

Figure S1. Schematic of photoreceptor specification in the eye/antennal disc. Related to Figure 1.

A-F) Photoreceptor specification and morphogenetic furrow during eye development. Light gray circle=unspecified cell; maroon circle=R8 cell; dark gray circle=outer photoreceptor cell (R1-R6); yellow circle=R7 cell.

Figure S2. *ss* expression analysis; scATAC-seq analysis at the *ss* locus. Related to Figure 2.

A) Schematic of probes used to label ss RNA.

B) *ss* is not expressed in peripodial membrane cells (*ss*^{OFF} control). Gray=*ss* RNA; blue=DAPI.

C) Percent Ss^{ON} R7s is similar in adult R7s in WT flies, in adult R7s in the R7 cell reporter line, and in larval R7s in the R7 cell reporter line. Orange line indicates mean percent Ss^{ON} R7s in adults. n.s. denotes p > 0.05.

D) scATAC-seq reads at the *ss* locus by region of the eye/antennal disc. scATAC-seq data were integrated with independently generated scRNA-seq data to produce a virtual map enabling cell identification based on gene expression and enhancer identification based on chromatin accessibility. Gray rectangles=peaks matching *cis* regulatory elements; purple triangles=putative PREs; PRs=photoreceptors.

Figure S3. Automated density calculation; decreasing early *ss* expression decreases the proportion of Ss^{ON} R7s. Related to Figure 3.

For A-C) Automated identification and calculation of *ss* nascent RNA expression and density.

A) Example of identification of nascent ss RNA spots and determination of boundary region. Gray=ss RNA; green=spot ID; orange=boundary and area.

B) Comparison between the automated and manual quantification of 4 images to confirm high fidelity automated quantification.

C) Percent agreement between automated and by hand quantification. N=4.

D-E) Quantification of cell density within the antenna (**D**) and precursor (**E**) regions to ensure changes in expression are not derived from tissue differences. N=3, n=9.

Orange dashed line=WT cell density. ** denotes p < 0.005; **** denotes p < 0.0001.

F) Schematic of the Klu binding site and binding motif in the *early enhancer* of the *ss* locus.

G) Ato>Gal4 drives GFP in precursors. Green=GFP; magenta=Elav.

H) Early *ss* RNA expression is reduced in precursors in *ash2* null mutant clones. GFPindicates *ash2* mutant clones; GFP+ indicates wild type clones. Magenta=GFP; dashed line=clone boundary. Gray=*ss* RNA; green=spot ID; orange=regional area.

I) Quantification of expression for Tgo null mutant clones in **3Y**. Orange line indicates mean WT *ss* expression. n.s. denotes p > 0.05.

For J, K, M, N, P, Q, S, T, V, W) Scalebar=10 µm.

For J, M, P, S, V) ss RNA expression in the antenna. Gray=ss RNA.

For K, N, Q, T, W) Early ss RNA expression in precursors. Gray=ss RNA.

For L, O, R, U, X) Adult Rh3/Ss^{OFF} and Rh4/Ss^{ON} expression in R7s. Blue=Rh3; red=Rh4. **J-L)** In wild type (WT) animals, *ss* is expressed in antennal cells, precursors, and a subset of R7s.

M-O) *pEE*//*def* mutants display normal *ss* expression in antennal cells, reduced *ss* expression in precursors, and a decrease in % Rh4/Ss^{ON} R7s.

P-R) Animals with ectopic expression of Klu display normal *ss* expression in antennal cells, reduced *ss* expression in precursors, and a decrease in % Rh4/Ss^{ON} R7s.

S-U) *ash2* null mutants display normal *ss* expression in antennal cells, reduced *ss* expression in precursors, and a decrease in % Rh4/Ss^{ON} R7s.

V-X) *lid* null mutants display normal *ss* expression in antennal cells, reduced *ss* expression in precursors, and a decrease in % Rh4/Ss^{ON} R7s.

Y) Quantification of the proportional changes from WT in precursors and R7s normalized to cell density. P=precursors; R7=R7s; gray solid line=WT precursor and R7 agreement; gray dashed lines=precursor and R7 agreement by genotype.

