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Generalisable 3D printing error detection and correction via 
multi-head neural networks



REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
This is a solid contribution to the field and one of the best error monitoring systems I have seen. I 
think it should be published after two major limitations are resolved. 
 
1. The manuscript is missing a lot of the CV work in this area -e.g. all the multiple camera 
approaches - it would be far stronger to compare the efficacy of this method to all of the previous 
methods. 
 
2. The CAXTON system used for automated data collection - needs much more detailed 
description. How does it work? Exactly? How close is it to human labeling? I looked for it on the 
web - and there is nothing. 
 
These I may have missed - but: 
3. Where is the bed remover designs and code? 
4. Where is the data set, core code -- I see all the OS components you used - but where is the 
links to your work and what license are they released under? 
 
Finally, it looks like this approach has solved some of the extrusion based printing errors - 
however, please discuss how it does with bed adhesion issues and mechanical failure of the printer 
(e.g. belt slipping). 
 
 
Reviewer #2 (Remarks to the Author): 
 
Authors have presented a generalisable 3D printing error detection and correction approach using 
multi-head neural networks. The idea of the paper is interesting; however, the neural networks 
(NN) foundation of the article in current form has number of major flaws, out of which some are as 
follows: 
 
1. What is multi-head in NN? 
2. How Caxton knows to identify and correct diverse errors? Any mathematical explanation? 
3. What is single NN? Do you mean single layered NN? How it self learns interplay between 
manufacturing process? 
4. Collection of image data is not systematic. Why authors choose random parameter selection 
over systematic parameter selection? 
5. 81 classes for prediction using single NN, is not the problem of non-linearity in feature space is 
going to affect downgrade prediction accuracy? 
6. Augmentation of dataset is reasonable, but why synthetic data augmentation is a better choice 
in rotation case instead of using systematic camera positioning for capturing bigger dataset? 
7. Why image-cropping procedure has not been automated? 
8. How NN learns inherent bias in the dataset? 
 
It is desirable that the authors should consider above points before moving towards building a 
prototype for error correction. In the current form the loops holes are very visible in data collection 
and parameter selection. The reasoning should be strong to make the paper technically sound. 
 
 



Point-by-point response to reviewer comments on: 
“Generalisable 3D Printing Error Detection and Correction via Multi-Head Neural Networks”. 

 
Reviewer #1 
 
“This is a solid contribution to the field and one of the best error monitoring systems I have seen. I think it 
should be published after two major limitations are resolved.” 
 
Comment 1: “The manuscript is missing a lot of the CV work in this area -e.g. all the multiple camera 
approaches - it would be far stronger to compare the efficacy of this method to all of the previous 
methods.” 
 
We thank the reviewer for pointing this out. We have re-written our discussion of existing CV work and 
its relative efficacy to include significantly more references and detail, especially on multiple camera 
approaches. On page 2 beginning line 62, we now discuss 32 CV references, of which 12 are multiple 
camera approaches and 8 are machine learning implementations. 
 
Comment 2: “The CAXTON system used for automated data collection - needs much more detailed 
description. How does it work? Exactly? How close is it to human labeling? I looked for it on the web - and 
there is nothing.” 
 
We agree that the specifics of how CAXTON functions were not sufficiently described in the 
manuscript. We have therefore added almost a new page of description to the methods section to 
provide considerably more detail on the specifics of how the CAXTON system developed in this work 
was used for automated data collection (see page 19, line 735). This includes the printer hardware, STL 
download, randomised toolpath generation, toolpath splitting, image acquisition, parameter 
sampling, and data storage. 

We have also added further detail on page 4 line 188 to describe how the CAXTON system 
differs from human labelling and how CAXTON is advantageous compared to human labelling both in 
terms of accuracy and in handling combinations of parameters which are heavily coupled with similar 
visual features. 

