

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Geographical inequalities in the evolution of the COVID-19 pandemic: An ecological study of inequalities in mortality in the first wave and the effects of the first national lockdown in England

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058658
Article Type:	Original research
Date Submitted by the Author:	23-Oct-2021
Complete List of Authors:	Welsh, Claire; Newcastle University Albani, Viviana; Newcastle University Matthews, Fiona; Newcastle University Faculty of Medical Sciences, Population Health Sciences Institute Bambra, Clare; Newcastle University
Keywords:	COVID-19, Epidemiology < INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES
	·

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 ⊿	1	Geographical inequalities in the evolution of the COVID-19 pandemic: An ecological study of
5	2	inequalities in mortality in the first wave and the effects of the first national lockdown in England
6		
7	2	
8	5	
9 10		
11	4	Claire E. Welsh PhD (0000-0001-9477-0775) ¹ *, Viviana Albani <mark>(</mark> 0000-0001-9584-7631 <mark>)</mark> 1, Fiona E.
12	F	Matthews DhD (0000, 0002, 1728, 2288) 1.2 Clara Bambra DhD (0000, 0002, 1204, 6851) 1.2
13	5	Matthews Fild (0000-0002-1720-2388 <mark>)</mark> *; Clare Ballibra Fild (0000-0002-1294-6851) *
14 15		
16	6	
17		
18	7	¹ Population Health Sciences Institute, Newcastle University, UK, NE4 5PL
19		
20	8	² Applied Research Collaboration North Fast and North Cumbria, Newcastle University, UK, NF4 5PL
21	Ū	
23	0	
24	9	
25		
26 27	10	*Corresponding author: <u>Claire.Welsh@newcastle.ac.uk</u> , Room 2.38 Biomedical Research Building,
28	11	
29	11	Campus for Aging and Vitality, Newcastle University, Newcastle, NE4 SPL.
30		
31	12	
32 33		
34	13	
35		
36 27		
38		
39		
40		
41		
42 43		
44		
45		
46		
47 10		
40 49		
50		
51		
52		
53 54		
55		
56		
57		
58 50		1
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3	14	Conflicts of Interest Statement
4 5	4 -	
6 7	15	All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf
8	16	and declare: no financial relationships with any organisations that might have an interest in the
9 10 11	17	submitted work in the previous three years; no other relationships or activities that could appear to
12 13	18	have influenced the submitted work.
14 15 16	19	Data Sharing Statement
17 18	20	All data used are publicly freely available through the ONS. Code used in the analyses is available
19 20	21	upon request.
21 22 23 24	22	Ethical Approval
25 26	23	This study was approved by the Newcastle University Ethics Committee (Ref: 7543/2020).
27 28 29	24	Transparency declaration
30 31	25	The lead author* affirms that this manuscript is an honest, accurate, and transparent account of the
32 33	26	study being reported; that no important aspects of the study have been omitted; and that any
34 35 36	27	discrepancies from the study as planned (and, if relevant, registered) have been explained.
37 38 39	28	
40 41	29	*The manuscript's guarantor.
42 43 44	30	
45 46	31	Funding
47 48 40	32	This work was supported by a grant from The Health Foundation (Ref: 2211473), who took no part in
50 51	33	the design, analysis or writing of this study.
52 53 54	34	
55 56	35	Keywords
57 58		2
59		Z
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

COVID-19; geography; inequalities ;mortality;

38 39		
	2	

З

BMJ Open

1	
4	
5	
6	
7	
8	
õ	
9	
10	
11	
12	
13	
1/	
14	
15	
16	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
31	
24	
35	
36	
37	
38	
39	
40	
11	
41	
42	
43	
44	
45	
46	
47	
10	
40	
49	
50	
51	
52	
53	
54	
54	
22	
56	
57	
58	
59	
60	

40 Summary Box

41 Section 1: What is already known on this subject

There are cross-sectional estimates of geographical inequalities in the severity of the COVID-19
pandemic in England in terms of cases, hospitalisations and deaths. But these studies have not
examined the evolution of the epidemic nor the impact of the national lockdown on inequalities in

- 45 COVID-19 related mortality.
- 46 Section 2: What this study adds

This study provides the first analysis of inequalities in the evolution of the pandemic in different English local authorities and the impact of the first national lock down on them. We estimate geographical inequalities by local authority in the evolution of age-standardised COVID-19 mortality during the first wave of the pandemic in England (January to July 2020) and the impact on these inequalities in the cumulative death rates of the first national lockdown. We found that more deprived local authorities started to record COVID-19 deaths earlier, and that their death rates increased faster. Cumulative COVID-19 mortality inequalities during the first wave of the pandemic

54 in England were moderately reduced by first national lockdown.

