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Neural Networks for self-adjusting Mutation Rate Estimation when the
Recombination Rate is unknown

A Feature Importance of Neural Networks
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Fig A. Feature importance linear neural network via SHAP. Feature importance of the linear neural network
for ρ = 0 (A), ρ = 35 (B), ρ = 1000 (C) and ρ variable (D). Here, the calculated shap values for ρ = 0 refer to the
linear neural network trained for ρ = 0 and so on. The shap values were calculated for 500 SFS. Each dot represents
the shap value for a particular prediction of one feature, i.e. one SFS entry of one of the 40 SFS. The color indicates
whether the particular SFS entry had a high or low value, and the position on the x-axis shows its significance, i.e., the
extent to which it increased or decreased the θ estimate.

Artificial neural networks tend to have complex architectures, which can impair the comprehension of the
underlying learning process. However, it is often of interest to understand what the neural network has learned.
Depending on the ML method, there are different ways to obtain knowledge about it. In our case, we determined the
feature importance, i.e. a score for each feature representing its effect on the model. One tool to do so is SHAP
(SHapley Additive exPlanations), a game theoretic approach to explain the output of machine learning models [1].
Hereby, the shap values describe the responsibility of an SFS entry for a change in the θ estimate, the higher the
absolute shap value, the greater the impact.

In Fig A the feature importance of the linear neural network is displayed. In general the first entry of the SFS, S1,
is the one with the highest impact on the estimation as its shap value is the most pronounced. For ρ = 0 the
importance of S2, S3, . . . more and more decreases and increases again for the last SFS entries. For ρ = 35 and
ρ = 1000, the feature importance also decreases initially, but is quasi-constant for middle and posterior Si. For variable
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recombination rates (D), we observe a mix of the feature importance for ρ = 0 and ρ = 35, 1000. The pattern from A
can still be seen, i.e. that the impact of the last SFS entries increases again and high feature values lead to a reduction
of the θ estimation, but to a lesser extent. Subplots A-D in Fig A have in common that they show a higher importance
for the first SFS entries than to the others. This is not surprising as it means that the estimator puts more weight on
the mutation events happening in the more recent past, just as Fu’s estimator does. Considering the weights of the
linear neural network, which can be compared to the coefficients of the model-based estimators by nature, we can also
extract information about the sign of the coefficient by Fig A. For the linear neural network the weights corresponding
to S26, . . . , S39 are negative for ρ = 0. This can also be observed in Fig A A as higher values for SFS entries lead to an
decreased θ estimation. Those negative weights are not surprising as half of the coefficients of the optimal model-based
estimator, Fu’s estimator, are negative for large enough θ, see Fig K. For ρ = 1000 the linear neural network has no
negative weights, which can also be observed in Fig A. This is also reasonable since Watterson’s estimator has constant
positive coefficients and is the optimal estimator for high recombination rates.

A B C D

Fig B. Feature importance adaptive neural network via SHAP. Feature importance of the adaptive neural
network for ρ = 0 (A), ρ = 35 (B), ρ = 1000 (C) and ρ variable (D). Here, the calculated shap values for ρ = 0 refer to
the adaptive neural network trained for ρ = 0 and so on. The shap values were calculated for 500 SFS. Each dot
represents the shap value for a particular prediction of one feature, i.e. one SFS entry of one of the 40 SFS. The color
indicates whether the particular SFS entry had a high or low value, and the position on the x-axis shows its
significance, i.e., the extent to which it increased or decreased the θ estimate.

Fig B displays the feature importance for the adaptive neural network. Compared to Fig A, no too big differences
are noticeable. This shows that the adaptive neural network distributes the importance between the SFS entries more
or less the same as the linear neural network, at least when trained for fixed recombination rates.