Figure S4. Derepressing early *ss* expression increases the proportion of Ss^{ON} R7s; analyzing PREs in the *ss* locus. Related to Figure 4.

For A-E) Quantification of *ss* expression. Orange line indicates mean WT *ss* expression. ** denotes p < 0.005; *** denotes p < 0.0005; **** denotes p < 0.0001.

A) Antennal cells.

B) Undifferentiated cells.

C) Precursors

D) Differentiating cells.

E) R7s

F-G) Quantification of cell density within the antenna cell (**F**) and precursor cell (**G**) regions to ensure changes in expression are not derived from tissue differences. N=3, n=9.

H-I) ss is expressed in peripodial membrane cells in $S1 \triangle$ and ss^{inv} mutants. Gray=ss RNA; blue=DAPI.

J) Predicted PREs in the *ss* locus. Data adapted from FlyBase Jbrowse modENCODE plug-in. Purple rectangles indicate putative PREs.

For K-O) We tested the activity of PRE1 and PRE2 using pairing sensitive silencing assays (Kassis, 1994; Kassis et al., 1991). In this assay, flies that are homozygous for a transgene carrying the *white* gene, but not a PRE, have darker red eyes than heterozygotes. In contrast, flies that are homozygous for a transgene carrying the *white* gene linked to a PRE have lighter eye color than heterozygotes. For flies carrying the EX8.2 transgene that contained PRE1 or the B6.9 transgene that contained PRE2, homozygotes had lighter eye color than heterozygotes (**Fig. S4K, N-O**), consistent with pairing sensitive silencing and the presence of functional PREs. In contrast, for flies carrying the EX1.9 transgene or the E1.2 transgene that neighbored PRE2, homozygotes had darker eye color than heterozygotes (**Fig. S4K-M**), consistent with the absence of functional PREs (Emmons et al., 2007). Together, the ChIP peaks for Polycomb group Proteins, the scATAC-seq peaks, and the pairing sensitive silencing assays suggest that PRE1 and PRE2 are functional PREs.

K) Schematic for regions of DNA used to generate transgenes. Purple line=DNA fragment containing a PRE; gray line=DNA fragment lacking a PRE.

For L-O) Gray oval=DNA fragment denoted in K; purple line=PRE site; red oval=white gene. Schematic for genetic background and cartoon for eye color below.

L) Flies heterozygous for the EX1.9 transgene display light orange eyes.

M) Flies homozygous for the EX1.9 transgene display dark orange eyes.

N) Flies heterozygous for the E6.9 transgene display orange eyes.

O) Flies homozygous for the E6.9 transgene display very light orange eyes.

Figure S5. Repression by the *ss* locus limits expression to a subset of R7s; reporter and Ss are expressed in R8s in flies carrying *Ins2.* Related to Figure 5.

A) Quantification of rhodopsin and reporter expression. Cyan=Rh3/Ss^{OFF}, reporter^{ON}; blue=Rh3/Ss^{OFF}, reporter^{OFF}; yellow=Rh4/Ss^{ON}, reporter^{ON}; red=Rh4/Ss^{ON}, reporter^{OFF}.
B) % Rh4/Ss^{ON} R7s in control flies or flies carrying the repression reporter. Orange line indicates mean WT Ss expression.

C) The reporter and Ss are expressed in R8s in flies carrying *Ins2* in mid-pupal retinas. Gray circles=R7s; maroon circles=R8s; blue=Elav; green=reporter; gray=Ss. Solid lines indicate reporter expressing cell; dotted lines indicate no reporter expression.

Figure S6. Analysis of compaction comparing d_1 , d_2 , and d_t and angles; R7 reporter does not affect *ss* expression; compaction in additional mutants. Related to Figure 6.

For A-B) Blue=ss upstream DNA; green=ss locus DNA; red=ss downstream DNA.

A) Schematic for compaction distance calculations.

B) Schematic for compaction angle calculations.

For C-L) Ctrl=peripodial membrane cells; A=antennal cells; U=undifferentiated cells; P=precursors; D=differentiating cells; R7=R7s.

C) d₁ compaction distances. Orange line=compaction changes by region.

D) d₂ compaction distances. Red line=compaction changes by region.