ว
2
3
4
5
2
6
7
0
0
9
10
11
10
12
13
14
1 Г
15
16
17
18
10
19
20
21
22
22
23
24
25
25
26
27
28
20
29
30
31
22
32
33
34
25
55
36
37
38
50
39
40
41
 ۸٦
42
43
44
45
10
46
47
48
10
47
50
51
52
52
53
54
55
56
50
57
58
50
55
60

56	Strengths and limitations of this study
57	• This study interrogates the evolution of inequalities in COVID-19 in the first wave of the
58	pandemic in England and the impact of the national lock down.
59	• National level official (ONS) data used, covering nearly all local authorities in England and
60	including all deaths that made any mention of COVID-19 on death certificates, requiring
61	sensitive data acquisition.
62	Age-standardised deaths rates at lower geographies are not available at the time of
63	writing but could lend extra nuance to these findings.
64	• Ecological study not using individual level data, so unable to examine the individual level
65	risks for covid-19 mortality.
66	
67	Abstract
68	Objectives
69	This is the first study to examine how geographical inequalities in COVID-19 mortality rates evolved
70	in England, and whether the first national lockdown modified them. This analysis provides
71	important lessons to inform public health planning to reduce inequalities in any future pandemics.
72	Design
73	Longitudinal ecological study
74	Setting
75	307 Lower-tier local authorities in England
76	Primary outcome measure
77	Age-standardised COVID-19 mortality rates by local authority and decile of index of multiple
78	deprivation.

2 3 4	79	Results
5 6	80	Local authorities that started recording COVID-19 deaths earlier tended to be more deprived, and
7 8	81	more deprived authorities saw faster increases in their death rates. By 2020-04-06 (week 15, the
9 10 11	82	time the March 23 rd lockdown could have begun affecting deaths) the cumulative death rate in local
12 13	83	authorities in the two most deprived deciles of IMD was 54% higher than the rate in the two least
14 15	84	deprived deciles. By 2020-07-04 (week 27), this gap had narrowed to 29%. Thus, inequalities in
16 17	85	mortality rates by decile of deprivation persisted throughout the first wave, but reduced somewhat
18 19	86	during the lockdown.
20 21 22	87	Conclusions
23 24 25	88	This study found significant differences in the dynamics of COVID-19 mortality at the local authority
25 26 27	89	level, resulting in inequalities in cumulative mortality rates during the first wave of the pandemic.
28 29	90	The first lockdown in England was fairly strict – and the study found that it particularly benefited
30 31	91	those living in the more deprived local authorities. Care should be taken to implement lockdowns
32 33	92	early enough, in the right places - and at a sufficiently strict level- to maximally benefit all
34 35 36	93	communities, and reduce inequalities.
37 38	94	
 39 40 41 42 43 44 45 46 47 48 49 50 	95	Word Count: 3405

96 Introduction

Since the early days of the SARS-CoV-2 pandemic in 2020, inequalities in case, hospitalisation and death rates have been noted internationally(1-7). The most deprived populations and areas in the USA, Europe and other high-income countries have suffered up to twice the mortality rates of the least deprived sections of society (2,8,9). In addition, inequalities in disease burden have been noted across levels of income, education, employment, sex, age, and especially between different ethnic groups, where people of Black and minority ethnic backgrounds have suffered many more cases (and deaths) than their white counterparts(10). However, the evolution of geographical inequalities in the pandemic over time - and the impact of national lock downs on them – has not previously been examined. This study addresses this evidence gap by providing the first analysis of inequalities in the evolution of the pandemic in different English local authorities and the impact of the first national lock down on them.

Most countries employed national lockdowns of varying duration and severity to mitigate disease spread, alongside social distancing and hygiene-related advice. The factors used to determine when a lockdown should begin or cease were rarely transparent, but most appeared to reduce infection rates to some degree after a lag phase, and saw a rebound of varying size following their release(11– 13). The first confirmed cases of COVID-19 were recorded in England in York in January 2020 and the first death in England was on March 5th. From 2020-04-23 until 2020-07-04, a national lockdown was implemented across England. In keeping with many other European countries, this was characterised by a 12 week 'stay at home' order (SI 350) - whereby people could only go outside for certain "very limited purposes" - to buy food, to exercise once a day, for medical reasons or to care for a vulnerable person, or to go to work if they absolutely could not work from home(12). Face-to-face education was suspended and many workplaces closed down - and staff furloughed -particularly in the hospitality, travel and retail sectors. As nationally cases, hospitalisation and death