Fig C shows the feature importance for the adaptive neural network trained for variable recombination rates. Shap
values were calculated as before for ρ = 0, ρ = 35, ρ = 1000, and ρ variable. By doing so, we can observe, how the
adaptive network adapts to the different recombination scenarios. Again, the first entries of the SFS have the most
importance, especially S1, since their shap values are the most pronounced. In addition, the adaptive neural network
adapts to different recombination scenarios, as we can observe, for example, from a different pattern for S31 to S39

between subplot A and subplot B/C in Fig C. For these features, a high value for ρ = 0 results in a decreased θ
estimate, but for ρ = 35 or ρ = 1000 in an increased estimate.
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A B C D

Fig C. Feature importance adaptive neural network, trained with ρ variable, via SHAP. Feature
importance of the adaptive neural network for ρ = 0 (A), ρ = 35 (B), ρ = 1000 (C) and ρ variable (D). Here, the
calculated shap values for A, B, C, and D are based on the adaptive neural network trained for variable recombination
rates. The shap values were calculated for 500 SFS. Each dot represents the shap value for a particular prediction of
one feature, i.e. one SFS entry of one of the 500 SFS. The color indicates whether the particular SFS entry had a high
or low value, and the position on the x-axis shows its significance, i.e., the extent to which it increased or decreased the
θ estimate.
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B Neural Network Training Procedure

We considered two artificial neural networks: a linear dense feedforward neural network (no hidden layer) and a dense
feedforward neural network with one hidden layer and an adaptive loss function. All neural networks take the site
frequency spectrum S as input and are trained for θ chosen uniformly in (0, 100). The neural networks for fixed
recombination rates have been trained based on 2 · 105 simulations, for variable recombination rates with 6 · 105
simulations. For the linear neural network the division of simulations between training and validation was chosen to be
80% and 20%. Since the adaptive training procedure is similar to an ensemble training, in the sense that the process
involves training multiple neural networks, a second validation set is required to evaluate in between the training steps.
Therefore, an additional 20% is subtracted from the training set as a second validation set and the larger validation set
is used to decide if another update of the adaptive loss function is needed. The test set is simulated separately and
usually of size 4.9 · 105.

Hyperparameters are selected via a grid search. ReLU is used as activation function, the adam optimizer [2] with
learning rate 0.001, the number of hidden nodes is chosen as 200 and the batch size as 64.

Preventing overfitting is always a challenging problem in ML. The risk of overfitting can be reduced not only in the
training process by using methods such as regularization methods, but also via architectural design choices. First of all,
the adaptive neural network has a lower model capacity compared to more sophisticated ML methods, making an
overfit less likely. In addition, the adaptive training process is similar to ensemble learning with a termination condition
(Eq 4Adaptive Reweighing of the Loss Function by Model-Based Estimatorsequation.0.4) preventing the model from
fitting the training data too well. Furthermore, each of the neural networks in the adaptive training procedure was
trained using the regularization method Early Stopping. Training, validation and test errors were monitored. We
observed no tendency of the model to overfit. For the generalization outside the training range, see also Figure I.
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C Application with a Block Recombination Map
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Fig D. Block recombination map. Recombination map with only two different recombination rates. The mean
recombination rate matches that of chr2. Displayed recombination rates along the chromosome are based on a sliding
window of 70kb. This also ensures comparability with Fig E.

To better illustrate the variability of the considered estimators along a chromosome we created an artificial
recombination map with separated regions with low recombination. In this map the recombination rate jumps between
0 and 61.9 such that the mean recombination rate matches that of human chr2. This results in a block recombination
map as displayed in Fig D.
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Fig E. Estimation of θ for block recombination map. SFS for θ estimation was calculated based on a sliding
window of size 70kb. Estimates for Watterson, iterative Futschik and the adaptive neural network are displayed. The
neural network is trained with variable recombination rates. The underlying θ = 36.12 is shown as the grey line.

