Supporting Information

Optimization of covalent MKK7 inhibitors via crude nanomole-scale libraries

Paul Gehrtz^{1,2,#}, Shir Marom^{1,#}, Mike Bührmann^{3,4,#}, Julia Hardick^{3,4,#}, Silke Kleinbölting^{3,4}, Amit Shraga^{1,5}, Christian Dubiella^{1,6}, Ronen Gabizon¹, Jan N. Wiese^{3,4}, Matthias P. Müller^{3,4}, Galit Cohen⁷, Ilana Babaev⁷, Khriesto Shurrush⁷, Liat Avram⁸, Efrat Resnick¹, Haim Barr⁷, Daniel Rauh^{3,4,*}, Nir London^{1,*}

¹ Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel

³ Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany.

⁴ Drug Discovery Hub Dortmund (DDHD) am Zentrum für integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany

⁷ The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, 7610001 Rehovot, Israel.

⁸ Department of Chemical Research Support, Weizmann Institute of Science, 7610001, Rehovot, Israel

[#] These authors contributed equally.

* Corresponding:

N.L.: nir.london@weizmann.ac.il

D.R.: daniel.rauh@tu-dortmund.de

Keywords: CuAAC, Click-Chemistry, Covalent Inhibitors, MKK7, High-Throughput Chemistry

Contents

Figure S1. The binding modes of alkynes 1 and 2 in the ATP binding site of MKK7	S2					
Figure S2. Plot of cLogS of series 1 members and their associated p-JNK levels	S3					
Figure S3. Plot of cLogP of series 1 members and their associated p-JNK levels	S3					
Figure S4. Plot of tPSA of series 1 members and their associated p-JNK levels	S4					
Figure S5. Plot of cLogS of series 2 members and their associated p-JNK levels	S4					
Figure S6. Plot of cLogP of series 2 members and their associated p-JNK levels	S5					
Figure S7. Plot of tPSA of series 2 members and their associated p-JNK levels	S5					
Figure S8. Intact protein LC/MS labelling experiment of re-synthesized compounds	S6					
Figure S9. Omit maps of the co-crystallized MKK7 inhibitors	S6					
Figure S10. Dose response western blots with p-c-Jun	S7-S8					
Figure S11. A model of compound 1e based on the structure of MKK7 in complex with 1k S9						
Figure S12. Biphasic in vitro kinase inhibition behavior by alkyne 2.	S9					
Figure S13. GSH consumption assay of selected compounds 1, 1b, 1k, 2, and 2b.	S10					
Figure S14. Pull down proteomics analysis of alkynes 1 and 2.	S11					
Figure S15. Chemical structure of compound 4.	S11					
Table S1. Crystallographic statistics of MKK7 in complex with triazolyl inhibitor derivative	es. S12					
HPLC and NMR spectra of reported compounds	S13-S52					

Supplementary Figures

Figure S1. The binding modes of alkynes **1** and **2** in the ATP binding site of MKK7. (A) **1** cocrystalized in complex with MKK7 (PDB: 6IB0), where the alkyne (black) is protruding into the back pocket. (B) **2** co-crystalized in complex with MKK7 (PDB: 7CBX), where the alkyne (black) is pointing outside the binding pocket towards the solvent-exposed region.

Figure S2. Plot of cLogS of series **1** members and their associated p-JNK levels determined via an ICW assay (13.8 μ M, 2 h, U2OS cells). Top ten compounds from the series are highlighted in red.

Figure S3. Plot of cLogP of series **1** members and their associated p-JNK levels determined via an ICW assay (13.8 μ M, 2 h, U2OS cells). Top ten compounds from the series are highlighted in red.

Figure S4. Plot of tPSA of series **1** members and their associated p-JNK levels determined via an ICW assay (13.8 μ M, 2 h, U2OS cells). Top ten compounds from the series are highlighted in red.

Figure S5. Plot of cLogS of series 2 members and their associated p-JNK levels determined via an ICW assay (10 μ M, 2 h, U2OS cells). Selected five compounds from the series are highlighted in red.

Figure S6. Plot of cLogP of series 2 members and their associated p-JNK levels determined via an ICW assay (10 μ M, 2 h, U2OS cells). Selected five compounds from the series are highlighted in red.