It may also not have been clear from original text that CAXTON is a new system developed as 
part of this report rather than a pre-existing system. Therefore there was no information the reviewer 
could find on the web. We have made a new public GitHub repository (https://github.com/cam-
cambridge/caxton) with further details and code for CAXTON to allow the reviewer and community to 
build on the work. To further clarify this, we have made it more explicit throughout the text which 
aspects of the work are part of the CAXTON system. 
 
Comment 3: “Where is the bed remover designs and code?” 
 
We thank the reviewer for this comment as the bed removal system may be of interest to the 
community, and thus thorough explanation and design access is needed. We have added an 
additional figure (figure S3) to the supplementary information showing three exploded views of the 
bed scraper’s construction, alongside an example G-code sequence for part removal. We have also 
added a video of the bed remover in operation to the supplementary information (Movie S4) to 
further illustrate its operation. An additional paragraph has been added to the supplementary 
information explaining each step in the removal process in detail. We have also created a separate 
GitHub repository containing the modifiable CAD STEP files, STL files for printing, and example G-code 



scripts for part removal (https://github.com/cam-cambridge/creality-part-remover). The link to this 
has been added to the manuscript methods section page 20 line 799. 
 
Comment 4: “Where is the data set, core code -- I see all the OS components you used - but where is the 
links to your work and what license are they released under?” 
 
We have added links to the data set (https://doi.org/10.17863/CAM.84082) and core code 
(https://github.com/cam-cambridge/caxton) to the manuscript in the “Code Availability” section 
(page 22 line 862).  

The data set is being hosted on Apollo, the University of Cambridge data repository. There, the 
data set has a permanent DOI, it is guaranteed to remain unchanged once released, and it will be 
available indefinitely. This is the first release of a 3D printing imaging data set and we are releasing 
under the very permissive CC-BY license, which will allow anyone to access and re-use it. The data set 
will be released on Apollo once this paper has been published. Until this occurs, the data set can be 
anonymously viewed by the reviewer (and anyone else with the link) on Google Drive 
(https://drive.google.com/drive/folders/1UUF_Iq79Wuj52m_CPoZYoaN9KMJGH6o6?usp=sharing). 

The core code is being released under an MIT license, which is a standard permissive license 
for software and will also allow others to build on our work. 
 
Comment 5: “Finally, it looks like this approach has solved some of the extrusion based printing errors - 
however, please discuss how it does with bed adhesion issues and mechanical failure of the printer (e.g. belt 
slipping).” 
 
We have added a section to our discussion on the limitations of our method with respect to bed 
adhesion and mechanical failure of the printer to our discussion (page 18, line 681). In this section we 
have also further discussed what improvements could be made to the work to address these error 
types. 
 
Reviewer #2 
 
“Authors have presented a generalisable 3D printing error detection and correction approach using multi-
head neural networks. The idea of the paper is interesting; however, the neural networks (NN) foundation of 
the article in current form has number of major flaws, out of which some are as follows:” 
 
We are pleased that the reviewer thinks the ideas presented in the work are of interest and hope that 
the revisions we have made regarding the neural network architecture design, dataset acquisition, 
augmentation, and training process address the concerns raised. 
 
Comment 1: “What is multi-head in NN?” 
 
We have now added to the text a detailed description of what a multi-head neural network is, how it 
differs from the common single head neural network, and the reasoning behind this choice (page 6, 
line 259 and page 9, line 326). We have also modified the caption for figure 2a detailing the network 
architecture to describe the network structure more clearly. We thank the reviewer for highlighting 
this as the added context has greatly clarified the reasoning behind the network architecture 
selection.  

To summarise, 3D printing error correction requires a neural network to simultaneously 
predict whether the value of each of the four parameters (flow rate, lateral speed, z-offset, and hotend 
temperature) is either good, high, or low. We use a multi-head neural network to achieve this. In this 



network, multiple output heads are used with a shared backbone for feature extraction. The backbone 
of the network being the first part that interprets the image data input to the network. The weights of 
the shared backbone are updated during the backward pass in training by a sum of the losses from 
each of the separate output heads. The training therefore pushes the shared backbone to predict not 
just one but all four parameters simultaneously. To do this well, the network must learn its own 
interpretation of the relationships between each of the parameters and the importance of features 
that are shared across the parameters. The alternative (which is described in more detail in our 
response to reviewer comment 3 below) would be to use four separate neural networks with single 
output heads. In this case there would be four separate networks where each backbone only 
interprets the image data input for a single parameter. Thus the network would not have any 
information about other parameters, and thus would not be able to learn any interrelationships 
between them.  
 
