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1. Supplementary Figs. 1–14: 

 
 

 
 
Supplementary Figure 1. Reflected-light photomicrographs of typical run products 
synthesized in graphite-lined Pt95Rh05 or graphite capsules. a Coexisting metallic melt 
and silicate melt synthesized at 1.5 GPa and 1700 °C using silicate MORB (run N-1) in a 
graphite-lined Pt95Rh05 capsule. The silicate melt was quenched into glass. b Close-up view 
of the quenched metallic melt in (a). c, d The separated metallic melt and silicate melt from 
run PY-2 synthesized at 8 GPa and 2000 °C using silicate pyrolite in a graphite capsule. 
The pyrolite melt had a typic dendritic quench texture. 



 

 

 
 
Supplementary Figure 2. Typical Raman spectral of silicate glasses from this study 
showing regions associated with N-C-H-O volatile species. Note that the water peak 
intensity increases with increasing the amount of Mg(OH)2 added in the starting silicate. 
The experiments (N-1, N-6, and N-7; Supplementary Data 2) were synthesized at 1.5 GPa 
and 1700 °C, and fO2 of ~IW-0.5. These observed N-C-H-O species are consistent with 
those observed in previous studies1-4, including the one that determined the metal/silicate 
N-isotopic fractionations5.  
 

 



 

 

 

 
Supplementary Figure 3. a Comparison of the experimentally determined 𝐷ே

௧/௦௧  

with the calculated 𝐷ே
௧/௦௧ using Eq. (1) in the main text. b The plot of activity 

coefficient of N in the metallic melt as a function of oxygen fugacity (ΔIW). Note the non-
ideal interaction of C and N.  
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Supplementary Figure 4. Weak correlations occur between sample fO2, the light 
element and Ni content in metallic melt, and the metallic melt δ15N. a The Ni + Si + S 
content in the metallic melt is in a weak negative correlation with fO2. b The Ni + Si + S 
content in the metallic melt is in a weak positive correlation with δ15N of the metallic melt.  
 

-5 -4 -3 -2 -1 0
-1

0

1

2

3

4

5

6

7  This study:
 11.5 GPa, 1700 C
 78 GPa, 20002200 C
 1.5 GPa, 1700 C, N

2
-saturated

a
N

i +
 S

i +
 S

 in
 m

e
ta

lli
c 

m
e

lt 
(w

t.%
)

logfO
2
 (IW)

-1 0 1 2 3 4 5 6 7

-8

-6

-4

-2

0

2

4

6

8

10b

1
5
N

 o
f m

e
ta

lli
c 

m
e

lt 
(‰

)

Ni + Si + S in metallic melt (wt.%)



 

 