2		
3	121	rates started to fall the lockdown was gradually released over a period of several months -
4		
5	122	culminating in the so-called 'Super Saturday' on 2020-07-04 when pubs, restaurants, hairdressers,
7	123	and cinemas reopened – albeit with strict social distancing rules(13).
8		
9 10	124	
11		
12	125	It has been noted that when national epidemic dynamics are used to examine population health.
13 14		······································
15	126	they can mask important sub-national variation in disease spread, thus mitigation strategies that rely
16	107	color, on the national data to inform implementation timings could include that humans health
17	127	solely on the national data to morm implementation timings could inadvertently worsen nearth
10	128	inequalities across geographical areas(11,13). Previous descriptive studies and reports of inequalities
20		
21	129	in COVID-19 mortality have only focused on cumulative measures over set timespans, without
22	120	documenting the disperities in evolution of mertality rates (E 14.15), have been restricted to higher
24	130	documenting the disparities in evolution of mortality rates(5,14,15), have been restricted to higher
25	131	geographies(18), or have not focussed on the effects of lockdowns (7,19). An understanding of how
26		
27 28	132	the evolution of the pandemic differed by area and the impact of national mitigation strategies on
29	122	geographical inequalities in COVID-19 mortality could belo inform future policies targeted at
30	133	geographical inequalities in covid 15 mortanty could help inform fature policies targeted at
31	134	minimising viral spread whilst preventing the widening (or even actively decreasing) health
33		
34	135	inequalities.
35		
36 37	136	
38		
39	137	This paper uses COVID-19 mortality data from the first wave of the pandemic in England to provide
40		
41 42	138	the first interrogation of geographical inequalities in the evolution of the pandemic. It sets out the
43	120	first analysis of when death rates rose, neaked and fell in local authorities of differing levels of
44	133	mist analysis of when death fates rose, peaked and tell in local autionities of differing levels of
45	140	deprivation, and it describes the effects – and the timing of - the first national lockdown on these
46 47		
48	141	inequalities.
49		
50	142	
51		
53	143	Methods
54		
55		
56 57		
58		
59		ŏ
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

з	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
20	
59	
60	

1 2

144	Weekly counts of COVID-19 deaths (based on any mention of Coronavirus on the death certificate)
145	for 312 lower-tier local authorities (excluding county councils) in England were obtained from the
146	Office for National Statistics (ONS) covering the period from 1 st January 2020 to 4 th July 2020, by date
147	of registration (16). Weekly COVID-19 death counts at the local authority level were not available per
148	age group, thus age-standardised rates were calculated via monthly age-standardised rates.
149	Monthly age-standardised COVID-19 mortality rates per local authority for the period March to July
150	2020 were similarly obtained from ONS(21). The monthly rate was divided between the constituent
151	weeks based on the share of monthly deaths in each week. Where all age-standardised rates for a
152	local authority were suppressed by ONS due to disclosure controls, the authority was excluded from
153	analyses (n=4). The level of deprivation of each local authority was determined by the rank of
154	average rank of the Index of Multiple Deprivation (IMD), which was converted into deciles (decile 1
155	contained the most deprived 10% of local authorities) from downloaded data(17). In addition, data
156	from the Isles of Scilly and the City of London were excluded due to well-known mortality data
157	quality issues and low population counts.
158	
150	A number of matrice were calculated for each local authority: the 'starting week' was the first week

159 A number of metrics were calculated for each local authority; the 'starting week' was the first week 160 where 1 or more COVID-19 deaths were registered, the 'peak' was the highest weekly age-161 standardised mortality rate per area using a 3-week rolling mean of weekly death rates, and the 162 'total mortality rate' was the cumulative sum of age-standardised weekly mortality rates over the 163 whole study period. The speed of increase was defined as the change in mortality rate between 25% 164 of peak and the peak rate, divided by the number of weeks between them, and similarly the speed 165 of descent was calculated using the peak rate and subsequent reduction to 50% of peak (25 and 50% 166 selected to include time window when epidemic peaks were visibly most stable). An assumption was 167 made that any change in population incidence of COVID-19 cases may begin to be seen 2 weeks later 168 in mortality data, thus analyses of the effect of lockdown focused on the period before or after week

2 3	169	15 (lockdown was announced in week 13 [March 2020] and ended on 'Super Saturday' [July 4 th ,
4 5	170	week 27], which is shown in timeline plots). The 'peak difference' was the difference in weeks
6 7 8	171	between the peak mortality rate and the week in which lockdown began to take effect (week 15).
9 10 11	172	
12 13	173	Weekly age-standardised mortality rates per IMD decile were not available at the time of writing,
14 15	174	thus they were calculated from other existing data, in a similar but distinct method from local
16 17	175	authority rates. Firstly, the denominators from local authority-level monthly age standardised
18 19	176	mortality rates were calculated using the death counts and rates provided. These 'modified'
20 21 22	177	population estimates were summed across local authorities within the same IMD decile, and counts
23 24	178	of COVID-19 deaths were similarly summed by decile. Weekly age-standardised rates per 100,000
25	179	people were then calculated as the sum of deaths divided by the modified summed population
27 28	180	estimate, multiplied by 100,000.
29 30 31	181	
32 33	182	Simple linear models were employed to analyse the associations between visually normally
34 35 36	183	distributed measures such as the total cumulative mortality rate with other metrics and IMD decile.
37 38	184	No model selection was employed, covariate inclusion was based on empirical knowledge.
39 40 41	185	
42 43	186	Maps were drawn based on 2020 geographical boundaries from the ONS Open Geography
44 45	187	Portal(18).
40 47 48	188	
49 50 51	189	All analyses were conducted in R statistical software version 3.6.2.
52 53 54	190	
55 56	191	Patient and Public Involvement
57 58		10
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 12 of 31

