Supplementary Information

Telemedicine Platform for Health Assessment Remotely by an Integrated Nanoarchitectonics FePS₃/rGO and Ti₃C₂-based Wearable Device

Jayraj V. Vaghasiya¹, Carmen C. Mayorga-Martinez¹, Martin Pumera^{1,2,3,4}*

¹Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic

²Energy Research Institute@NTU (ERI@N), Research Techno Plaza, X-Frontier Block, Level 5, 50 Nanyang Drive, 637553 Singapore, Singapore

³Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic

⁴Department of Medical Research, China Medical, University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan

E-mail: pumera.research@gmail.com

Supplementary Figure 1. A fabrication process of $Ti_3C_2/FePS_3@rGO$ SASC: (a) Schematic depiction of the conducting cotton fabric (CF) in normal and stretch mode, (b) spray-coating of FePS_3@rGO and Ti_3C_2 on fabric, (c, d) architecture of the $Ti_3C_2/FePS_3@rGO$ SASC and FePS_3@rGO based strain sensor, respectively.

Supplementary Figure 2. Colloidal solution of (a) $FePS_3$, (b) $FePS_3@rGO$, and (c) Ti_3C_2 .

Supplementary Figure 3. EDS spectra of FePS₃@rGO (a) and Ti₃C₂ (b) coated fabrics.

Supplementary Figure 4. (a) XRD pattern of $FePS_3$ and Ti_3C_2 , and (b) nitrogen adsorptiondesorption isotherm of pristine $FePS_3$ and $FePS_3@rGO$.

Supplementary Figure 5. Electrochemical performance in the three-electrode system; (a) CV curves of pristine FePS₃ and different amounts of rGO in FePS₃ electrodes at a scan rate of 50 mV/s; (b) CV curves of FePS₃@rGO_{1.8} at different scan rates; (c) GCD plots of FePS₃@rGO_{1.8} as a function of current densities; (d) C_{sp} versus current densities of FePS₃@rGO_{1.8} electrode; (e) Nyquist plots of pristine FePS₃ and FePS₃@rGO_{1.8} electrodes (inset shows a magnification of high-frequency region); (f) CV curves of Ti₃C₂ at different scan rates; (g) GCD plots of Ti₃C₂ as a function of current densities; (h) C_{sp} versus current densities of Ti₃C₂ electrode.

Supplementary Figure 6. (a) CV curves measured at a scan rate of 50 mV s⁻¹ under different tensile strains; (b) self-discharge curve of two serially connected SASC.

Supplementary Figure 7. (a, b) Digital photograph and loop architecture of FePS₃@rGO strain sensor without strain and corresponding SEM image. (**c, d**) Digital photograph and loop architecture of FePS₃@rGO strain sensor stretched in the y-direction and corresponding SEM image.

Supplementary Figure 8. (a) Relative resistance versus strain response curves of FePS₃@rGO strain sensor; (b) repetitive measurements of the variation in the relative resistance as a function of a strain of 10, 20 and 30%; (c) response curve with an applied strain of 1%.

Supplementary Figure 9. Digital photograph of an integrated $FePS_3@rGO$ strain sensor (left side image) and temperature sensor (right side image) with series-connected $Ti_3C_2/FePS_3$ SASC and wirelessly relay data to a mobile phone.

Supplementary Figure 10. The schematic illustration of the electric circuit of the integrated strain sensor (**a**) and temperature sensor (**b**).