E) d_T compaction distances. Blue line=compaction changes by region.

F) Compaction changes as in C-E.

For G-L) Quantification of compaction angles by tissue region.

G) Ctrl cell angles.

H) Antennal cell angles.

I) Undifferentiated cell angles.

J) Precursor cell angles.

K) Differentiating cell angles.

L) R7 cell angles.

M) Adult Rh3/Ss^{OFF} and Rh4/Ss^{ON} expression in R7s with and without the R7 reporter show no effect on ss expression. n.s=p> 0.05.

For N-R) Quantification of compaction. Ctrl=peripodial membrane cells; A=antennal cells; U=undifferentiated cells; P=precursors; D=differentiating cells; R7=R7s. Black circle= ss^{ON} cell; gray circle= ss^{OFF} cell; white rectangle=quartile; white circle=median; gray dashed line= ss^{OFF} control/peripodial membrane median; black dashed line= ss^{ON} control/antennal cells median. * denotes p < 0.05; ** denotes p < 0.005; **** denotes p < 0.0001.

N-O) WT (**N**) and R7 reporter (**O**) lines show no differences in compaction dynamics.

Differentiating cells have been subdivided into early differentiating/D1 and late

differentiating/D2. D1 and D2 cells display no difference in compaction.

P) ectopic klu mutants. n > 106 cells for each region.

Q) ash2 null mutants. n > 38 cells for each region.

R) *lid* null mutants. n > 40 cells for each region.

Figure S7. Relating the proposed mechanism for stochastic R7 subtype specification to *ss* mutant phenotypes. Related to Figure 7.

We briefly review four key experiments and how they fit with this model. In *EE* Δ mutants, *ss* is not expressed in precursors and the *ss* locus remains compact as cells mature into Ss^{OFF} R7s (**Fig. S7A**). In mutants with reduced *ss* expression in precursors, *ss* is expressed in a subset of precursors and the *ss* locus opens. In some of these cells, *ss* remains open as cells differentiate into Ss^{ON} R7s whereas in others, *ss* compacts as cells mature into Ss^{OFF} R7s. For the subset of precursors that do not express ss in precursors, the *ss* locus remains compact as these cells mature into Ss^{OFF} R7s (**Fig. S7B**). In *PRE12* Δ mutants, *ss* is expressed in all precursors and the *ss* locus opens. In some differentiating cells, *ss* expression ceases and the *ss* locus remains open as cells mature into Ss^{OFF} R7s (**Fig. S7B**). In *PRE12* Δ mutants, *ss* is not expressed in all precursors and the *ss* locus opens. In some differentiating cells, *ss* expression ceases and the *ss* locus remains open as cells mature into Ss^{ON} R7s or closes as cells mature into Ss^{OFF} R7s. In the other differentiating cells, *ss* expression continues and the *ss* locus remains open as cells mature into Ss^{ON} R7s (**Fig. S7C**). In *LE* Δ mutants, *ss* is not expressed in R7s and *ss* locus compaction is unaffected (**Fig. S7D**).

For A-D) U=undifferentiated cells; P=precursors; D=differentiating cells; R7=R7s. Gray box=inactive enhancer; green box=active enhancer.

A) EE∆ mutants.

- B) Precursor modulating mutants.
- **C)** *PRE12* Δ mutants.
- **D)** *LE*∆ mutants.

Deletion Name	Deletion Size (bp)	Rh4/Ss ^{on} (%)
R1∆	6,229	67.68 ± 2.4
R2∆	6,863	65.84 ± 4.7
EEA	1,278	0
pEE∆	4,089	24.9 ± 5.8
extEE∆	5,367	0
R3∆	1,540	53.63 ± 4.3
ΡΔ	1,993	0
R4∆	1,543	63.38 ± 3.68
LEA	3,181	0
R5∆	1,645	51.25 ± 5.78
R6∆	3,848	65.56 ± 4.56
R7∆	2,393	55.78 ± 7.8
R8∆	3,933	50.147 ± 2.1
R9A	4,871	61.01 ± 2.2