1		
2 3 4	192	Our public involvement panel inputted into project design and considered the research topic to be of
5 6	193	contemporary importance and value. The data used do not require patient permissions for use and
7 8	194	are publicly available.
9 10 11	195	
12 13 14	196	Results
15 16	197	All 307 lower-tier local authorities in England began registering deaths involving COVID-19 between
17 18	198	weeks 11 and 15. The proportion of areas of each IMD decile per 'starting week' is shown in Figure 1.
19 20	199	From this it can be seen that more deprived areas (most deprived decile = 1) tended to begin
21 22	200	recording COVID-19 deaths earlier than less deprived areas (least deprived decile = 10).
23 24 25 26	201	
27 28	202	Figure 1. Proportion of 312 English local authorities within each IMD decile that began recording
29 30	203	COVID-19 deaths between weeks 11 and 15 of 2020.
31		
32 33	204	
32 33 34 35	204 205	Figure 2 depicts the weekly mortality rates per 100,000 people for each IMD decile. After the first
32 33 34 35 36 37	204 205 206	Figure 2 depicts the weekly mortality rates per 100,000 people for each IMD decile. After the first two weeks of the epidemic, the two most deprived deciles (20% of local authorities) had the highest
32 33 34 35 36 37 38 39 40	204 205 206 207	Figure 2 depicts the weekly mortality rates per 100,000 people for each IMD decile. After the first two weeks of the epidemic, the two most deprived deciles (20% of local authorities) had the highest speed of increase in age-standardised mortality rates and reached higher peak rates than less
32 33 34 35 36 37 38 39 40 41 42	204 205 206 207 208	Figure 2 depicts the weekly mortality rates per 100,000 people for each IMD decile. After the first two weeks of the epidemic, the two most deprived deciles (20% of local authorities) had the highest speed of increase in age-standardised mortality rates and reached higher peak rates than less deprived areas.
32 33 34 35 36 37 38 39 40 41 42 43 44	204 205 206 207 208 209	Figure 2 depicts the weekly mortality rates per 100,000 people for each IMD decile. After the first two weeks of the epidemic, the two most deprived deciles (20% of local authorities) had the highest speed of increase in age-standardised mortality rates and reached higher peak rates than less deprived areas.
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	204 205 206 207 208 209 210	Figure 2 depicts the weekly mortality rates per 100,000 people for each IMD decile. After the first two weeks of the epidemic, the two most deprived deciles (20% of local authorities) had the highest speed of increase in age-standardised mortality rates and reached higher peak rates than less deprived areas. Figure 2. Weekly age-standardised COVID-19 mortality rates per 100,000 in areas of each IMD
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	204 205 206 207 208 209 210 211	Figure 2 depicts the weekly mortality rates per 100,000 people for each IMD decile. After the first two weeks of the epidemic, the two most deprived deciles (20% of local authorities) had the highest speed of increase in age-standardised mortality rates and reached higher peak rates than less deprived areas. Figure 2. Weekly age-standardised COVID-19 mortality rates per 100,000 in areas of each IMD decile. Dotted line indicates the start of the first national lockdown (26 th March).
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	204 205 206 207 208 209 210 211 211	Figure 2 depicts the weekly mortality rates per 100,000 people for each IMD decile. After the first two weeks of the epidemic, the two most deprived deciles (20% of local authorities) had the highest speed of increase in age-standardised mortality rates and reached higher peak rates than less deprived areas. Figure 2. Weekly age-standardised COVID-19 mortality rates per 100,000 in areas of each IMD decile. Dotted line indicates the start of the first national lockdown (26 th March).
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	204 205 206 207 208 209 210 211 211 212 213	Figure 2 depicts the weekly mortality rates per 100,000 people for each IMD decile. After the first two weeks of the epidemic, the two most deprived deciles (20% of local authorities) had the highest speed of increase in age-standardised mortality rates and reached higher peak rates than less deprived areas. Figure 2. Weekly age-standardised COVID-19 mortality rates per 100,000 in areas of each IMD decile. Dotted line indicates the start of the first national lockdown (26 th March). From the week of their first COVID-19 deaths to week 15 (when lockdown could plausibly have
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	204 205 206 207 208 209 210 211 211 212 213 214	Figure 2 depicts the weekly mortality rates per 100,000 people for each IMD decile. After the first two weeks of the epidemic, the two most deprived deciles (20% of local authorities) had the highest speed of increase in age-standardised mortality rates and reached higher peak rates than less deprived areas. Figure 2. Weekly age-standardised COVID-19 mortality rates per 100,000 in areas of each IMD decile. Dotted line indicates the start of the first national lockdown (26 th March). From the week of their first COVID-19 deaths to week 15 (when lockdown could plausibly have begun affecting death rates), local authorities in the two most deprived deciles had the highest
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 58	204 205 206 207 208 209 210 211 212 213 214	Figure 2 depicts the weekly mortality rates per 100,000 people for each IMD decile. After the first two weeks of the epidemic, the two most deprived deciles (20% of local authorities) had the highest speed of increase in age-standardised mortality rates and reached higher peak rates than less deprived areas. Figure 2. Weekly age-standardised COVID-19 mortality rates per 100,000 in areas of each IMD decile. Dotted line indicates the start of the first national lockdown (26 th March). From the week of their first COVID-19 deaths to week 15 (when lockdown could plausibly have begun affecting death rates), local authorities in the two most deprived deciles had the highest