Figure S7. Plot of tPSA of series **2** members and their associated p-JNK levels determined via an ICW assay (13.8 μ M, 2 h, U2OS cells). Selected five compounds from the series are highlighted in red.

Figure S8. Intact protein LC/MS labelling experiment of re-synthesized compounds derived from top crude screening hits. Reaction conditions: 2 μ M compound, 2 μ M protein, 10 min, 4 °C, quenched with formic acid to a final concentration of 0.4% (v/v). In series **1**, all except compounds **1e**, showed improved binding abilities compared to precursor **1** with over 75% labelling. In series **2**, all compounds showed high binding abilities of over 75%.

Figure S9. Omit maps of the co-crystallized MKK7 inhibitors. Performing a simulated annealing refinement, mFo-DFc omit maps (green, contoured at 2.5 σ) were calculated for (A) **1h** (B) **1k**, (C) **1a**, (D) **2b**, (E) **2d**, and (F) **2c** as well as for the targeted Cys218. 2Fo-Fc maps for the ligands and Cys218 were contoured at 1.0 σ (blue). Maps indicate partial occupancy for the compounds of series **2** in the area of the solvent-exposed triazolyl moiety.

Figure S10. Dose response western blot with p-c-Jun as the readout and GAPDH as the housekeeping gene for normalization. (A) 2, (B) 2a, (C) 2b, (D) 2c, (E) 1, (F) 1a, (G) 1b, (H) 1d, (I) 1e, (J) 1k.

Figure S11. A model of compound **1e** based on the co-crystal structure of MKK7 in complex with **1k** shows the hydroxy side-chain may form a hydrogen bond with either Asp277 (similar to **1a**; see Fig. 4), or with Lys155. Note that the side-chains were not remodeled and may in fact adopt a rotamer that places closer to the hydroxy moiety.

Figure S12. Biphasic in vitro kinase inhibition behavior by alkyne **2.** In a coupled JNK/ MKK7 in vitro kinase activity assay, alkyne **2** shows a biphasic inhibition curve. Each sigmoidal curve can be fitted separately with very potent inhibition of MKK7 at lower concentrations ($IC_{50} = 0.6nM$; $R^2=0.986$) and likely weak inhibition of JNK at higher concentrations ($IC_{50}=1.975 \mu M$; $R^2=0.966$).

Figure S13. GSH consumption assay of selected compounds **1**, **1b**, **1k**, **2**, and **2b**. The assay was done at 37 °C using 100 μ M reference compound 4-nitrobenzonitrile, 100 μ M of tested compounds and 5 mM GSH. The buffer was 90% PBS and 10% DMF. Every 50 min, the vial was taken from the incubator, shaken well, and then 50 μ L was taken and analyzed in the LC/MS. The series **1** compounds were significantly more stable and less reactive than **2** and **2b**. **2b** appeared slightly less reactive than the scaffold **2**.

Figure S14. Pull down proteomics analysis of alkynes **1** and **2**. Volcano plot for proteins identified in pull-down proteomics experiments using molecules **1** and **2**, the x-axis shows Log2 fold enrichment of proteins detected in samples treated with either alkyne compared to DMSO. The y-axis shows the significance of the difference.

Figure S15. Chemical structure of compound 4.

