Supplementary Information for

Structural Basis for *Sarbecovirus* ORF6 Mediated Blockage of Nucleocytoplasmic Transport

Xiaopan Gao^{1,#}, Huabin Tian^{2,#}, Kaixiang Zhu^{1,#}, Qing Li^{2,3}, Wei Hao¹, Linyue

Wang¹, Bo Qin¹, Hongyu Deng^{2,3,*} and Sheng Cui^{1,4*}

¹ NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China.

² CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in

Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing

100101, China.

³ University of Chinese Academy of Sciences, Beijing 100049, China.

⁴Sanming Project of Medicine in Shenzhen, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology

*Correspondence should be addressed to:

S.C. (cui.sheng@ipb.pumc.edu.cn) or H.D. (hydeng@moon.ibp.ac.cn.) #These authors contributed equally to this work.

Supplementary Figures

Supplementary Figure 1.Multiple sequence alignment of ORF6 from representative Sarbecovirus

SARS-CoV-2, SARS-CoV-2-related viruses from bats (RmYN02, RaTG13, ZXC21 and ZC45) and pangolins (pangolin-CoV,P1E,P5LP4L),SARS-CoV (Tor2), SARS-CoV-related viruses from bats (HKU3-2, Rm1 and Rs4231), the two bat sarbecoviruses that are phylogenetically located at the outgroup of SARS-CoV-2 and SARS-CoV (BtKY72 and BM48) are also included. The sequence alignment was calculated and rendered using the software Clustal Omega and ESPript 3.0.

 Rae1
 Nup98
 ORF6 CTT
 Rae1
 Nup98
 ORF6 CTT

 ORF6 CTT-Rae1-Nup98 structure in this study(PDB:7F60)
 ORF6 CTT-Rae1-Nup98 structure in this study(PDB:7F90)
 Rae1
 Nup98
 ORF6 CTT

 Rae1
 Nup98
 ORF6 CTT
 Rae1
 Nup98
 ORF6 CTT

Supplementary Figure 2. Superimposition of the recently published ORF6 CTT-Rae1-Nup98 structure with the ORF6 CTT-Rae1-Nup98 structure in this study.

The published SARS-CoV-2 ORF6 CTT-Rae1-Nup98 structure (PDB ID: 7VPH) and SARS-CoV ORF6 CTT-Rae1-Nup98 structure (PDB ID: 7VPG) are superimposed with the SARS-CoV-2 ORF6 CTT-Rae1-Nup98 structure (PDB ID:7F60) and SARS-CoV ORF6 CTT-Rae1-Nup98 structure (PDB ID:7F90) in this study respectively.

Supplementary Figure 3. ITC assay between ORF6 mutants peptide and Rae1-Nup98

complex

a-j. Binding isotherm for the interaction between ORF6 mutants peptide and Rae1-Nup98 complex. The calculated K_d values are indicated.

Supplementary Figure 4. EMSA experiments showing the ability of VSV M-NTE and MHV68 ORF10-CTT peptides dislocating ssRNA from Rae1-Nup98 complex

a-b. After pre-incubating FAM labeled 10-mer poly(U) ssRNA with Rae1-Nup98, increasing amount of peptides (VSV M NTE and MHV68 ORF10 CTT, indicted on top left of each gel) were added to the mixtures to allow RNA dislocation from Rae1-Npu98. The resulting mixtures were analyzed by Native-PAGE and visualized using Typhoon scanner. Results shown are representative of three independent experiments. Source data are provided as a Source data file.

b

Supplementary Figure 5. The effect of ORF6 variants and hybrids on their interactions with Rae1-Nup98 and inhibition of GFP expression.