Comment 2: “How Caxton knows to identify and correct diverse errors? Any mathematical explanation?” 
 
Caxton knows how to identify and correct errors because it has been trained with images labelled with 
the level of deviation from optimal printing parameters. Thus, when Caxton sees a new image, it can 
identify how far the printing parameters are from good values, and therefore how the parameters 
should be changed to reach good values and therefore print well. While this was discussed in the 
introduction (page 3, line 123), results (page 4, line 168), and methods sections, we agree that the 
precise workings of Caxton needed more detailed description. As a result, we have added page of 
additional description to the methods section on page 19 line 735 and released the code for Caxton 
(https://github.com/cam-cambridge/caxton).  
 
Comment 3: “What is single NN? Do you mean single layered NN? How it self learns interplay between 
manufacturing process?” 
 
In our work we have chosen to use a multi-head neural network, as described in our response to the 
reviewer’s 1st comment. This allows the shared neural network backbone to learn its own 
interpretation of the relationships between each of the parameters and the importance of certain 
features shared across the parameters.  

An alternative approach would be to use single output neural networks. In this case, there 
would be four separate neural networks, each with a single output head. Thus, one network would 
predict whether the flow rate is good, high, or low; another network would predict whether the 
hotend temperature is good, high, or low; and similarly, there would be separate networks for lateral 
speed and z-offset. In this case, however, each network only looks at each parameter in isolation and 
does not receive any information regarding other parameters during training. Therefore, the single 
output network does not learn about interplay between parameters.  

Additionally, a single output neural network approach requires significantly more 
computational resources during training and in real-world deployment as four separate networks 
must be trained independently (as opposed to one) and then these networks must be run in parallel 
during operation. 
 To clarify this choice for readers, additional information has also been added to the 
manuscript on page 6, line 259 and page 9 line 326 describing the alternative approach of using 
multiple neural networks over a single neural network with multiple output heads. 
 
Comment 4: “Collection of image data is not systematic. Why authors choose random parameter selection 
over systematic parameter selection?” 
 



The nozzle-mounted camera sees the material that is currently being deposited by the nozzle, but it 
also sees other material that has been previously deposited in the periphery of the image. High-
performance in error detection and correction requires the network to learn to focus on the material 
currently being deposited, because this represents the current state of the system. We chose random 
parameter selection because with random parameter selection there will be no pattern in the 
previously deposited material that is seen in the periphery of the camera image. Therefore, to 
accurately predict current manufacturing parameters, the network must focus on the most recently 
deposited material around the nozzle.  Figure 6 suggests that this strategy is reasonably successful as 
the network focuses on the material around the nozzle.  

By contrast, a systematic approach to parameter selection during training may introduce 
patterns into the printing parameters by which material was previously deposited, and which would 
then be visible in the periphery of the image. Therefore, the network might be able to correctly predict 
parameters in the training data not just by looking at the material that was just deposited, but also by 
looking at the patterns in the periphery of the image. This would reduce the performance of the 
network and thus its generalisability in two ways. Firstly, it would reduce the ability of the network to 
focus on the material most recently deposited. Secondly, it would introduce a weakness during 
printing in objects in industrial practice where previously deposited material will not be printed with 
systematically varied parameters.  

A dedicated paragraph has now been added (page 20, line 772) explaining why a randomised 
approach to parameter selection was taken over systematic to clarify this to readers.  
 
Comment 5: “81 classes for prediction using single NN, is not the problem of non-linearity in feature space 
is going to affect downgrade prediction accuracy?” 
 