Fig E displays the estimates of θ for Watterson’s estimator, the iterated minimal MSE estimator (Futschik (iter))
and the adaptive neural network for the block recombination map (Fig D). An extract not displaying the whole
chromosome is shown in Fig F and for completeness the corresponding recombination map section in Fig G. Figures E
and F illustrate how the estimators adapt to the two recombination levels. Obviously, Watterson’s estimator struggles
for the parts without recombination. The iterative Futschik estimator is not particularly noticeable, in part because for
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high recombination rates the errors are generally much lower than for ρ = 0 and thus less detectable on the scale (see
e.g. Fig 1Performance of mutation rate estimators. The normalized MSE for four different estimators are
shown: The iterated minimal MSE estimator (Futschik (iter)), Watterson’s estimator, and two neural network
estimators. A linear network without a hidden layer and an adaptive network with one hidden layer and 200 hidden
nodes. For each subplot, we used msprime to generate a total of 4.9 · 105 independent simulations with sample size
n = 40, recombination rate ρ, and 49 different mutation rates θ ∈ (0, 40]. A: recombination rate ρ = 0, B: ρ = 20, C:
ρ = 35, D: ρ = 1000. All shown neural networks have been trained on data sets with the corresponding recombination
rate ρ. figure.caption.19). Of the estimators considered, the adaptive neural network uniform performs best.
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Fig F. Extract of θ estimation for block recombination map. SFS for θ estimation was calculated based on a
sliding window of size 70kb. Estimates for Watterson, iterative Futschik and the adaptive neural network are displayed.
The neural network is trained with variable recombination rates. The underlying θ = 36.12 is shown as the grey line.
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Fig G. Extract of the block recombination map. Extract of recombination map with only two different
recombination rates. The mean recombination rate matches that of chr2. Displayed recombination rates along the
chromosome are based on a sliding window of 70kb. This also ensures comparability with Fig F.
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D Supplemental Figures

Supplemental Figure H: Comparison of iterative and non-iterative
Estimators for θ ∈ (0,40]
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Fig H. Iterative estimators vs. non-iterative estimators. The normalized MSE for four different estimators
are shown: The minimal MSE estimator (Futschik), the iterated minimal MSE estimator (Futschik (iter)), the minimal
variance estimator (Fu) and the iterated minimal variance estimator (Fu (iter)). The same simulations as in
Figure 1Performance of mutation rate estimators. The normalized MSE for four different estimators are shown:
The iterated minimal MSE estimator (Futschik (iter)), Watterson’s estimator, and two neural network estimators. A
linear network without a hidden layer and an adaptive network with one hidden layer and 200 hidden nodes. For each
subplot, we used msprime to generate a total of 4.9 · 105 independent simulations with sample size n = 40,
recombination rate ρ, and 49 different mutation rates θ ∈ (0, 40]. A: recombination rate ρ = 0, B: ρ = 20, C: ρ = 35, D:
ρ = 1000. All shown neural networks have been trained on data sets with the corresponding recombination rate ρ.
figure.caption.19 have been used. A: recombination rate ρ = 0 B: ρ = 35 C: ρ = 1000
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Supplemental Figure I : Neural Network Performance outside the
Training Range: θ in (0,500]
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Fig I. MSE for estimators up to θ = 500. The normalized MSE for four different estimators are shown: The
iterated minimal MSE estimator (Futschik (iter)), Watterson’s estimator, and two neural network estimators. A linear
network without a hidden layer and an adaptive network with one hidden layer and 200 hidden nodes. All shown
neural networks have been trained on data sets with the corresponding recombination rate ρ. For each subplot, we
used msprime to generate a total of 18.9 · 105 independent simulations with sample size n = 40, recombination rate ρ,
and 189 different mutation rates θ ∈ (0, 500]. A: recombination rate ρ = 0 B: ρ = 35 C: ρ = 1000

Supplemental Figure J: Normalized Bias of Estimators

0 10 20 30 40
0.2

0.4

0.6

0.8

1.0

m
ea

n 
 e

st
im

at
e 

(n
or

m
.)

Adaptive NN
Linear NN
Watterson
Futschik (iter)

A

0 10 20 30 40
0.2

0.4

0.6

0.8

1.0

m
ea

n 
 e

st
im

at
e 

(n
or

m
.)