2		
3	215	speed of increase in death rate (albeit not statistically significantly different), and the less deprived
5	216	deciles increased more slowly (Figure 3). The mean speed of increase in two the most deprived local
6		
7 8	217	authorities was 4.03 deaths per 100,000 persons per week, and in the two least deprived local
9	218	authorities was 2.18 deaths per 100.000 persons per week (a difference of 46%).
10	210	
11	210	
12	219	
14	220	
15	220	
16 17		
17	221	Figure 3. Simple linear gradient of age-standardised COVID-19 death rate per 100,000 people
19	222	between the first week of recorded COVID-19 deaths and week 15 across rank of average rank of
20	222	between the first week of recorded COVID-19 deaths and week 15, across fails of average fails of
21	223	IMD deciles.
23		
24	224	
25		
26 27	225	All local authorities' death rate survey packed and began to decline between 2 and 10 weeks
28	225	All local authorities death rate curves peaked and began to decline between 5 and 10 weeks
29	226	following the start of the first lockdown. Those local authorities whose death rates were increasing
30		
31	227	faster before lockdown peaked sooner after lockdown commenced compared to slower local
33	220	
34	228	autionities.
35		
36 37	229	The total age-standardised cumulative mortality over the first wave (up to week 27, week
38	230	commencing 2020-06-28) varied from 119 to 2349 deaths per 100 000 persons per local authority
39	250	
40	231	Table 1 describes the multivariable linear model of total cumulative death rates per local authority.
41 42		
43	232	It shows that, compared to the most deprived 10% of local authorities, less deprived areas (deciles 3-
44	222	10) recorded lower cumulative death rates and that areas with higher speeds of increase - and more
45	255	To recorded lower cumulative death rates, and that areas with higher speeds of increase - and more
40 47	234	weeks of recorded COVID-19 deaths before lockdown (plus those that peaked later) - saw higher
48		
49	235	total death rates.
50 51		
51 52	236	
53		
54	237	Table 1. Linear multivariable model of the total cumulative age-standardised COVID-19 death rate
55		
סכ 57	238	per 100,000 persons between weeks 1 and 27 of 2020, among 307 local authorities in England.
58		17
59		Le
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xntml

Metric	Coefficient (SE)	P-value
IMD decile		
1 (most deprived)	REF	
2	-41.16 (49.30)	0.40
3	-108.20 (50.46)	0.03
4	-132.11 (49.80)	0.008
5	-140.82 (50.83)	0.006
6	-183.66 (50.64)	<0.001
7	-225.06 (50.81)	<0.001
8	-170.43 (51.01)	<0.001
9	-213.73 (50.82)	<0.001
10	-262.16 (50.28)	<0.001
Speed of increase (to week	R.	
15), deaths per 100,000 per	12.87 (0.47)	<0.001
week		
Weeks from week of first	1	
registered COVID-19 deaths to	216.98 (13.04)	<0.001
lockdown		5/
Weeks between peak and	104 56 (17 29)	<0.001
lockdown	104.30 (17.30)	<0.001

As mentioned, all local authorities began recording COVID-19 deaths between weeks 11 and 15, i.e.,
from 2 weeks before the announcement of the first lockdown, to 2 weeks after. The difference in
total cumulative death rates for areas grouped by starting week are as seen in Table 2.

Table 2. Mean cumulative COVID-19 death rate per 100,000 persons over the first wave (weeks 1

to 27, 2020) of the pandemic among 307 local authorities in England.

Timing of start week	Total cumulative age-	
relative to week 13	standardised COVID-19	
(when lockdown 1 was	death rate per 100,000	Number of local
announced)	persons for whole of	authorities
	wave 1 (weeks 1 to 27,	
	2020), (SD)	
2 weeks before	465 (451)	14
1 week before	780 (324)	124
Same week	984 (407)	101
1 week after	1188 (505)	63
2 weeks after	1147 (255)	5
		6

Figure 4 depicts the cumulative COVID-19 death rates of each IMD decile over the whole of the first wave. Mortality rates in more deprived areas (deciles 1 and 2) were rising faster than others at the start of lockdown (vertical dotted line), and the disparity in cumulative mortality grew as the pandemic progressed.

