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Figure S1. The binding modes of alkynes 1 and 2 in the ATP binding site of MKK7. (A) 1 co-
crystalized in complex with MKK7 (PDB: 6IB0), where the alkyne (black) is protruding into the back 
pocket. (B) 2 co-crystalized in complex with MKK7 (PDB: 7CBX), where the alkyne (black) is 
pointing outside the binding pocket towards the solvent-exposed region.  
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Figure S2. Plot of cLogS of series 1 members and their associated p-JNK levels determined via an 
ICW assay (13.8 µM, 2 h, U2OS cells). Top ten compounds from the series are highlighted in red. 

 

 
Figure S3. Plot of cLogP of series 1 members and their associated p-JNK levels determined via an 
ICW assay (13.8 µM, 2 h, U2OS cells). Top ten compounds from the series are highlighted in red. 
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Figure S4. Plot of tPSA of series 1 members and their associated p-JNK levels determined via an 
ICW assay (13.8 µM, 2 h, U2OS cells). Top ten compounds from the series are highlighted in red. 

 

 

 
Figure S5. Plot of cLogS of series 2 members and their associated p-JNK levels determined via an 
ICW assay (10 µM, 2 h, U2OS cells). Selected five compounds from the series are highlighted in 
red. 
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Figure S6. Plot of cLogP of series 2 members and their associated p-JNK levels determined via an 
ICW assay (10 µM, 2 h, U2OS cells). Selected five compounds from the series are highlighted in 
red. 

 
 

 
Figure S7. Plot of tPSA of series 2 members and their associated p-JNK levels determined via an 
ICW assay (13.8 µM, 2 h, U2OS cells). Selected five compounds from the series are highlighted in 
red. 
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Figure S8. Intact protein LC/MS labelling experiment of re-synthesized compounds derived from 
top crude screening hits. Reaction conditions: 2 µM compound, 2 µM protein, 10 min, 4 °C, 
quenched with formic acid to a final concentration of 0.4% (v/v). In series 1, all except compounds 
1e, showed improved binding abilities compared to precursor 1 with over 75% labelling. In series 
2, all compounds showed high binding abilities of over 75%.  

 

 
Figure S9. Omit maps of the co-crystallized MKK7 inhibitors. Performing a simulated annealing 
refinement, mFo-DFc omit maps (green, contoured at 2.5σ) were calculated for (A) 1h (B) 1k, (C) 
1a, (D) 2b, (E) 2d, and (F) 2c as well as for the targeted Cys218. 2Fo-Fc maps for the ligands and 
Cys218 were contoured at 1.0σ (blue). Maps indicate partial occupancy for the compounds of 
series 2 in the area of the solvent-exposed triazolyl moiety. 
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Figure S10. Dose response western blot with p-c-Jun as the readout and GAPDH as the 
housekeeping gene for normalization. (A) 2, (B) 2a, (C) 2b, (D) 2c, (E) 1, (F) 1a, (G) 1b, (H) 1d, (I) 
1e, (J) 1k. 
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Figure S11. A model of compound 1e based on the co-crystal structure of MKK7 in complex with 
1k shows the hydroxy side-chain may form a hydrogen bond with either Asp277 (similar to 1a; 
see Fig. 4), or with Lys155. Note that the side-chains were not remodeled and may in fact adopt 
a rotamer that places closer to the hydroxy moiety.  

 
 

Figure S12. Biphasic in vitro kinase inhibition behavior by alkyne 2. In a coupled JNK/ MKK7 in 
vitro kinase activity assay, alkyne 2 shows a biphasic inhibition curve. Each sigmoidal curve can be 
fitted separately with very potent inhibition of MKK7 at lower concentrations (IC50 = 0.6nM; 
R2=0.986) and likely weak inhibition of JNK at higher concentrations (IC50=1.975 μM; R2=0.966). 
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Figure S13. GSH consumption assay of selected compounds 1, 1b, 1k, 2, and 2b. The assay was 
done at 37 °C using 100 μM reference compound 4-nitrobenzonitrile, 100 μM of tested 
compounds and 5 mM GSH. The buffer was 90% PBS and 10% DMF. Every 50 min, the vial was 
taken from the incubator, shaken well, and then 50 μL was taken and analyzed in the LC/MS. The 
series 1 compounds were significantly more stable and less reactive than 2 and 2b. 2b appeared 
slightly less reactive than the scaffold 2.  
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Figure S14. Pull down proteomics analysis of alkynes 1 and 2. Volcano plot for proteins identified 
in pull-down proteomics experiments using molecules 1 and 2, the x-axis shows Log2 fold 
enrichment of proteins detected in samples treated with either alkyne compared to DMSO. The 
y-axis shows the significance of the difference.  
 
 
 

 

 
 
 
Figure S15. Chemical structure of compound 4. 
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Supplementary Tables 

 
 

Table S1. Crystallographic statistics of MKK7 in complex with triazolyl inhibitor derivatives. 
Statistics for co-crystals with compounds 1a, 1h, 1k, 2a, 2b, 2c (PDB: 7OVI, 7OVJ, 7OVK, 7OVL, 
7OVM, 7OVN). Values in parenthesis refer to the highest resolution shell. 