B

0 10 20 30 40
0.2

0.4

0.6

0.8

1.0
m

ea
n 

 e
st

im
at

e 
(n

or
m

.)
C

Fig J. Normalized bias of estimators. The normalized bias for four different estimators are shown: The iterated
minimal MSE estimator (Futschik (iter)), Watterson’s estimator, and two neural network estimators. A linear network
without a hidden layer and an adaptive network with one hidden layer and 200 hidden nodes. All shown neural
networks have been trained on data sets with the corresponding recombination rate ρ. The same simulations as in
Figure 1Performance of mutation rate estimators. The normalized MSE for four different estimators are shown:
The iterated minimal MSE estimator (Futschik (iter)), Watterson’s estimator, and two neural network estimators. A
linear network without a hidden layer and an adaptive network with one hidden layer and 200 hidden nodes. For each
subplot, we used msprime to generate a total of 4.9 · 105 independent simulations with sample size n = 40,
recombination rate ρ, and 49 different mutation rates θ ∈ (0, 40]. A: recombination rate ρ = 0, B: ρ = 20, C: ρ = 35, D:
ρ = 1000. All shown neural networks have been trained on data sets with the corresponding recombination rate ρ.
figure.caption.19 have been used. A: recombination rate ρ = 0 B: ρ = 35 C: ρ = 1000
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Supplemental Figure K: Coefficients of Fu’s Estimator with Choice of
Subsets for Adaptive Training
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Fig K. Coefficients of Fu’s estimator with subsets for adaptive training procedure. This figure shows the
coefficients of non-interative Fu estimator for n = 40 (black) and the vertical lines represent the boundaries of the
classes used in the adaptive training procedure for n = 40 (green).
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Supplemental Figure L: Visualization of the Adaptive Neural Network
Architecture
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Fig L. Adaptive neural network architecture. The adaptive neural network considered in this publication is a
dense feedforward neural network with one hidden layer, the site frequency spectrum as input and one bias node.

Supplemental Figure M: Example for Mutations along a Coalescent Tree
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Fig M. Coalescent tree with mutations. Mutations along a coalescent tree for n = 4 and the corresponding site
frequency spectrum S.
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Supplemental Figure N: Robustness of the Adaptive Neural Network
and the CNN by Flagel et al.
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Fig N. Robustness of neural networks. Robustness for the CNN by Flagel et al. (A) and the adaptive neural
network (B). In each subplot, ten trained CNNs or adaptive neural networks, respectively, are displayed in the scenario
where the recombination rate ρ = 0. One adaptive neural network (dashed line) has been added to (A) to facilitate the
comparison.
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Supplemental Figure O: Modification of Watterson’s Estimator by
Futschik and Gach.
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Fig O. Performance of Modification of Watterson’s estimator. The normalized MSE for four different
estimators are shown: The adaptive neural network, the iterated minimal MSE estimator (Futschik (iter)), Watterson’s
estimator, and a modification of Watterson’s estimator (Watterson (mod)) by Futschik and Gach [3]. For this plot, we
used msprime to generate a total of 4.9 · 105 independent simulations with sample size n = 40, recombination rate
ρ = 0, and 49 different mutation rates θ ∈ (0, 40]. The adaptive neural network has been trained on a data set with
ρ = 0. The modified version of Watterson’s estimator by Futschik and Gach [3] is of the form

f(S) :=
2
∑n−1

i=1 Si

E[Ln] +
V[Ln]
E[Ln]

,

with Ln being the length of the coalescent. For ρ = 0 the modified Watterson estimator is uniformly better than
Watterson’s estimator, see Lemma 2 in [3].
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P Supplemental Figure: Extract of Recombination Map for Human
Chr2.
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Fig P. Extract of recombination map for human chr2. Displayed recombination rates along the chromosome
are based on a sliding window of 70kb. This equals the window size for the estimation of θ in Fig Q.

Supplemental Figure Q: Extract of θ Estimation for Human Chr2.
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Fig Q. Extract of θ estimation for human chr2 The SFS for θ estimation was calculated based on a sliding
window of size 70kb. Estimates based on Watterson, Futschik, the linear neural network and the adaptive neural
network are displayed. The neural networks have been trained with variable recombination rates. The underlying true
mutation rate θ = 36.12 is shown as a grey line.
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