- a) HEK293T cells were transfected with pEGFP-C1 and individual plasmid expressing ORF6 mutants, the effects of mutations on the GFP expression were analyzed by western blot. Results shown are representative of three independent experiments.
- b) A schematic illustration of the chimeric ORF6 generated hybrids.
- c) The interactions between ORF6 hybrids and Rae1-Nup98. HEK293T cells were transfected with the indicated plasmids expressing HA-tagged Rae1, Myc-tagged Nup98, and and Flagtagged ORF6 hybrid or ORF10, and Co-IP was performed as described in the Methods. All data were based on at least three independent experiments

- d) HEK293T cells were transfected with pEGFP-C1 and individual plasmid expressing ORF6 hybrids or ORF10, and the effects of ORF6 hybrids on GFP expression were analyzed by fluorescence microscopy. All fluorescence images at 40 times magnification (40 x). All data were based on at least three independent experiments.
- e) Quantification of the fluorescence intensity in panel d with Image J. Date are representative of three independent experiments and shown as mean \pm SD. (* p<0.05, ** p<0.001; two tailed Student's t test, n=3).
- f) The GFP expression in panel d were detected by western blotting. All data were based on at least three independent experiments. Source data are provided as a Source data file.

Supplementary Tables

Supplementary Table 1. Thermodynamic parameters of the binding between

Binding partners	Ν	Ka, M ⁻¹	$K_d, \mu M$	ΔH, cal/mole	ΔS, cal/mole/deg
SARS-2 ORF6 C1 vs Rae1-Nup98	1.06	2.62*10 ⁶ ±5.73*10 ⁵	0.38	-1.015*10 ⁴ ±163.2	-4.68
SARS-2 ORF6 C2 vs Rae1-Nup98	1.17	3.58*10 ⁶ ±4.27*10 ⁵	0.27	-9582±77.3	-2.13
SARS-2 ORF6 C3 vs Rae1-Nup98	0.9	4.12*10 ⁶ ±6.69*10 ⁵	0.24	-1.221*10 ⁴ ±140.8	-10.7
SARS-2 ORF6 C4 vs Rae1-Nup98	0.82	2.25*10 ⁶ ±7.96*10 ⁵	0.44	-1.250*10 ⁴ ±404.6	-12.8
SARS-2 ORF6 C3-D61A vs Rae1-Nup98	0.76	3.61*10 ⁵ ±8.07*10 ⁴	2.77	-2.388*10 ⁴ ±1277	-54.6
SARS-2 ORF6 C3-I60A vs Rae1-Nup98	0.68	2.38*10 ⁵ ±4.00*10 ⁴	4.20	-1.770*10 ⁴ ±722.2	-34.6
SARS-2 ORF6 C3-E59A vs Rae1-Nup98	0.68	6.06*10 ⁵ ±1.25*10 ⁵	1.65	-1.639*10 ⁴ ±664.8	-28.3
SARS-2 ORF6 C3-M58A vs Rae1-Nup98	ND	ND	ND	ND	ND
SARS-2 ORF6 C3-M58R vs Rae1-Nup98	ND	ND	ND	ND	ND
SARS-2 ORF6 C3-M58L vs Rae1-Nup98	1.00	9.64*10 ⁴ ±1.31*10 ⁴	10.37	-2954±176.3	12.9
SARS-2 ORF6 C3-P57A vs Rae1-Nup98	2.34	1.12*10 ⁶ ±1.81*10 ⁵	0.89	-5479±74.9	9.30
SARS-2 ORF6 C3-Q56A vs Rae1-Nup98	0.96	2.33*10 ⁶ ±3.08*10 ⁵	0.42	-1.132*10 ⁴ ±132.7	-8.83