Table S1. CRISPR deletion screen, Related to Figure 2

Category	Gene	Mutant allele	Rh4/Ss ^{on} (%)
Wildtype	yw	yw ⁶⁷	61 ± 6
RNAi Control	GFP	RNAi	52 ± 2
Insulator	CP190	RNAi	67 ± 5 ↑
	Su(HW)	RNAi	55 ±4
	Mdg4	RNAi	51± 7
TRX complex	Trx	Trx ^{E2}	79 ± 9 ↑
		RNAi	55 ± 6
	Ash2	RNAi v20	37 ± 9 ↓
		RNAi v22	17 ± 8 ↓
	Mnn1	Mnn1 ^{e173}	33 ± 5 ↓
		Mnn1 ^{e30}	40 ± 5 ↓
		RNAi	61 ± 12
		CRISPR Deletion	59 ± 12
TRR complex	Trl	RNAi	57 ± 6
PRC1	Pc	RNAi	55 ± 7
		Pc ⁴	94 ± 3
		Pc ^{xt}	No R7s
	Ph-d Ph-	Ph-d ⁴¹⁰ Ph-p ⁴⁰¹	43 ± 8 ↓
	р		·
Polycomb	Cg	Cg ^{A22}	55 ± 9
Recruitment	Pho	Pho ¹	32 ± 6 ↓
		Pho ^b	61 ± 5
		RNAi	72 ± 4 ↑
	Phol	Phol ^{81A}	63 ± 11
	Spps	Spps ¹	No retinas
PRC2	E(z)	E(z) ⁶¹ 18°C control	68 ± 4
		E(z) ⁶¹ 29°C hs 3 rd instar 4hrs	57 ± 3
		E(z) ⁶¹ 29°C hs 3 rd instar 24hrs	65 ± 7
		E(z) ⁶¹ 29°C hs 2nd instar to late	55 ± 3 ↓
		pupation 120 hrs	
	Su(z)12	Su(z)12 ⁵	44 ± 8 ↓
	Psc	Psc ^{h28}	65 ± 9
Histone	H3.3	H3.3K27M	69 ± 4
Eye	Lid	RNAi	No R7s
development		Lid ¹⁴⁰	36.5 ± 7 ↓
	Osa	Osa ³⁰⁶	57 ± 3

Table S2. Trans factor regulator screen, Related to Figure 3

Short	Full Genotype	Figures	Source
Genotype		4 0 0 04	
VVI	yw;+;+	1, 2, 3, S1, S2, S3, S4, S5, T2	N/A
ss Def	yw ; + ; Df(3R)Exel6269	2, 3, S3	Bloomington (7736), (Parks et al., 2004)
ss Protein Null	yw ; + ; ss ^{d115.7} / Df(3R)Exel6269	1	(Duncan et al., 1998)
R7 Reporter	yw ; pm181>Gal4,UAS>mCD8 GFP/CyO ; +	1, 5, S5	(Lee et al., 2001)
EE Reporter	yw ;; EE>GFP ; +	1	N/A
LE Reporter	yw ; LE>GFP ; +	1	N/A
PΔ	уw ; + ; ss ^P ^Δ	1, 2, 5, S5	N/A
eEE⊿	yw ; + ; ss ^{eEE} ⊿/ Df(3R)Exel6269	1	N/A
pEE⊿	<i>yw ; + ; ss^{pEE}/ Df(3R)Exel6269</i>	1, 2, S2	N/A
EE⊿	yw ; +; $ss^{EE_{\Delta}}$	1, 2, 5, S5	N/A
LEA	$yw; +; ss^{LE_{\Delta}}$	1, 2, 5, S5	N/A
tgo Null	ey>flp/yw ; +/CyO ; FRT82B	S1	(Thanawala et al.,
Clones	tgo ^{del6} /FRT82B ubi>GFP		2013)
sin	yw ; + ; ss ^{sin}	2	Anderson 2017
Ectopic klu	Ato(384)>Gal4/yw ; UAS>klu/+ : +	2, S2	(Klein and Campos- Ortega, 1997)
ash2 Null	yw ; ey>Gal4, UAS>flp/+ ; FRT82B ash2¹, e, red/GMR>hid	2, S2	Bloomington (5253)
<i>lid</i> Null	yw ; FRT40A lid ¹⁴⁰ ; FRT40A GMR>hid ; ey>Gal4, UAS>flp/+	2, S2	Bloomington (76954)
ash2 Null	ey>flp; +; FRT82B Ubi	2, S2	
Clones	GFP/FRT82B ash2 ¹ , e, red		
Ectopic <i>klu</i> Ctrl	Ato(384)>Gal4/yw ; UAS>klu/+ ; P{y[+t7.7] w[+mC]=20XUAS- 6XGFP}attP2/+	S2	Bloomington (52262), (Klein and Campos-Ortega, 1997)
<i>klu</i> Null Clones	ey>flp ; +/CyO ; klu ^{R51} FRT2A/ubi>GFP FRT2A	3	(Klein and Campos- Ortega, 1997; Stowers and Schwarz, 1999)
<i>klu</i> Null	yw ; ey>Gal4, UAS>flp/+ ; GMR>hid,cl FRT2A/klu ^{R51} FRT2A	3, S3	(Klein and Campos- Ortega, 1997; Stowers and Schwarz, 1999)
S1⊿	yw; +; S1⊿/+	3, S3	(Johnston and Desplan, 2014)