  



 S13 

HPLC and NMR spectra of reported compounds 

 

(R)-1-(3-(4-amino-3-(1-(4-bromo-2-hydroxyphenyl)-1H-1,2,3-triazol-4-yl)-1H-pyrazolo[3,4-
d]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1-one (1a) 

 

LC-MS chromatogram, detection at 280 nm 
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(R)-1-(3-(4-amino-3-(1-(2-(4-chlorophenyl)-2,2-difluoroethyl)-1H-1,2,3-triazol-4-yl)-1H-
pyrazolo[3,4-d]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1-one (1b) 

 

LC-MS chromatogram, detection at 280 nm 
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(R)-1-(3-(4-amino-3-(1-(3-fluoro-4-(hydroxymethyl)phenyl)-1H-1,2,3-triazol-4-yl)-1H-
pyrazolo[3,4-d]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1-one (1c) 
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LC-MS chromatogram, detection at 280 nm 
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(R)-1-(3-(4-amino-3-(1-(4-chloro-2-hydroxyphenyl)-1H-1,2,3-triazol-4-yl)-1H-
pyrazolo[3,4-d]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1-one (1d) 

 

LC-MS chromatogram, detection at 280 nm 
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1-((R)-3-(4-amino-3-(1-((R)-2-(4-bromophenyl)-2-hydroxy-ethyl)-1H-1,2,3-triazol-4-yl)-1H-
pyrazolo[3,4-d]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1-one (1e) 

 

LC-MS chromatogram, detection at 280 nm 
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(R)-1-(3-(4-amino-3-(1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-1-
yl)piperidin-1-yl)prop-2-en-1-one (1f) 

 

LC-MS chromatogram, detection at 280 nm 
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(R)-1-(3-(4-amino-3-(1-phenethyl-1H-1,2,3-triazol-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-1-
yl)piperidin-1-yl)prop-2-en-1-one (1h) 

 

LC-MS chromatogram, detection at 280 nm 
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(R)-1-(3-(4-Amino-3-(1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-
1-yl)piperidin-1-yl)prop-2-en-1-one (1i) 

 

LC-MS chromatogram, detection at 280 nm 
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Methyl (R)-4-(4-(1-(1-acryloylpiperidin-3-yl)-4-amino-1H-pyrazolo [3,4-d]pyrimidin-3-yl)-1H-
1,2,3-triazol-1-yl)benzoate (1j) 

 

LC-MS chromatogram, detection at 280 nm 
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(R)-1-(3-(4-amino-3-(1-(2,2-difluoro-2-phenylethyl)-1H-1,2,3-triazol-4-yl)-1H-pyrazolo[3,4-
d]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1-one (1k) 

 

LC-MS chromatogram, detection at 280 nm 
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Synthesis of IB-1-24: 

 
3-iodo-1-(tetrahydro-2H-pyran-2-yl)-1H-indazole (IB-1-18) 
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Methyl 3-nitro-5-(1-(tetrahydro-2H-pyran-2-yl)-1H-indazol-3-yl)benzoate (IB-1-19). 
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Methyl 3-amino-5-(1-(tetrahydro-2H-pyran-2-yl)-1H-indazol-3-yl)benzoate (IB-1-20). 
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Methyl 3-acrylamido-5-(1-(tetrahydro-2H-pyran-2-yl)-1H-indazol-3-yl)benzoate (IB-1-21). 
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3-acrylamido-5-(1-(tetrahydro-2H-pyran-2-yl)-1H-indazol-3-yl)benzoic acid (IB-1-22). 
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3-acrylamido-N-(prop-2-yn-1-yl)-5-(1-(tetrahydro-2H-pyran-2-yl)-1H-indazol-3-yl)benzamide 
(IB-1-23). 
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3-acrylamido-5-(1H-indazol-3-yl)-N-(prop-2-yn-1-yl)benzamide (IB-1-24). 
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Rac-3-acrylamido-5-(1H-indazol-3-yl)-N-((1-((trans-)-2-methoxycyclohexyl)-1H-1,2,3-triazol-4-
yl)methyl)benzamide (2a) 
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UPLC-MS chromatogram (averaged from 200 – 498 nm)

 
 

 

3-acrylamido-5-(1H-indazol-3-yl)-N-((1-(o-tolyl)-1H-1,2,3-triazol-4-yl)methyl)benzamide (2b) 
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UPLC-MS chromatogram (averaged from 200 – 498 nm)
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3-acrylamido-N-((1-cyclobutyl-1H-1,2,3-triazol-4-yl)methyl)-5-(1H-indazol-3-yl)benzamide (2c) 

 

 UPLC-MS chromatogram (averaged from 200 – 498 nm) 
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3-acrylamido-5-(1H-indazol-3-yl)-N-((1-(2-methoxyethyl)-1H-1,2,3-triazol-4-
yl)methyl)benzamide (2d) 
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UPLC-MS chromatogram (averaged from 200 – 498 nm)

 

 

3-acrylamido-N-((1-(3-chloro-4-fluorophenyl)-1H-1,2,3-triazol-4-yl)methyl)-5-(1H-indazol-3-
yl)benzamide (2e) 
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UPLC-MS chromatogram (averaged from 200 – 498 nm) 

 

 
 
 