ORF6 synthetic peptides and Rae1-Nup98

SARS-2 ORF6 C3-Q56E vs Rae1-Nup98	0.781	2.08*10 ⁷ ±8.12*10 ⁶	0.04	-1.460*10 ⁴ ±176.1	-15.5
SARS-2 ORF6 C3-E55A vs Rae1-Nup98	0.65	1.75*10 ⁶ ±4.24*10 ⁵	0.57	-1.604*10 ⁴ ±476.3	-25.2
SARS-2 ORF6 C3-E54A vs Rae1-Nup98	0.59	1.72*10 ⁶ ±5.99*10 ⁵	0.58	-1.994*10 ⁴ ±821.4	-38.3
SARS-2 ORF6 C3-D53A vs Rae1-Nup98	0.71	8.63*10 ⁵ ±1.26*10 ⁵	1.15	-1.288*10 ⁴ ±292.1	-16.0
SARS-2 ORF6 C3-EID vs Rae1-Nup98	1.01	1.14*10 ⁴ ±7.68*10 ³	87.71	-7222±9347	-5.65
SARS-2 ORF6 C3-MEID vs Rae1-Nup98	ND	ND	ND	ND	ND
SARS-2 ORF6 C3+YP vs Rae1-Nup98	0.66	4.93*10 ⁶ ±6.15*10 ⁵	0.20	-1.782*10 ⁴ ±173.9	-29.1
SARS ORF6 C3 vs Rae1-Nup98	0.63	2.69*10 ⁶ ±6.35*10 ⁵	0.37	-1.279*10 ⁴ ±293.8	-13.5
SARS ORF6 C3-YP vs Rae1-Nup98	0.62	8.89*10 ⁶ ±1.78*10 ⁶	0.11	-1.589*10 ⁴ ±177.8	-21.5
SARS ORF6 C3-E56Q vs Rae1-Nup98	1.30	2.55*10 ⁵ ±6.67*10 ⁴	3.92	-1.122*10 ⁴ ±712.4	-12.9
MHV-68 ORF10-CTT vs Rae1-Nup98	1.37	1.75*10 ⁵ ±4.03*10 ⁴	5.71	-9760±547.9	-8.73
VSV M-NTT vs Rae1-Nup98	0.304	8.55*10 ³ ±2.76*10 ³	116.95	-7.864*10 ⁴ ±1.998*10 ⁵	-246

N, stoichiometry

- Ka, affinity constant; standard deviation did not exceed $\pm 10\%$.
- Kd, dissociation constant; calculated as 1/Ka.
- Δ H, enthalpy variation; standard deviation did not exceed $\pm 10\%$.
- ΔS , entropy variation.
- ND, not determined

Supplementary Table 2

	SARS-CoV-2 ORF6 in complexed Rae1-Nup98	SARS CoV ORF6 in complexed Rae1-Nup98
	(PDB ID: 7F60)	(PDB ID: 7F90)
Data collection		
Space group	C121	C121
Cell dimensions		
a, b, c (Å)	193.35, 87.53,48.23	189.33, 86.79,47.90
α, β, γ (°)	90.00,93.68, 90.00	90.00,92.08,90
X ray source		
Wavelength (Å)	0.978520	0.978520
Data range (Å)	48.27-2.85	47.87-2.39
Reflections unique	36291ª	60024ª
$R_{\rm sym}^{\rm b}$ (last shell)	0.372 (1.541)	0.131 (0.624)
$I / \sigma I$ (last shell)	3.47 (0.80)	7.62 (2.01)
Completeness (%) (last shell)	99.0 (97.4)	99.7 (99.2)
Redundancy (last shell)	3.53 (3.51)	3.49 (3.55)
Refinement		
Resolution range (Å)	48.24-2.85	47.87-2.39
Reflections, cut-off, %	18701ª,	30632ª,
reflections in cross validation	F>1.35, 4.83	F>1.34, 5.22
R_{work} ^c / R_{free} ^d (last shell)	0.2357/0.2756 (0.3425/0.3861)	0.2196/0.2581 (0.2838/0.3209)
Atoms		
Non-hydrogen protein	(152	11027
atoms	0135	11937
Protein	6153	11937
Solvent	0	189
<i>B</i> -factors average (Å ²)	40.84	44.04
Protein (Å ²)	40.84	44.15
Ligands (Å ²)	0	0
Solvent (Å ²)	0	37.39
r.m.s.d		
Bond lengths (Å)	0.002	0.005
Bond angles (°)	0.487	0.737
% residues in favored		
regions, allowed regions,	07 26 2 64 0	05 54 4 46 0
outliers in Ramachandran	97.30,2.04,0	<i>73.3</i> 4,4.40,0
plot		

Data collection and refinement statistics

Values in parentheses are for the highest-resolution shell.