- Figure 4. Cumulative COVID-19 death rates per 100,000 for areas of each IMD decile over the first
- 254 wave of the pandemic in 307 local authorities in England. Dotted line marks timing of the
- 255 announcement of the first lockdown, zoomed in area between weeks 13 and 14.

257	Up until week 15 when the effects of lockdown may have started to be seen in mortality data, the
258	cumulative death rate per 100,000 persons already differed by IMD decile. The two most deprived
259	deciles recorded 77.16 deaths per 100,000 persons by this time, whereas the two least deprived
260	deciles recorded only 50.01 deaths per 100,000 persons. This inequality reduced by the time the first
261	wave had passed (by week 27), but did not equalise, with the most deprived two deciles recording
262	316.14 total deaths per 100,000 persons, and the least deprived recording 245.10 deaths per 100,00
263	persons. These equate to an excess of 54% before lockdown versus 29% after lockdown.
264	
265	Figure 5 illustrates the geographical distribution of deprivation based on IMD and the total
266	cumulative age-standardised COVID-19 death rate per 100,000 persons over the first wave of the
267	pandemic. London and the North West featured many of the areas with the highest overall death
268	rates. Although these areas featured many deprived local authorities, the distributions were not
269	identical.
270	
271	Figure 5. Average rank of the index of multiple deprivation (IMD) and total cumulative COVID-19
272	death rate per 100,000 persons over the first wave of the pandemic (weeks 1 to 27, 2020) per local
273	authority in England.
274	
275	Discussion
276	This study has provided the first examination of the evolution of inequalities in the COVID-19
277	pandemic. It has found that inequalities in COVID-19 mortality rates by deprivation in England began
278	to appear early in the first wave. More deprived local authorities generally started recording COVID-
279	19 deaths earlier than less deprived areas, and mortality rates also increased faster in more deprived
280	areas, and rose to higher peak rates. All of the 307 lower-tier local authorities in England began
	15
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

281	recording COVID-19 deaths as early as 2 weeks before first national lockdown in England was
282	announced, or up to 2 weeks afterwards, with the latter – less deprived - group of local authorities
283	recording fewer cumulative deaths over the whole of the first wave, compared to the former – more
284	deprived – group of local authorities.
285	
286	The study has also provided the first assessment of the impacts of the first English national lock
287	down on the evolution of the pandemic. It has found that following the implementation of the
288	national lockdown, local authorities where death rates had been rising faster (i.e. more deprived
289	areas), peaked and began to descend earlier than the other – less deprived – local authorities.
290	Cumulative death rates were higher in more deprived areas by the time lockdown began, but the
291	difference narrowed moderately towards the end of the first wave.
292	
293	
294	England imposed a national lockdown during the first wave of the COVID-19 epidemic in March
295	2020(19). This measure aimed to drastically reduce instances of interpersonal contact between
296	infected individuals (whether symptomatic or not) and the wider susceptible population. Confining
297	the public to their homes, suspending face-to-face education and restricting travel placed great
298	burdens upon the health and welfare of many individuals and communities, through a number of
299	pathways that are still being elucidated, and which will continue to emerge(20–22). There is no
300	doubt that the economic implications of such lockdowns can be severe, and disruptions to usual
301	health care provision have led to increased mortality from non-COVID causes (23). However, the
302	risks posed to society of not imposing such lockdowns are likely much greater(24). Unchecked viral
303	spread would lead to mass fatalities, increased disability rates especially in the young from the
303 304	spread would lead to mass fatalities, increased disability rates especially in the young from the effects of non-fatal infection (so-called 'Long COVID'(25)), and an increased risk of viral mutation

