M HClO4 198 This work 

 

 

Table S3. The Rietveld refinement results. 

Parameters n-RuO2 s-RuO2 

Rwp 4.23% 2.66% 

Rp 3.09% 2.09% 

a (Å) 4.518 4.554 
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b (Å) 4.518 4.554 

c (Å) 3.110 3.134 

Interplane distances (1 1 0) (Å) 3.194 3.220 

 

Table S4. The calculated free energies.  

 2H2O *OH+H2O 

+H++e- 

*O+H2O 

+2H++2e- 

*OOH 

+3H++3e- 

2O2 

+4H++4e- 

RuO2 0 eV -0.01 eV 0.92 eV 2.84 eV 4.92 eV 

strained RuO2 0 eV 0.01 eV 0.93 eV 2.88 eV 4.92 eV 

RuO2 with 

bridge O 

0 eV 0.33 eV 

 

1.35 eV 

 

3.49 eV 

 

4.92 eV 

strained RuO2 

with bridge O 

0 eV 0.34 eV 1.35 eV 3.20 eV 4.92 eV 

 

 

 