Our network directly predicts 12 classes, as is illustrated in the final layer of the network schematic in 
figure 2a. There are 12 classes because for each of the 4 printing parameters “Flow rate”, “Lateral 
speed”, “Z offset”, and “Hotend temp”, a prediction is made as to whether the parameter is “High”, 
“Good”, and “Low”. Additionally, each parameter can only be one of “High”, “Good” and “Low” at any 
time. Therefore, there are 81 possible combinations.  
 Predicting 12 classes is challenging. However, it is the kind of challenge that neural networks 
excel in. The high dimensionality of the neural network, with many layers and millions of parameters, 
far exceeds that of the output classes. This is why we selected neural networks for this task. 12 classes 
is also not an unusually large number for these kinds of algorithms. For example, the ImageNet Large 
Scale Visual Recognition Challenge (one of the key computer vision benchmarks) uses a trimmed 
version of the ImageNet dataset with 1,000 classes. The raw ImageNet dataset contains over 20,000 
classes.  

Non-linearities in the feature space are also challenging, but again this is something that 
neural networks are good at dealing with. The data within images is high dimensional and non-linear 
and the neural network backbone serves to reduce this complexity by using the backbone as a feature 
extractor to map to a lower dimensional latent space representation. This latent or feature space will 
still be non-linear but the universal approximation theorem suggests that the network can 
approximate any continuous function - not just linear functions. We have added further detail to our 
description of the multi-head network on page 6 line 259 and page 9 line 326 to clarify how the 
network backbone extracts features that enable prediction of the 12 classes.  

Finally, despite the challenging number of predictions and data set, we know that the 
network’s accuracy at predicting all 4 parameters on the unseen test data set was at least 84.3% (and 
likely higher since for many error types there will be multiple combinations of parameter changes that 
could correct it). This accuracy is very good and sufficient for the numerous practical demonstrations 
across geometries, 3D printing geometries and setups in figures 4 and 5.  



 
Comment 6: “Augmentation of dataset is reasonable, but why synthetic data augmentation is a better 
choice in rotation case instead of using systematic camera positioning for capturing bigger dataset?” 
 
Primarily this synthetic approach is more time and resource efficient whilst additionally allowing for a 
smaller stored raw dataset with augmentations applied at run-time. To clarify this in the manuscript, 
we now have added reasoning for why the synthetic approach was taken as opposed to generating 
more raw data through the systematic altering of camera position and environmental lighting 
conditions (page 6, line 248).  
 
Comment 7: “Why image-cropping procedure has not been automated?” 
 
The image-cropping procedure in this work was achieved automatically both during training and 
testing by using the saved information on the location of the nozzle tip in the image. We thank the 
reviewer for raising this point as the text did not clearly explain this. We have added that cropping was 
done automatically throughout the work in the data collection, training, and testing sections (page 4, 
line 180; page 6, line 241; page 10, line 389). 
 
Comment 8: “How NN learns inherent bias in the dataset?” 
 
There are necessarily biases in the data set because it is not feasible to produce a training data set that 
covers all possible material compositions, colours, printing parameters and printing setups that 
someone might want to use for extrusion 3D printing. For example, while in our data set the 3D 
models, slicing settings, and parameter values have been randomly sampled, our data set consists 
solely of 3D printing with the polymer PLA, printed between 180°C to 230°C, and used the printer’s 
default limits on feedrate and acceleration in every print. Additionally, because of the large but not 
infinite size of the data set, there may be certain combinations of parameters which only appear in a 
specific print or with a single colour of filament and thus the network has learned these incorrect 
features as mappings. Nevertheless, the network still generalises well to unseen geometries, materials, 
and setups, (figs 4 and 5) suggesting that it has learnt some features that are universal across extrusion 
3D printing (fig. 6).  

It is an important issue to highlight and we have therefore added a paragraph discussing 
possible sources of bias in the data set and how this could affect model training and performance on 
page 17 line 655. In this paragraph we also highlight potential future work to minimise bias through 
larger datasets that are more balanced across geometries, materials, parameter combinations, and 
conditions.  
 
