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 20 
Fig. S1: Step-by-step representation of the Mapper pipeline. First, the high-dimensional 21 
neuroimaging data are embedded into a lower dimension set 𝑑!, using a non-linear filter function 22 
𝑓. Here, a nonlinear filter function 𝑓 based on neighborhood embedding was used (see Methods 23 
for benefits of this non-linear approach). Second, overlapping 𝑑-dimensional binning is 24 
performed to allow for compression and to reduce the destructive effects of noise. Third, partial 25 
clustering within each bin is performed, where the original high dimensional information is used 26 
for coalescing (or separating) data points into nodes in the low-dimensional space and hence 27 
allows for recovering information loss incurred due to dimensional reduction. As a fourth step, to 28 
generate a graphical representation of the data landscape, nodes from different bins are 29 
connected if any data points are shared between them.  30 
 31 
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 33 
Fig. S2: Shows hubs across all ten MSC participants. Show Mapper-generated graphs for all 34 
10 MSC participants and their respective data splits. Hubs (i.e., nodes with high degree (>20) 35 
and high centrality (top 1%)) are highlighted in blue color. As evident, these hubs were found 36 
across all participants and sessions. 37 
 38 
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 41 
Fig. S3: RSN-based annotation across all ten MSC participants. Shows Mapper-generated 42 
graphs for all 10 MSC participants. Here, each node is annotated by activation in the known 43 
large-scale resting state networks. Each node is annotated using a pie-chart to show the 44 
proportion of RSNs activated within each node. As evident, topologically highly connected, and 45 
centrally located hubs contained brain volumes where no characteristic RSN was activated 46 
above the mean, whereas nodes with brain volumes dominating from one (or more) RSN(s) 47 
tend to occupy the peripheral corners of the landscape. The maps for all individual subjects 48 
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demonstrated this same basic pattern, although there was evidence to suggest that different 49 
combinations of RSNs were dominant in different individuals.  50 
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 51 
Fig. S4: Gradient was observed across all ten MSC participants. To quantify the variation in 52 
RSN-based dominance, we first estimated mean activation for each RSN across the time 53 
frames within each node, followed by estimating variation in mean activation across RSNs. High 54 
variance (or S.D.) indicated dominance of one or more RSN while low variance (or S.D.) 55 
indicated uniformity across RSN activation. Annotating Mapper-generated graphs using 56 
variance-based approach revealed a dynamical topographic gradient, where the peripheral 57 
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nodes had higher variance with a continual decrease in variance when going towards the center 58 
of the graph. This topographic gradient was observed across all participants and sessions. 59 
 60 
 61 

 62 
Fig. S5: Applying frame censoring to the data generated from null models to evaluate 63 
whether high degree nodes observed in the real data were resulted merely due to 64 
temporal masking. Please note that the frame censoring could only be applied to the data 65 
generated from the AR null, as it is a generative model, and we could create same number of 66 
TRs as the original (non-censored) data and then drop frames from it to match the number of 67 
frames in the real data. As evident, adding frame censoring to the data generated using AR null 68 
did not result in enhancing the number of high degree nodes. Statistically, the proportion of high 69 
degree nodes in real data were still significantly higher than both AR nulls (one-way ANOVA; 70 
F=4.11, p=0.0276). Only showing data from the odd split, similar results were observed for the 71 
even split of the data. The shaded area represents standard error around the mean (S.E.M.).72 
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 74 
Fig. S6: Parameter perturbation analysis revealed stable results across a moderate range 75 
of Mapper parameters. Parameter perturbation analysis was performed to make sure 76 
topological properties of the graph (e.g., existence of fat tail in degree distribution) were stable 77 
across a moderate range of Mapper parameters. Two main Mapper parameters, i.e., number of 78 
bins (a.k.a. Resolution (R)) and percentage overlap between bins (a.k.a. Gain (g)) were varied 79 
across the chosen value in the main text (R=30, G=70). The values of R and G were chosen 80 
based on our previous work with task fMRI data (Saggar et al. 2018; Nat. Comm.). The heatmap 81 
above shows p-values from one-way ANOVAs that examined the proportion of high-degree 82 
nodes (>20) in the real versus null data for the odd sessions. As evident, for a large portion of 83 
Mapper parameter values, the proportion of high-degree nodes in the real data were 84 
significantly higher than null data. We also depict zoomed-in view of degree distribution plots for 85 
several parameter combinations (highlighted in red-dashed border on the heatmap) to show the 86 
excessive proportion of high-degree nodes in real data across different combinations of 87 
parameters. The shaded area in the degree distribution plots represents standard error around 88 
the mean (S.E.M.). 89 
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 92 
Fig. S7: The nodal mean of each dominant network was propagated into time domain 93 
(individual TRs) to examine the continuous and transitory nature of RSN-dominance vs 94 
hub-states. [A] Mapper nodes are annotated by activation in three dominant RSNs relative to 95 
mean activations of all other RSNs for one representative participant (MSC-01, odd sessions). 96 
As expected, for each dominant RSN, we observed a gradient of mean activation across nodes 97 
in the Mapper graph – such that peripheral nodes contained timeframes (or TRs) with the 98 
highest activation, while more central nodes contained TRs with low activation. As evident in 99 
[B], the activation of each of the three dominating networks (default mode, frontoparietal, and 100 
cingulo-opercular) are continuous in nature and, importantly, the hub-states tend to appear at 101 
the tails of RSN dominance – putatively triggering transitions between RSNs. [C] Cortical 102 
activations are shown for three representative TRs for each dominant network. [D] Histogram of 103 
temporal correlation between the mean amplitude of dominant RSNs and hub-state occurrences 104 
across all ten participants (separately shown for odd and even sessions). As evident, negative 105 
relation between the occurrence of hub-states and activation in one or more RSNs was 106 
observed.  107 

Manish Saggar
The brain overlays were created by the authors using Connectome Workbench Software

Manish Saggar
(https://www.humanconnectome.org/software/connectome-workbench).
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 108 
Fig. S8: Examining connectivity profile of hub states. [A] Functional connectivity derived 109 
from timeframes of hub Mapper nodes for one representative participant (MSC01, odd 110 
sessions). The connectivity matrix is organized by RSNs. Uniform within network connectivity is 111 
observed across all networks. [B] Spider charts showing within-network connectivity (derived 112 
from hubs) across all 10 participants, separately for odd and even sessions. Although Mapper 113 
graphs were generated using activation data (and not connectivity estimates), within network 114 
functional connectivity derived from hubs also suggest no preference for any RSN. 115 
 116 
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