^aFriedel pairs are treated as different reflections

 ${}^{b}R_{sym} = \sum_{hkl}\sum_{j} |I_{hkl,j} - I_{hkl}| / \sum_{hkl}\sum_{j} I_{hkl,j}$, where I_{hkl} is the average of symmetry-related observations of a unique reflection

^c $R_{\text{work}} = \sum_{\text{hkl}} ||F_{\text{obs}}(\text{hkl})| - |F_{\text{calc}}(\text{hkl})|| / \sum_{\text{hkl}} |F_{\text{obs}}(\text{hkl})|.$

^d R_{free} = the cross-validation *R* factor for 5% of reflections against which the model was not refined.

Supplementary Table 3 Various ORF6 synthetic peptides used in this study

Peptide #	Peptide name	Sequence (N' to C')
1	SARS-CoV-2 ORF6 C1	SLTENKYSQLDEEQPMEID
2	SARS-CoV-2 ORF6 C2	ENKYSQLDEEQPMEID
3	SARS-CoV-2 ORF6 C3	YSQLDEEQPMEID
4	SARS-CoV-2 ORF6 C4	DEEQPMEID
5	SARS-CoV-2 ORF6-D61A	YSQLDEEQPMEIA
6	SARS-CoV-2 ORF6-I60A	YSQLDEEQPMEAD
7	SARS-CoV-2 ORF6-E59A	YSQLDEEQPMAID
8	SARS-CoV-2 ORF6-M58A	YSQLDEEQPAEID
9	SARS-CoV-2 ORF6-M58R	YSQLDEEQPREID
10	SARS-CoV-2 ORF6-M58L	YSQLDEEQPLEID
11	SARS-CoV-2 ORF6-P57A	YSQLDEEQAMEID
12	SARS-CoV-2 ORF6-Q56A	YSQLDEEAPMEID
13	SARS-CoV-2 ORF6-E55A	YSQLDEAQPMEID
14	SARS-CoV-2 ORF6-E54A	YSQLDAEQPMEID
15	SARS-CoV-2 ORF6-D53A	YSQLAEEQPMEID
16	SARS-CoV-2- ORF6-EID	YSQLDEEQPM
17	SARS-CoV-2- ORF6-MEID	YSQLDEEQP
18	SARS-CoV-2 ORF6+YP	YSQLDEEQPMEIDYP
19	SARS-CoV ORF6 C3	YSELDDEEPMELDYP
20	SARS-CoV ORF6-YP	YSELDDEEPMELD
21	SARS-CoV ORF6-E56Q	YSELDDEQPMELDYP
22	SARS-CoV-2 ORF6-Q56E	YSQLDEEEPMEID
23	MHV68-ORF10-CTT	RAITDGGESPMEWQTL
24	VSV-M-NTE	DEMDTHDPNQLRY

Supplementary Table 4

Optimized genes in this study

Gene names	Optimized genes sequence
Rael	>ATGTCGCTATTCGGCACCACTAGCGGTTTTGGAACCTCTGGTACGTCCATG
Ruei	TTTGGGTCAGCGACCACTGATAACCACAATCCTATGAAGGACATCGAGGTC
	ACTAGCAGTCCGGATGACTCTATCGGCTGCCTTTCGTTCTCCCCGCCCACGC
	TGCCGGGAAACTTCCTAATCGCTGGTTCTTGGGCCAACGACGTGAGATGTT
	GGGAGGTTCAGGATAGTGGCCAGACGATCCCGAAGGCCCAGCAAATGCAT
	ACCGGGCCTGTTTTAGATGTGTGCTGGAGCGATGACGGGTCAAAAGTCTTT
	ACTGCGAGCTGTGATAAGACGGCGAAGATGTGGGACTTGTCGAGTAATCAG