Supplementary Tables

	1a	1h	1k	2a	2b	2c
	(PDB:	(PDB:	(PDB:	(PDB:	(PDB:	(PDB:
	70VK)	70VI)	70VJ)	70VL)	70VN)	70VM)
Data collection						
Space group	P 21 21 21					
Cell dimensions						
a, b, c (Å)	61.72,	61.05,	61.08,	60.23,	60.91,	60.65,
	68.49,	68.80,	68.09,	67.68,	69.21,	68.90,
	83.99	83.22	85.08	84.73	84.29	84.08
α, β, γ (*)	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 90
Resolution (A)	50.0 - 2.05	50.0 - 1.95	50.0 - 2.35	50.0 - 2.90	50.0 - 2.90	50.0 - 2.90
	(2.15 -	(2.05 -	(2.40 -	(3.00 -	(3.00-	(3.00-
P (94)	6.0 (120.1)	5.2 (157.2)	2.35)	2.90)	2.90)	2.90)
R _{meas} (20)	0.9 (120-1)	3.2 (137.3)	7.1 (54.2)	(151.1)	/150 1)	(144.9)
1/al	19.69	22.52	22.30	15.00	15.61	17.65
1701	(2.23)	(1.55)	(3.21)	(1.57)	(2.55)	(2.18)
CC. a	99.9 (79.8)	100 (67.9)	99.9 (88.4)	99.9 (75.7)	99.8 (79.7)	99.9 (81.3)
Completeness (%)	100 (100)	99.5 (100)	100 (100)	100 (100)	99.7 (100)	100 (100)
Redundancy	13.37	13.00	13.22	12.99	13.13	13.14
neutroancy	(13.87)	(12.29)	(13.91)	(13.66)	(12.78)	(13.84)
	(10.07)	(12.25)	(20.02)	(125:00)	(22.70)	(15:04)
Refinement						
Resolution (Å)	45.47 -	49.74 -	45.66 -	49.09 -	45.72 -	49.19 -
	2.05	1.95	2.35	2.90	2.90	2.90
No. reflections	22883	26461	15130	8083	8276	8217
Runsh/Rean	21.67/24.4	21.12/25.0	20.38/24.4	24.83/27.0	22.34/25.7	22.98/28.5
	4	4	5	3	2	8
No. atoms						
Protein	2062	2125	2051	2163	2202	2177
Ligand/ion	33	35	39	37	36	34
Water	83	77	40	3	0	1
B-factors						
Protein	58.38	60.31	57.61	99.66	72.46	84.97
Ligand/ion	50.21	70.69	60.85	102.79	96.82	105.81
Water	56.71	56.74	61.97	75.15	-	74.77
rms deviations						
Bond lengths (Å)	0.009	0.002	0.001	0.002	0.006	0.002
Bond angles (*)	0.945	0.422	0.448	0.520	0.667	0.557
Wavelength (Å)	0.9999	0.9999	0.9197	0.9197	0.9197	0.9197
Temperature (K)	100	100	100	100	100	100
X-ray source	PXII at SLS.					
	Villigen, CH					
Detector	EIGER2	EIGER2	EIGER2	EIGER2	EIGER2	EIGER2
	16M	16M	16M	16M	16M	16M
Ramachandran plot						
Residues in						
favored regions	99.22 %	97.76 %	97.60 %	97.42 %	98.55 %	98.18 %
allowed regions	0.78 %	2.24 %	2.40 %	2.21 %	1.09 %	1.82 %
outlier regions	0.00 %	0.00 %	0.00 %	0.37 %	0.36 %	0.00 %

Table S1. Crystallographic statistics of MKK7 in complex with triazolyl inhibitor derivatives. Statistics for co-crystals with compounds **1a**, **1h**, **1k**, **2a**, **2b**, **2c** (PDB: 70VI, 70VJ, 70VK, 70VL, 70VM, 70VN). Values in parenthesis refer to the highest resolution shell.

HPLC and NMR spectra of reported compounds

(*R*)-1-(3-(4-amino-3-(1-(4-bromo-2-hydroxyphenyl)-1*H*-1,2,3-triazol-4-yl)-1*H*-pyrazolo[3,4*d*]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1-one (1a)

S14

(*R*)-1-(3-(4-amino-3-(1-(2-(4-chlorophenyl)-2,2-difluoroethyl)-1*H*-1,2,3-triazol-4-yl)-1*H*-pyrazolo[3,4-*d*]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1-one (1b)

(*R*)-1-(3-(4-amino-3-(1-(3-fluoro-4-(hydroxymethyl)phenyl)-1*H*-1,2,3-triazol-4-yl)-1*H*-pyrazolo[3,4-*d*]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1-one (1c)

LC-MS chromatogram, detection at 280 nm

(*R*)-1-(3-(4-amino-3-(1-(4-chloro-2-hydroxyphenyl)-1*H*-1,2,3-triazol-4-yl)-1*H*-pyrazolo[3,4-*d*]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1-one (1d)

1-((*R*)-3-(4-amino-3-(1-((*R*)-2-(4-bromophenyl)-2-hydroxy-ethyl)-1*H*-1,2,3-triazol-4-yl)-1*H*-pyrazolo[3,4-*d*]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1-one (1e)