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	305	into forms which may pose even greater threat(26). Importantly, the National Health Service (NHS)
4	303	
5 6	306	could potentially be filled beyond capacity with COVID-19 patients, leaving insufficient resources for
7 8	307	non-COVID patients of all ages and diagnoses. Economic implications of unchecked viral spread are
9 10	308	likely to be considerably worse than those caused by national lockdowns, and could continue for
11 12	309	longer due to the likelihood of future outbreaks of mutated viral strains and multiple waves of
13 14	310	infection(24). A well-timed national lockdown has the ability to reduce case incidence to low levels
15 16	311	at which 'test, trace and isolate' programs can efficiently extinguish local outbreaks, and lends time
17 18	312	for mass vaccination to offer protection, especially to the most vulnerable. However, a lockdown
19 20	313	that is imposed too late, i.e. when disease incidence is already high and rising, needs to be
21 22	314	substantially more stringent and protracted to offer the same slowing effect on case numbers and,
23 24 25	315	subsequently, deaths(24).
26 27 28	316	
29 30	317	Previous work has focused on comparing COVID-19 mortality rates between areas of England using
31 32	318	set time periods without considering the evolution of the inequalities reported(21), or have
33 34	319	identified inequalities in case rates and other metrics(13). Using mortality data removes some of the
35 36 37	320	uncertainty surrounding early case ascertainment, since early in the English epidemic, testing was
38 30	321	only being performed in hospitals on symptomatic individuals, and so many infections would not
40 41	322	have been recorded.
42 43	323	
45 46	324	It has been noted internationally that the seeding of SARS-CoV-2 into a country tends to be via travel
47 48	325	by people at the upper end of the socio-economic spectrum, taking international holidays or
49 50	326	travelling for business(27,28). Cases then increase within these less deprived populations until social
51 52	327	distancing and national lockdowns are advised or mandated. At this point, the disease burden shifts
53 54	328	to the more deprived, who are less able to fully adhere to these guidelines due to les ability to work
55 56 57	329	from home, fewer resources, precarious work, higher population densities and other pre-existing
58		17
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20
2 i 22
~~ 23
23
∠++ 2⊑
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
57
54 55
55 55
50 57
5/
58
59
60

330	factors(27). These two 'phases' of pandemic spread likely apply to COVID-19 cases in England, where
331	the index cases were holidaymakers returning from skiing trips to Austria(29,30). Plümper et al
332	(2020) reported that in Germany, despite a somewhat reduced likelihood of infection for those in
333	more deprived areas in the first phase of the epidemic, these communities were nevertheless at
334	similar risk of death. This relative risk of mortality increases for more deprived areas once
335	transmission is established in 'phase 2' of the pandemic – due to population vulnerabilities including
336	poverty, overcrowding and pre-existing chronic conditions(6). Our analysis of early-stage mortality in
337	England confirmed this structure, in that mortality rates rose first to a small initial 'peak' in less
338	deprived areas, before being dominated by more deprived local authorities. The earliest data
339	available to the German study began more than 2 weeks following the implementation of
340	government lockdowns, whereas the analysis we present here predate the UK lockdown by a
341	number of months, and hence capture the very earliest data available on COVID-19 deaths.
342	
343	We have shown that inequalities in cumulative death rates during the first wave of infection in
344	England existed from the earliest stages of COVID-19 mortality reporting, and were entrenched by
345	differences in the speed of increase, leading to unequal burdens of cumulative mortality at local
346	authority level by the time the first national lockdown was called. These inequalities reduced
347	marginally but were not abolished by the national control measures implemented in the lockdown.
348	The first national lockdown in England was fairly strict (e.g. a 'stay at home order') and it was a
349	universal intervention, enforced and applied to the whole population and thereby requiring little by
350	way of individual agency. Previous public health research has shown that such measures are more
351	likely to reduce inequalities in health than those that require individual choice/compliance(31). That
352	the lockdown did not completely eliminate geographical inequalities in COVID-19 mortality may well
353	be as a result of inequalities in (1) vulnerability (whereby more deprived areas had a higher burden
354	of clinical risk factors); (2) susceptibility (whereby immune response was lower in more deprived

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

populations due to the adverse consequences of long term exposures to harmful living and
environmental conditions); (3) *exposure* (inequalities in working conditions notably less ability to
work at home in the low income jobs predominating within more deprived local authorities); and (4) *transmission* (higher rates of overcrowding and population density in the community may have
impacted on infection spread in more deprived areas)(6).

361 Conclusion

This study has found that inequalities in death rates during the first wave of infection in England existed from the earliest stages of the COVID-19 pandemic, and were entrenched by differences in the speed of increase. This led to a significant unequal burden in cumulative mortality between the most and least deprived local authorities by the time the first national lockdown was implemented. These inequalities reduced marginally - but were not abolished - during the national lockdown. It is impossible to say with certainty whether an earlier – or longer - national lockdown could have further reduced these inequalities, but it should be noted that, although the lockdown did reverse the trend in mortality rates across the country, it had to do so at more advanced stages of the epidemic in more deprived areas, compounding the unequal disease burden upon these communities and local health care systems. Susceptibility to infection and fatality from COVID-19 is undoubtedly closely associated with deprivation, but other factors also play an important part, as well as the stochasticity implicit in viral spread. Nevertheless, our understanding of how deprivation associates with mortality from a novel infectious disease within a virgin population it can help to focus future public health attention on those communities most in need and at risk.

377 Limitations

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
10	
19	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
<u>4</u> 1	
רד ⊿ר	
72 // 2	
ΔΛ	
44 15	
45 76	
40	
4/ 40	
4ð	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

378 Weekly age-standardised mortality rates were not available at local authority level at the time of 379 writing. However, we were able to pro rata monthly age-standardised rates to weekly ones using 380 weekly death counts. Age-standardised weekly rates are unlikely to become available at lower 381 geography levels due to disclosure risks. Death counts did not include deaths of non-residents of 382 England, nor where place of residence was unknown, and was based on date of registration rather 383 than date of death.