	GCTATACAGATCGCTCAACATGATGCGCCCGTCAAGACAATACATTGGATAA
	AGGCGCCCAACTACTCGTGTGTAATGACTGGTTCCTGGGACAAAACGCTCA
	AATTCTGGGATACCCGTTCATCTAACCCCATGATGGTTCTTCAACTTCCAGA
	ACGATGCTATTGTGCAGACGTCATATACCCGATGGCCGTAGTCGCTACAGCT
	GAGCGAGGGCTCATCGTATACCAGCTGGAAAATCAACCATCAGAATTTAGG
	CGTATAGAATCCCCTTTGAAGCACCAACACCGCTGTGTGGCCATTTTTAAAG
	ACAAGCAAAATAAGCCCACTGGTTTTGCCCTCGGTTCTATTGAGGGCAGAG
	TGGCCATACATTATATTAATCCTCCAAACCCTGCAAAAGACAATTTTACCTTC
	AAATGCCATCGGTCTAATGGCACAAATACAAGTGCGCCACAAGATATATACG
	CGGTAAACGGGATTGCTTTCCACCCAGTACACGGAACGCTGGCTACAGTTG
	GTTCGGATGGCCGCTTTTCATTTTGGGACAAAGACGCAAGAACAAAGTTGA
	AGACCAGCGAACAATTAGATCAGCCAATTAGCGCCTGCTGTTTCAACCACA
	ACGGGAACATTTTTGCATATGCAAGTTCCTATGATTGGTCAAAGGGACATGA
	GTTCTACAATCCCCAGAAAAAAAATTATATTTTCTTACGGAATGCAGCAGAG
	GAATTAAAACCGAGGAACAAAAAATAA
Nup08	>CCAACCGGCACGACTATTAAGTTTAACCCCCCGACGGGTACTGACACAAT
Nupro	GGTGAAAGCGGGGGTATCAACGAACATAAGTACAAAGCACCAATGCATCA
	CCGCCATGAAAGAATACGAGAGCAAGTCCCTAGAAGAATTACGTCTGGAA
	GATTATCAGGCAAATCGAAAATAA
VSV M	>ATGAGCAGCCTGAAGAAGATCCTGGGGCTGAAGGGCAAGGGGAAGAAGT
	CAAAGAAGCTGGGGATCGCCCCCCCCCCTACGAGGAGGATACAAACATG
	GAGTACGCCCCAGCGCCCCATCGATAAGAGCTACTTCGGGGTGGATGAG
	ATGGATACACACGATCCCAACCAGCTGAGGTACGAGAAGTTCTTCTTCACA
	GTGAAGATGACCGTGAGGAGCAACAGGCCCTTCAGGACCTACAGCGACGT
	GGCCGCCGCGTGAGCCACTGGGACCACATGTACATCGGGATGGCCGGGA
	AGAGGCCCTTCTACAAGATCCTGGCCTTCCTGGGGTCCAGCAACCTGAAGG
	CCACCCCGCCGTGCTGGCCGACCAGGGCCAGCCCGAATACCACGCCCAC
	TGTGAGGGGAGGGCCTACCTGCCCCACCGGATGGGCAAGACACCCCCCAT
	GCTGAACGTGCCAGAGCACTTCCGGAGGCCCTTCAACATCGGCCTGTACA
	AGGGCACAATCGAGCTGACAATGACCATCTACGATGATGAGAGCCTGGAG
	GCCGCCCCATGATCTGGGATCACTTCAACAGCAGCAAGTTCAGCGACTTC
	CGGGAGAAGGCCCTGATGTTCGGCCTGATCGTGGAGAAGAAGGCCAGCGG
	CGCCTGGGTGCTGGATAGCGTGAGCCACTTCAAGTAA
MHV68 0RF10	>ATGGAGAAGAGCGCGCCGAGCATCATTCTGAACCACTGGTGCGTGACCTG
	GCAGGGTCACCACTTCCTGTGCCGTAACCTGAGCAACATCAAAATTCTGAA
	CCGTCGTAACGGCTATACCACCCTGGACCTGCCGCTGACCCTGGGTGATCT
	GACCCAATATCGTCTGGCGCACGGCCTGAGCGAAAACCTGATGGCGCTGA
	GCCCGTACAGCTGGACCATCCCGTTCCTGGTGAGCAGCAGCGAGACCCCG
	GGTATCGAACTGCTGCCGAAGGTTATTAACGACTTTGGCACCCCGCTGAGC
	CTGGCGATCAAAACCAACCTGCCGAGCATTCCGGCGCACCAGCTGCTGTTC
	TACATCATTTTTCTGCGTCCGAGCCCGCTGACCAGCATGAGCTGCTATGCGC
	GTCCGCTGAGCCTGGCGAGCACCCGAGCACCAACGGTCTGTGCCAAAGC
	GTGAGCGTTCTGGACAACAAGCCGGGCCTGCTGATTACCACCCCGCTGCAC
	CGTGATCCGGCGAGCGGTAAATACACCAGCAACGTGCAGAGCCCGACCAC