S22

(*R*)-1-(3-(4-amino-3-(1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl)-1*H*-pyrazolo[3,4-*d*]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1-one (1f)

(*R*)-1-(3-(4-amino-3-(1-phenethyl-1*H*-1,2,3-triazol-4-yl)-1*H*-pyrazolo[3,4-*d*]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1-one (1h)

(*R*)-1-(3-(4-Amino-3-(1-(4-methoxyphenyl)-1*H*-1,2,3-triazol-4-yl)-1*H*-pyrazolo[3,4-*d*]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1-one (1i)

Methyl (*R*)-4-(4-(1-(1-acryloylpiperidin-3-yl)-4-amino-1*H*-pyrazolo [3,4-*d*]pyrimidin-3-yl)-1H-1,2,3-triazol-1-yl)benzoate (1j)

(*R*)-1-(3-(4-amino-3-(1-(2,2-difluoro-2-phenylethyl)-1*H*-1,2,3-triazol-4-yl)-1*H*-pyrazolo[3,4*d*]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1-one (1k)

Synthesis of IB-1-24:

3-iodo-1-(tetrahydro-2H-pyran-2-yl)-1H-indazole (IB-1-18)

Sample 515 Vial 1:D,4 ID File IB-1-18_3-25062020_8 Date 25-Jun-2020 Time 16:25:24

Methyl 3-nitro-5-(1-(tetrahydro-2H-pyran-2-yl)-1H-indazol-3-yl)benzoate (IB-1-19).

Sample 407 Vial 1:B,2 ID File IB-1-19_2-31 Date 08-Sep-2019 Time 15:37:39

Methyl 3-amino-5-(1-(tetrahydro-2H-pyran-2-yl)-1H-indazol-3-yl)benzoate (IB-1-20).

Sample 36 Vial 1:C,4 ID File IB-1-20_4-8 Date 05-Jul-2020 Time 17:13:52 Description combined f20-27 without f23

Methyl 3-acrylamido-5-(1-(tetrahydro-2H-pyran-2-yl)-1H-indazol-3-yl)benzoate (IB-1-21).

Sample 54 Vial 1:E,3 ID File IB-1-21_4-12 Date 12-Jul-2020 Time 16:58:00

3-acrylamido-5-(1-(tetrahydro-2H-pyran-2-yl)-1H-indazol-3-yl)benzoic acid (IB-1-22).

Sample 137 Vial 1:F,8 ID File IB-1-22_5-40 Date 05-Aug-2020 Time 15:46:17 Description after sec combi f20,22,23,24. after heating

3-acrylamido-N-(prop-2-yn-1-yl)-5-(1-(tetrahydro-2H-pyran-2-yl)-1H-indazol-3-yl)benzamide (IB-1-23).

Sample 174 Vial 1:E,2 ID File IB-1-23_4-20 Date 10-Aug-2020 Time 16:07:05 Description after sec f22-23

3-acrylamido-5-(1H-indazol-3-yl)-N-(prop-2-yn-1-yl)benzamide (IB-1-24).

Sample 218 Vial 1:E,6 ID File IB-1-24_3-7 Date 17-Aug-2020 Time 17:04:14 Description after combi f11

Rac-3-acrylamido-5-(1H-indazol-3-yl)-N-((1-((*trans*-)-2-methoxycyclohexyl)-1H-1,2,3-triazol-4-yl)methyl)benzamide (2a)

3-acrylamido-5-(1H-indazol-3-yl)-N-((1-(o-tolyl)-1H-1,2,3-triazol-4-yl)methyl)benzamide (2b)

3-acrylamido-N-((1-cyclobutyl-1H-1,2,3-triazol-4-yl)methyl)-5-(1H-indazol-3-yl)benzamide (2c)

UPLC-MS chromatogram (averaged from 200 – 498 nm)

3-acrylamido-5-(1H-indazol-3-yl)-N-((1-(2-methoxyethyl)-1H-1,2,3-triazol-4-yl)methyl)benzamide (2d)

3-acrylamido-N-((1-(3-chloro-4-fluorophenyl)-1H-1,2,3-triazol-4-yl)methyl)-5-(1H-indazol-3-yl)benzamide (2e)