Table S3. Fly lines, Related to STAR Methods

PRE12⊿	<i>yw ; + ; PRE12∆/Df(3R)Exel</i> 6269	3, S3	N/A
PRE2-EE⊿	<i>yw ; + ; PRE2-EE∆</i>	3, S3	N/A
SS ^{inv}	<i>yw ;</i> + <i>; ss^{inv}/Df(3R)Exel</i> 6269	3, S3	
X 3xP3 Ctrl	<i>yw,</i>	4, S4	Bloomington
	+ ;		(24480)
	GFP[E.3xP3]=vas-int.Dm}ZH-		
	102D		
Ins1	yw ; + ; 3xP3>RFP	4, S4	N/A
Ins2	yw ; + ; 3xP3>RFP	4, S4	N/A
Ins3	yw ; + ; 3xP3>RFP	4, S4	N/A
Ins4	yw ; + ; 3xP3>RFP	4, S4	N/A
Ins5	yw ; + ; GMR>GFP/+	4, S4, 5	(Thanawala et al.,
			2013)
WT R7	yw ; pm181>Gal4,UAS>mCD8	5, S5	N/A
Reporter	GFP/CyO ; +		
<i>P</i> ⊿ R7	yw ; pm181>Gal4,UAS>mCD8	5, S5	N/A
Reporter	GFP/CyO ; P⊿		
<i>EE∆</i> R7	yw ; pm181>Gal4,UAS>mCD8	5, S5	N/A
Reporter	GFP/CyO ; EE∆		
<i>LE∆</i> R7	yw ; pm181>Gal4,UAS>mCD8	5, S5	N/A
Reporter	GFP/CyO ; LE∆		
R1⊿	yw ; + ; R1⊿/Df(3R)Exel6269	1, T1	N/A
R2⊿	yw ; + ; R2⊿/Df(3R)Exel6269	1, T1	N/A
R3⊿	yw ; + ; R3⊿/Df(3R)Exel6269	1, T1	N/A
R4⊿	<i>yw ;</i> + <i>;</i> R4⊿/Df(3R)Exel6269	1, T1	N/A
R5⊿	yw ; + ; R5⊿/Df(3R)Exel6269	1, T1	N/A
R6⊿	yw ; + ; R6⊿/Df(3R)Exel6269	1, T1	N/A
R7⊿	yw ; + ; R7⊿/Df(3R)Exel6269	1, T1	N/A
R8⊿	yw ; + ; R8⊿/Df(3R)Exel6269	1, T1	N/A
R9⊿	yw ; + ; R9⊿/Df(3R)Exel6269	1, T1	N/A
PΔ	<i>yw</i> ; + ; ss ^P ∕/Df(3R)Exel6269	1, T1	N/A
EE⊿	yw ; + ; ss ^{EE} ⊿/Df(3R)Exel6269	1, T1	N/A
LEA	yw ; + ; ss ^{LE} ₄/Df(3R)Exel6269	1, T1	N/A
GFP RNAi	elav>Gal4/w ; UAS>Dcr2/+ ;	T2	Bloomington
	UAS>GFP RNAi/+		(35786)
Cp190 RNAi	elav>Gal4/w ; UAS>Dcr2/+ ;	T2	Bloomington
	UAS>Cp190 RNAi/+		(35078)
Su(HW) RNAi	elav>Gal4/w ; UAS>Dcr2/+ ;	T2	Bloomington
	UAS>su(Hw) RNAi/+		(33906)
Mdg4 RNAi	elav>Gal4/w ; UAS>Dcr2/+ ;	T2	Bloomington
	UAS>mdg4 RNAi/+		(33907)
Trx ^{E2}	yw ; ey>Gal4, UAS>flp/+ ;	T2	Gift from Jessica
	FRT82B trx E2/FRT82B		Treisman
	GMR>hid		
Trx RNAi	elav>Gal4/w ; UAS>Dcr2/+ ;	T2	Bloomington