	CTTCAACCTGTTTCGTGTTCTGTATATCAAGCTGAGCGGCGAGGAAGGCAT
	GGTTAGCCAAAAGGTTAAACACCTGACCATTGACAAAGATAGCCTGCAGG
	AAGGTTTCCTGCAACTGTGCCTGAACATGTGCGGCGTGAGCTATGAAACCC
	TGCAGTGCGAGATCCTGCTGGAACTGGTTCAAGGTCCGACCAACTTCATTT
	TTCCGGCGGCGTTCCCGCCGCCGGTGAGCCTGCCGCACCGTAACTGCATCG
	AGCTGACCTGCGACACCGAACGTTGCCTGAAGCCGGGCGATGTTATGAAG
	CTGAAACACCGTCTGCTGTACGAGCTGGGTCAGCGTGGCGATACCCCGCAA
	AACGCGTTCCTGATCGTGGGTGCGCACAGCCCGGAAACCGTTTGGATCAGC
	CCGAGCCTGTGGCTGCCGGGTCAGCCGCTGTATATCAACATCATTAACCTGA
	GCCACAAGCCGCTGCTGCTGAGCCGTCACAGCATTCTGGCGCTGGCGATCC
	CGATTAGCTATACCCGTGCGCCGGCGAGCGCGCATGAGGCGACCGAC
	CCATCTGCTATAGCGGTAACAGCCGTGTGCTGACCTGCGGTGCGGCGCATG
	TTCTGGAAGCGCACTTTAAACACCCGCCGATCACCAGCCGTGCGATTACCG
	ATGGTGGCGAGAGCCCGATGGAATGGCAAACCCTGTAA
SARS COV 2 OREG	>ATGTTTCATCTCGTTGACTTTCAGGTTACTATAGCAGAGATATTACTAATTAT
SAR5-C0V-2 ORF0	TATGAGGACTTTTAAAGTTTCCATTTGGAATCTTGATTACATCATAAACCTCA
	TAATTAAAAATTTATCTAAGTCACTAACTGAGAATAAATA
	GAAGAGCAACCAATGGAGATTGATTAA
SADS CoV ODE6	>ATGTTTCATCTTGTTGACTTCCAGGTTACAATAGCAGAGATATTGATTATCA
SARS-COV ORFO	TTATGAGGACTTTCAGGATTGCTATTTGGAATCTTGACGTTATAATAAGTTCA
	ATAGTGAGACAATTATTTAAGCCTCTAACTAAGAAGAATTATTCGGAGTTAG
	ATGATGAAGAACCTATGGAGTTAGATTATCCATAA
CaV2(NTE)/CTT	>ATGTTTCATCTCGTTGACTTTCAGGTTACTATAGCAGAGATATTACTAATTAT
C0v2(INTE)/CTT	TATGAGGACTTTTAAAGTTTCCATTTGGAATCTTGATTACATCATAAACCTCA
	TAATTAAAAATTTATCTAAGTCACTAACTGAGAATAAACGTGCGATTACCGA
	TGGTGGCGAGAGCCCGATGGAATGGCAAACCCTGTAA
CoV(NTE)/CTT	>ATGTTTCATCTTGTTGACTTCCAGGTTACAATAGCAGAGATATTGATTATCA
	TTATGAGGACTTTCAGGATTGCTATTTGGAATCTTGACGTTATAATAAGTTCA
	ATAGTGAGACAATTATTTAAGCCTCTAACTAAGAAGAATCGTGCGATTACCG
	ATGGTGGCGAGAGCCCGATGGAATGGCAAACCCTG TAA