It is desirable that the authors should consider above points before moving towards building a prototype 
for error correction. In the current form the loops holes are very visible in data collection and parameter 
selection. The reasoning should be strong to make the paper technically sound. 
 
We thank the reviewer for their helpful comments and believe that additions we have made in 
response to these comments have strongly clarified the reasoning behind our data collection and 
parameter selection.  



REVIEWERS' COMMENTS 
 
Reviewer #2 (Remarks to the Author): 
 
Unfortunately, the authors failed to respond to major concerns regarding AI in the manuscript 
reasonably. The answers to almost all queries are given in a manner which can’t be deemed as to 
the point. 
For e.g.: “How Caxton knows to identify and correct diverse errors? Any mathematical 
explanation?”, and the answer is “Caxton knows how to identify and correct errors because it has 
been trained with images labelled with the level of deviation from optimal printing parameters.” 
Another query was “How it self learns interplay between manufacturing process?”, and the 
response by authors is “This allows the shared neural network backbone to learn its own 
interpretation of the relationships between each of the parameters and the importance of certain 
features shared across the parameters.”, and more. 
It is a sincere advice that authors should try to explain the reason (if possible with mathematical 
justification) behind opting any specific technique, instead of just mentioning that the technique 
can do wonders. The concept of ML/AI is not of any use if it is presented in terms of a black-box 
model. Hence, I restate my previous opinion that the paper is quite weak in terms of explaining 
ML/AI applications. 
 



Unfortunately, the authors failed to respond to major concerns regarding AI in the 
manuscript reasonably. The answers to almost all queries are given in a manner which can’t 
be deemed as to the point. 
For e.g.: “How Caxton knows to identify and correct diverse errors? Any mathematical 
explanation?”, and the answer is “Caxton knows how to identify and correct errors because 
it has been trained with images labelled with the level of deviation from optimal printing 
parameters.” Another query was “How it self learns interplay between manufacturing 
process?”, and the response by authors is “This allows the shared neural network backbone 
to learn its own interpretation of the relationships between each of the parameters and the 
importance of certain features shared across the parameters.”, and more. 
 
Response: Neural networks learn to identify things through being trained on data. Our 
responses describe the data and labels that the network was trained on. A more detailed 
mathematical explanation of how the neural network learns would be generic to neural 
networks and is covered by many existing textbooks on neural networks. To help readers 
who wish to learn more about the fundamentals of neural networks, we have added a 
reference to page 2 of the manuscript (reference 48). 
 
It is a sincere advice that authors should try to explain the reason (if possible with 
mathematical justification) behind opting any specific technique, instead of just mentioning 
that the technique can do wonders.  
 
Response: Our reason for using neural networks for this application is that they have shown 
better performance in image classification tasks than other algorithms. One of the main 
reasons for this is described in our previous response: “The data within images is high 
dimensional and non-linear and the neural network backbone serves to reduce this 
complexity by using the backbone as a feature extractor to map to a lower dimensional 
latent space representation. This latent or feature space will still be non-linear but the 
universal approximation theorem suggests that the network can approximate any 
continuous function - not just linear functions.”  Again, a more detailed mathematical 
explanation of how the neural network learns would be generic to neural networks and is 
covered by many existing textbooks on neural networks. To help readers who wish to learn 
more about the fundamentals of neural networks, we have added a reference to page 2 of 
the manuscript.   
 
The concept of ML/AI is not of any use if it is presented in terms of a black-box model. 
Hence, I restate my previous opinion that the paper is quite weak in terms of explaining 
ML/AI applications. 
 
Response: Black-box ML/AI models are already useful in diverse applications including facial 
recognition, voice assistants, protein folding, and autonomous vehicles. We therefore 
disagree that black-box ML/AI is not of any use.  
 
Nevertheless, better explainability would improve trust, adoption, and function of many 
AI/ML approaches. This motivated the explanatory visualisations shown in fig. 6, which is the 
first time explainability of neural networks has been explored in the context of 3D printing 
error detection/correction. 
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