 
Supplementary Figure 5. The negative correlation between ∆𝟏𝟓𝑵𝒎𝒆𝒕𝒂𝒍ି𝒔𝒊𝒍𝒊𝒄𝒂𝒕𝒆  and 
the fraction of N losing during the experiment. The data were taken from Dalou et al.5. 
The large ∆ଵହ𝑁௧ି௦௧  values are likely caused by kinetic processes, rather than 
representing equilibrium N-isotopic fractionations. See main text for more detailed 
explanations.    
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Supplementary Figure 6. The metal/silicate N-isotopic fractionation 
(∆𝟏𝟓𝑵𝒎𝒆𝒕𝒂𝒍ି𝒔𝒊𝒍𝒊𝒄𝒂𝒕𝒆 ) as a function of experimental duration. The independence of 
∆ଵହ𝑁௧ି௦௧ on the experimental duration indicates that 60 mins was sufficient for 
approaching equilibrium at 1700 °C. 
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Supplementary Figure 7. Modeling N-isotopic composition of Earth’s core and mantle 
assuming that Earth accreted its 100% mass through the collisions of differentiated 
impactors that have a δ15N value of −30‰. The results show that core-formation alone 
cannot lead to a δ15N value of −5‰ of Earth’s present-day mantle from a starting δ15N 
value of −30‰.  
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Supplementary Figure 8. The N-content and δ15N of the proto-Earth’s atmosphere 
and mantle as a function of mass accreted based on a combined model of Earth’s 
accretion and differentiation6,7. a, b The N-content of the proto-Earth’s atmosphere and 
mantle. The N-content of the atmosphere is relative (normalized) to the mass of the silicate 
Earth. c, d The δ15N of the proto-Earth’s atmosphere and mantle. This figure shows the 
effect of varying the mass percentage (Φ=20–60%) of the silicate magma ocean that is in 
equilibrium with the overlying atmosphere on the N-content and -isotopic composition of 
the proto-Earth’s atmosphere and mantle. The degree of impact-induced atmosphere loss 
was fixed at 45% throughout all accretion stages.  
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Supplementary Figure 9. The N-content and δ15N of the proto-Earth’s atmosphere 
and silicate mantle as a function of mass accreted. a, b The N-content of the proto-
Earth’s atmosphere and mantle. The N-content of the atmosphere is relative (normalized) 
to the mass of the silicate Earth. c, d The δ15N of the proto-Earth’s atmosphere and mantle. 
This figure shows that constant impact-induced atmosphere loss (varying from 40% to 60%) 
in each impact only affects the N-content and -isotopic composition of the atmosphere, 
without affecting those of the mantle. Φ was fixed at 20% throughout all accretion stages. 
Note that the case of varying the degree of atmosphere loss (deep brown curves), as 
presented in Fig. 4 in the main text, was also plotted for comparison. 
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Supplementary Figure 10. Modeling results of the case with 60% impact-induced 
atmosphere loss (bule curve in Supplementary Fig. 9) after changing Φ from 20% to 
30% and the mass of last added CI chondritic materials from 0.04% to 0.025%. a, b 
This figure shows that the low atmosphere N content and high atmosphere δ15N, caused by 
a high degree of impact-induced atmosphere loss as modeled in Supplementary Fig. 9 using 
Φ of 20%, can be increased and decreased, respectively, by changing the other parameters 
used in the model. The N-content of the atmosphere is relative (normalized) to the mass of 
the silicate Earth.     
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Supplementary Figure 11. The N-content and δ15N of the proto-Earth’s atmosphere, 
mantle, and core as a function of mass accreted. a, b This figure provides supplementary 
information to Fig. 4 in the main text, and shows that varying the timing of the delivery of 
CI chondrite-like materials would not change significantly the N-content and -isotopic 
composition of the proto-Earth’s core, silicate mantle, and atmosphere. The N-content of 
the atmosphere is relative (normalized) to the mass of the silicate Earth. 
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Supplementary Figure 12. The N-content and δ15N of the proto-Earth’s 
atmosphere (Atm.), silicate mantle (Man.), and core as a function of mass accreted. 
a, b This figure provides supplementary information to Fig. 4 in the main text, and 
shows that varying the C-content, from 0.5 to 2 wt.%, in Earth’s core would not change 
significantly the N-content and -isotopic composition of the proto-Earth’s atmosphere, 
silicate mantle, and core. The N-content of the atmosphere is relative (normalized) to 
the mass of the silicate Earth. 
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Supplementary Figure 13. Effect of varying the δ15N of the Moon-forming giant 
impactor on the δ15N of the proto-Earth’s atmosphere, mantle, and core at the 
end of accretion. This figure shows a limited effect of the Moon-forming giant 
impactor on the proto-Earth δ15N. 
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Supplementary Figure 14. The N-content and δ15N of the proto-Earth’s 
atmosphere (Atm.), silicate mantle (Man.), and core as a function of mass accreted. 
a, b This figure shows that the N-content in the impactors varying from 20 to 100 ppm 
or from 80 to 200 ppm could also explain the N-content and δ15N of the proto-Earth’s 
atmosphere and silicate mantle by slightly modifying the mass of CI-chondritic 
materials delivered, but the N-content in Earth’s core increases clearly with increasing 
the impactor N content. The N-content of the atmosphere is relative (normalized) to 
the mass of the silicate Earth. 
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2. Supplementary Note 1. The references cited for the δ15N data plotted in Fig. 1.  

In Fig. 1, we used ref. 8 for Earth’s mantle, refs. 9-11 for mantle peridotite diamonds, ref. 12 for solar 

wind (SW), ref. 13 for comets, refs. 14-19 for OIB, refs. 8,20 for average δ15N values of modern and 

Archean sediments and Earth’s crust, refs. 21,22 for enstatite chondrites (EC), and refs. 23-33 for the δ15N 

values of OC, CI, CM, CR, CV, and CO chondrites. 
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