	UAS>trx RNAi/+		(33703)
Ash2 RNAi	elav>Gal4/w ; UAS>Dcr2/+ ;	T2	Bloomington
	UAS>ash2 RNAi v20/+		(64942)
Ash2 RNAi	elav>Gal4/w ; UAS>Dcr2/+ ;	T2	Bloomington
	UAS>ash2 RNAi v22/+		(35388)
Mnn1 ^{e173}	w; Mnn1 ^{e173} ; +	T2	Gift from Andre
			Bedard
Mnn1 ^{e30}	w; Mnn1 ^{e30} ; +	T2	Gift from Andre
			Bedard
Mnn1 RNAi	elav>Gal4/w ; UAS>Dcr2/+ ;	T2	Bloomington
	UAS>Mnn1 RNAi/+		(35150)
Mnn1∆	w; Mnn⊿; +	T2	N/A
Trl RNAi	elav>Gal4/w ; UAS>Dcr2/+ ;	T2	Bloomington
	UAS>Trl RNAi/+		(67265)
Pc RNAi	elav>Gal4/w ; UAS>Dcr2/+ ;	T2	Bloomington
	UAS>Pc RNAi/+		(36070)
Pc ⁴	ey>flp ; +/CyO ; FRT2A Pc ⁴ /	T2	Gift from Judith
	FRT2A ubi>GFP		Kassis
Pc ^{XT}	ey>flp ; +/CyO ; FRT2A Pc ^{XT} /	T2	Gift from Judith
	FRT2A ubi>GFP		Kassis
Ph-d ⁴¹⁰ Ph-	Ph-d ⁴¹⁰ Ph-p ⁴⁰¹ ; +; +	T2	Gift from Judith
p ⁴⁰¹			Kassis
Ċg ^{A22}	w; FRT42D cg ^{A22} /FRT42D	T2	Gift from Judith
	GMR>hid; ey>Gal4, UAS>flp/+		Kassis
Pho ¹	w; +; +; pho ¹	T2	Gift from Judith
			Kassis
Pho ^b	w; +; +; pho ^b	T2	Gift from Judith
			Kassis
Pho RNAi	elav>Gal4/w ; UAS>Dcr2/+ ;	T2	Bloomington
	UAS>pho RNAi/+		(35206)
Phol ^{81A}	w; +; phol ^{81A}	T2	Gift from Judith
			Kassis
Spps ¹	w; +; Spps ¹	T2	Gift from Judith
			Kassis
E(z) ⁶¹ 18°C	$w; +; E(z)^{61}$	T2	Gift from Judith
			Kassis
E(z) ⁶¹ 29°C		T2	Gift from Judith
hs 3 rd instar			Kassis
4hrs			
E(z) ⁶¹ 29°C		T2	Gift from Judith
hs 3 rd instar			Kassis
4hrs			
E(z) ⁶¹ 29°C		T2	Gift from Judith
hs 2nd instar			Kassis
to late			
pupation 120			

hrs			
Psc ^{h28}	w ; Psc ^{h28} ; +	T2	Gift from Judith
			rassis
H3.3K27M	w ; GMR>Gal4/UAS>H3.3K27M ;	T2	Gift from Kami
	+		Ahmed
Lid RNAi	elav>Gal4/w ; UAS>Dcr2/+ ;	T2	Bloomington
	UAS>lid RNAi/+		(28944)
Lid ¹⁴⁰	yw; FRT40A lid ¹⁴⁰ /FRT40A	T2	Gift from Judith
	GMR>hid; UAS>flp/+		Kassis
Osa ³⁰⁶	yw ; ey>Gal4, UAS>flp/+ ;	T2	Gift from Jessica
	FRT82B osa ³⁰⁸ /FRT82B		Treisman
	GMR>hid		