Electrode	Electrolyte	C _{sp} , F/g	E,	P,	Ref.
			Wh kg ⁻¹	W kg ⁻¹	
rGO	H ₃ PO ₄ /PVA	56.11 (at 5 mV s ⁻¹)	1.95	159.8	1
rGO-PEDOT/PSS	H ₃ PO ₄ /PVA	132 (at 5 mV s ⁻¹)	2.83	3589	1
co-doped GO aerogels	H ₂ SO ₄ /PVA	62 (at 5 mV s ⁻¹)	8.65	1600	2
NiPS ₃	3 М КОН	61.3 (at 1.0 A g ⁻¹)	19.2	750	3
Ti ₃ C ₂ T _x //rGO	Organic	48 (NA)	8	NA	4
Ti ₃ C ₂ T _x /MWCNT	Organic	7 (NA)	3	NA	4
MnO ₂ /Ti ₃ CT _x -ar	КОН	210 (at 0.1 A g ⁻¹)	5.47	700	5
Ti ₃ CT _x _Ar	КОН	35 (at 0.1 A g ⁻¹)	2.19	700	5
rGO	Ionic liquid	80.4 (at 0.1 A g ⁻¹)	11.2	NA	6
LT-Ti ₃ C ₂ T _x	3M KCl	467 (at 5 A g ⁻¹)	5.67	589	7
AC//Go@WO ₃	H ₂ SO ₄ /PVA	465 (at 1 A g ⁻¹)	27	6000	8
AC//rGO/NiSe ₂	ЗМ КОН	114 (at 1 A g ⁻¹)	41	842	9
HRG//m-WO ₃	1 M H ₂ SO ₄	389 (at 0.5 A g ⁻¹)	93	500	10
Ti ₃ C ₂ //FePS ₃ @rGO	F108@LiBF4	62.9 (at 1.0 A g ⁻¹)	5.59	400	This
Ti ₃ C ₂ //FePS ₃ @rGO	F108@LiBF4	62.9 (at 1.0 A g ⁻¹)	2.1	2000	work

Supplementary Table 1. The gravimetric capacitance, energy density and power density of reported supercapacitors. (NA: not available)

Supplementary Movie 1. Shows the resistivity as a function of stretch. The FePS₃@rGO-based strain sensor is connected in a closed circuit with a red LED.

Supplementary Movie 2. Remotely monitoring breathing cycles. An integrated FePS₃@rGObased strain sensor and SASC fixing on the volunteer's abdomen.

Supplementary References

- 1. Liu, Y. et al. High-Performance flexible all-solid-state supercapacitor from large free-standing graphene-PEDOT/PSS films. *Sci. Rep.*, 5, 17045 (2015).
- 2. Wu, Z. S. et al. Three-dimensional nitrogen and boron Co-doped graphene for high-performance all-solid-state supercapacitors. *Adv. Mater.*, **24**, 5130-5135 (2012).
- Asif, A. H. et al. Heterogeneous activation of peroxymonosulfate by Co-doped Fe₂O₃ nanospheres for degradation of p-hydroxybenzoic acid. *J. Colloid Interface Sci.* 616, 401-402 (2022).
- 4. Navarro-Suárez, A. M. et al. Development of asymmetric supercapacitors with titanium carbidereduced graphene oxide couples as electrodes. *Electrochim. Acta* **259**, 752-761 (2018).
- Rakhi, R. B., Ahmed, B., Anjum, D. & Alshareef, H. N. Direct chemical synthesis of MnO₂ nanowhiskers on transition-metal carbide surfaces for supercapacitor applications. *ACS Appl. Mater. Interfaces* 8, 18806-18814 (2016).
- 6. Rath, T. & Kundu, P. P. Reduced graphene oxide paper based nanocomposite materials for flexible supercapacitors. *RSC Adv.*, **5**, 26666-26674 (2015).
- Pan, X., Shinde, N. M., Lee, M., Kim, D., Kim, K. H. & Kang, M. Controlled nanosheet morphology of titanium carbide Ti₃C₂Tx MXene via drying methods and its electrochemical analysis. *J. Solid State Electrochem.* 24, 675-686 (2020).
- Nayak, A. K., Das, A. K. & Pradhan, D. High performance solid-state asymmetric supercapacitor using green synthesized graphene-WO₃ nanowires nanocomposite. ACS Sustainable Chem. Eng. 5, 10128 –10138 (2017).
- 9. Gu, Y. et al. N-doped reduced graphene oxide decorated NiSe₂ nanoparticles for highperformance asymmetric supercapacitors. *J. Power Sources* **425**, 60-68 (2019).
- 10. Ashraf, M. et al. A High-Performance asymmetric supercapacitor based on tungsten oxide nanoplates and highly reduced graphene oxide electrodes. *Chem. Eur. J.* 27, 6973-6984 (2021).