Supplementary Table 5

List of primers used in this study

Name	Forward primer(5'-3')	Reverse primer(5'-3')
pFastbacDual-Rae1(31-368)	AICACCCGGGAICICGAGAIG	CCCCCATCTCCCGGTACCTTATT
	GACATCGAGGTCACTAGCAG	TTTTGTTCCTCGGTTTTAA
pFastbacDual-N-His-Nup(157-213)	ACCATCGGGCGCGGAATGTCG	GTACTTCTCGACAAGCTTTTATT
	TACTACCATCACCATCACCATC	TTCGATTTGCCTGATAATCTT
	ACGATTACGATATCCCAACGA	
	CCGAAAACCTGTATTTTCAGG	
	GCGGATCCCCAACCGGCACGA	
	СТАТТАА	
pFlag-SARS-CoV ORF6	CGGGATCCGCCACCATGTTTC	ATAAGAATGCGGCCGCTTAACC

	ATCTCGTGGACTT	GTCATGGTCTTTGTAGTCAGAGC	
		CACCTCCGCC	
pFlag-SARS-CoV-2 ORF6	CCAAGCTTGCCACCATGTTCC	GCTCTAGATTAACCGTCATGGTC	
	ACCTGGTGGACTTTC	TTTGTAGTCAGATCCTCCTCCTC	
		С	
pFlag-M	CCAAGCTTGCCACCATGAGCA	GCTCTAGATCAACCGTCATGGTC	
	GCCTGAAG	TTTGTAGTCCTTGAAGTGGCTCA	
		CGCT	
pFlag-SARS-CoV ORF6(E56Q)	GAGCTGGACGATGAGCAACCC	GCTCATCGTCCAGCTCGGAGTA	
	ATGGAACTCG	GTTTTTCTT	
pFlag-SARS-CoV ORF6(K46E)	TTCAAGCCCCTCACCGAGAAA	CGGTGAGGGGCTTGAACAGCTG	
	AACTACT	GCGGAC	
pFlag-SARS-CoV-2 ORF6(D61A)	AGCCAATGGAGATCGCTGGAG	GCGATCTCCATTGGCTGCTCCTC	
	GAGGAGGATCT	GTCCA	
pFlag-SARS-CoV-2 ORF6(I60A)	AGGAGCAGCCAATGGAGGCC	GCCTCCATTGGCTGCTCCTCGTC	
	GATGGAGGAGGAGG	CAGCTGAG	
pFlag-SARS-CoV-2 ORF6(E59A)	AGGAGCAGCCAATGGCGATCG	GCCATTGGCTGCTCCTCGTCCAG	
	ATGGAGG	CTGAG	
pFlag-SARS-CoV-2 ORF6(M58A)	GACGAGGAGCAGCCAGCGGA	GCTGGCTGCTCCTCGTCCAGCT	
	GATCGATGG	GAGAATA	
pFlag-SARS-CoV-2 ORF6(P57A)	CTGGACGAGGAGCAGGCAAT	CCTGCTCCTCGTCCAGCTGAGA	
	GGAGATCG	ATACTTATT	
pFlag-SARS-CoV-2 ORF6(Q56A)	CAGCTGGACGAGGAGGCGCC	GCCTCCTCGTCCAGCTGAGAAT	
	AATGGAGAT	ACTTATT	
pFlag-SARS-CoV-2 ORF6(E46A)	AGCAAGTCCCTGACCAAGAAT	TGGTCAGGGACTTGCTCAGATT	
	AAGTATT	CTTGATG	