Deletion Name	Homologous Bridge	Deletion Size
R1Δ	GAGTTGATTGAAGGCTGTAAGAGCAGATTACAGTGGGGCGGAGGCCCAA GTCTGGATCTCGGTACCAACTCTCCATTGTCGATAATAATTGATTTGATT GATGCTTCGACGGCTGCCGATGCTGCT	6,229 bp
R2∆	CACAATTTACCAATCAAATAACAAATGCGCCACCAAAGATGCTTATTAA TGGCGGCCAACGGTACCTCTGGGTATTCATTTTTTTCGACTTGGCAATTG CAAATGCAAAACCATTTCATTT	6,863 bp
EE∆	AAAATAGATGGCTATTAACTATAGTTATTGAAGTGGGTCCATCAATCCAT CTTCTCCATTGGATCCCATGGCCTCAGAGCGAAAAAAAAA	1,278 bp
pEE∆	ATCGGGTTACGTACTCCCTCGCAACGTGAGAACCTCGGCCACTGTCAGGT GAAGTCCACTGAATTCTCTCATAAGAATCTTAAAAATGATAAAGATATTT TCTTCGATAGCTTTATTTCAGATATC	4,089 bp
extEE∆	AAATAGATGGCTATTAACTATAGTTATTGAAGTGGGTCCATCAATCCATC TTCTCCATTAGAATTCCTCATAAGAATCTTAAAAAATGATAAAGATATTTT CTTCGATAGCTTTATTTCAGATATCA	5,367 bp
R3∆	TCACATAAAGGCAGCCATTTTTGGGCCGCCACAAACGGCAATTATAATT GCGGCTACTTAGAATTCGATAAACCAGAGCCCACGAGCAACAACACTAC CAACACAAACGGCAAAAGTGCAAGTGAA	1,540 bp
ΡΔ	CTTCCACTTTGCTACACTTCACTCCACTCCACTCGACTCAGCTCACTTATT AGTGCCACCGAATTCGATAAACCAGAGCCCACGAGCAACAACACTACCA ACACAAACGGCAAAAGTGCAAGTGAA	1,993 bp
R4∆	CTTGGGTGCTCTGTTATTACTGAAAGATTTCAATCAATGCGATTGGCTGC ACTTACCACTGGTACCGTCCTAGCGAATATTACGCATACGACGCATAGAC TTACTGCACATTTGGCCAAGTTCATT	1,543 bp
LEA	CAATTTAATTGAGCTCCCAAGTGCTGGGAAGCAGCTGCCCTTTGAATTGG GCTTCTCACCGAATTCTGGCCTGGC	3,181 bp
R5∆	GGAGGTGGTATCTGGCCCGGGCAGGTGATACTTTCAGTTACCTTTTCCCT TACCCAGAACGAATTCGAGGGCCGTGAACCTGAGCCTGCGACCGATTCT TCCGAGATTCTTAGTCGCAGCCTTCGT	1,645 bp
R6Δ	TCCCGAAAGGCGAAAAGGACCAACCGACCGACAGACAGAC	3,848 bp
R7∆	GGATATAAATAGTTATTCTAATGACTTTGGTTTTTCCAAGCTTAATAAAA GTTTTCCTATGAATTCACAGGCGCACATACCCATCACTGTATATATA	2,393 bp
R8∆	CCTCTCAATCACCCCGATTTGTCTTCATCAGTGTTTTGTTTG	3,933 bp
R9Δ	TTCAGCAGGAGGAGCATCGGATATTCCATACCAGCAATTGGCCATTGTGT CCGCTCCTCTGGATCCGGCAAGCTACCGAGTGATGATACTGCTGGTACGG TAATGCTGCTTCTGTGGCATCGGCAA	4,871 bp
PRE12∆	TGAGTTGATTGAAGGCTGTAAGAGCAGATTACAGTGGGGCGGAGGCCCA AGTCTGGATCTGCCGGCCTCTGGGTATTCATTTTTTCGACTTGGCAATTG CAAATGCAAAACCATTTCATTT	10,285 bp Deletion
Mnn∆	GAGAAAAAAAAAAAGAAGAAAAAAAAAAAAAAACGCGCAGCCGAAAAATCG GCAACAACAAAAGCGAGGAAGAGCTAAATGTGTGGGGAGGACAACTGGG ACGACGACAACGTGGAGGACGACTTC	7,656 bp Deletion

Table S4. CRISPR Deletion Mutants, Related to STAR Methods

Table S5. CRISPR Insertic	on Mutants, Relate	ed to STAR Methods
---------------------------	--------------------	--------------------

Mutant Name	Homologous Bridge	Mutation
Ins1	ACACAAGATACCAGGATCCAAAAATGAATGCTGCCCAAATTCACTTTAGGTGTAT ATTCTTAACAAGGTCTGTTGAATTCATGATGGTTATAAAATGAAAGTAAACTAC CTCCTGTAAGATGTAAATTAAAAGCACCCTTATAAATTTGTAAATGCTTTTAAAC ACTAAAGTTAGTTTTTTCTAAGTATAAACCCCATGTCCTTGCTGTCATTAACCG TAGAAATTGTTTATGACAAACAATTCAAATTGGGAAACTTGAAAGACAAAGTA TCATAAAATATAATTGCCAGGGCGGACAAGTATTAATTCAAAAAGAAAG	40 bp Deletion, ~2,200 bp Insert
Ins2	CAAAAGCGAAACGCAGCACGCGATACCCTGTAACTGGAGGTTCTGTAAAGGCTT CGAGGAGTCACGTGTGCGAATTGCAGACCGCCGGCGGTCATTCACTTCTAT TTTACTATTCCAACACCCCACGCGCGCGTGTGTGTGTGCGGCCGGAAAAATGT CACTTTGACAACTCGCCTCTGGTTGCTCTGCCGGCGGATCTGCCTACGTCGACGT CGATCGTGCCGCAAAATGAAAATGATTGCGTGCCGTTCTTGCGTTCGGAAAAAG CGAAGAACCAGGATCTATTTAGGATAAGCACGCAGTTGATAGATTGGTTATCCA ACTCATCTAATATGGCGTGTAATGTTCGTCTACTTAGTTGTAGTCGGATTAGTAA ACCAGTTATTAACAGTATAGCTCCATTTCAAAGATACTCTACGGGGAATATTTAC TATTAACCGCTTAGCTTTAGTATAAAATTTTACATTAGATGT	300 bp Deletion, ~3,200 bp Insert
Ins3	GTGAGTCCCGAGTCCAGCTAAAAGAACCCCTTCCCCATCAACTCCTCTCAATCAC CCCGATTTGTCTTCATCAGTGTTTTGTTT	1 bp Deletion, ~3,200 bp Insert
Ins4	GCCTCTTCGCACACAACCTCTCCGCAGCAGCAACAACAGCAGCAGCAGCTCCAACAA TCACAGCGAGGAGTTGGTTCCAATGTTAGCGCTCCCAGCAGCTCACTCA	2 bp Deletion, ~3,200 bp Insert

Probe Set	Oligo Paints Library	Coordinates	Conjugated Fluorophore
ss RNA	ss-Full-RNA	3R: 16,370,515-16,435,663	Cy3
ss DNA	ss-Ext-Univ	3R: 16,370,516-16,435,663	Cy3
<i>ss</i> Upstream DNA	50-kb extension (left)	3R: 16,320,533-16,370,533	Alexa 488
ss Downstream DNA	50-kb extension (right)	3R: 16,435,681-16,485,681	Cy5

Table S6. Oligopaints Probe Libraries, Related to STAR Methods