384 Deprivation is undoubtedly linked to COVID-19 mortality, it cannot explain all of the variation in 385 area-level mortality rates, hence COVID-19 mortality and IMD are not perfectly correlated. Many 386 other factors including comorbidity, healthcare provision, employment types and variation in 387 transport links all likely play a part in the causal web linking lockdowns to mortality inequalities. A 388 deeper analysis of these underlying associations was beyond the scope of the current paper, but 389 warrants further scrutiny. elie

390

391 **Author Statement**

392 FM, CB and CW designed the study. CW completed all analyses with input from FM and CB. CW, VA,

393 FM and CB all contributed to drafting the manuscript. The corresponding author attests that all listed

394 authors meet authorship criteria and that no others meeting the criteria have been omitted. CW is

395 guarantor of the analysis.

396 The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of

397 all authors, a worldwide licence to the Publishers and its licensees in perpetuity, in all forms, formats

398 and media (whether known now or created in the future), to i) publish, reproduce, distribute, display

- 399 and store the Contribution, ii) translate the Contribution into other languages, create adaptations,
- 400 reprints, include within collections and create summaries, extracts and/or, abstracts of the
- 401 Contribution, iii) create any other derivative work(s) based on the Contribution, iv) to exploit all

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

subsidiary rights in the Contribution, v) the inclusion of electronic links from the Contribution to

third party material where-ever it may be located; and, vi) licence any third party to do any or all of

Pillai J, Motloba P, Motaung KSC, Ozougwu LU, Ikalafeng BK, Marinda E, et al. The effect of

Chen JT, Krieger N. Revealing the unequal burden of COVID-19 by income, race/ethnicity, and

Laster Pirtle WN. Racial Capitalism: A Fundamental Cause of Novel Coronavirus (COVID-19)

van Barneveld K, Quinlan M, Kriesler P, Junor A, Baum F, Chowdhury A, et al. The COVID-19

pandemic: Lessons on building more equal and sustainable societies. Economic and Labour

Nazroo J, Becares L. Evidence for ethnic inequalities in mortality related to COVID-19

infections: Findings from an ecological analysis of England and Wales. medRxiv. 2020;

Journal of Epidemiology and Community Health. 2020;74(11):964-8.

2020. Available from: www.facebook.com/PublicHealthEngland

Bambra C, Riordan R, Ford J, Matthews F. The COVID-19 pandemic and health inequalities.

Public Health England. Disparities in the risk and outcomes of COVID-19. 2020;89. Available

from: https://www.gov.uk/government/publications/covid-19-review-of-disparities-in-risks-

Baena-Diéz JM, Barroso M, Cordeiro-Coelho SI, Diáz JL, Grau M. Impact of COVID-19 outbreak

by income: Hitting hardest the most deprived. Journal of Public Health (United Kingdom).

Public Health England. Disparities in the risk and outcomes of COVID-19 [Internet]. London;

Katikireddi SV, Lal S, Carrol ED, Niedzwiedz CL, Khunti K, Dundas R, et al. Unequal impact of

addressing inequalities. Journal of Epidemiology and Community Health. 2021;75(10):970-4.

Comprehensive public health evaluation of lockdown as a non-pharmaceutical intervention

on COVID-19 spread in India: National trends masking state-level variations. BMJ Open.

the COVID-19 crisis on minority ethnic groups: A framework for understanding and

Salvatore M, Basu D, Ray D, Kleinsasser M, Purkayastha S, Bhattacharyya R, et al.

lockdown regulations on SARS-CoV-2 infectivity in Gauteng Province, South Africa. South

household crowding: US county versus zip code analyses. Journal of Public Health

Pandemic Inequities in the United States. Health Education and Behavior. 2020;

African Medical Journal. 2020;110(11):1119–23.

Management and Practice. 2021;27(1):S46–56.

Relations Review. 2020;

and-outcomes

2020;10(12).

2020;42(4):698-703.

2	
3	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
22	
25	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
50	
3/	
38	
39	
40	
41	
42	
12	
45	
44	
45	
46	
47	
48	
10	
72 F0	
50	
51	
52	
53	
54	
55	
55	
50	
57	
58	
59	
60	

1 2

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

the above.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

1			
2	427	40	
3	437	12.	Desvars-Larrive A, Dervic E, Haug N, Niederkrötenthaler T, Chen J, di Natale A, et al. A
4	438		Structured open dataset of government interventions in response to COVID-19. Scientific
6	439		Data. 2020;7(1):1–9.
7	440	13.	Morrissey K, Spooner F, Salter J, Shaddick G. Area level deprivation and monthly COVID-19
8	441		cases: The impact of government policy in England. Social Science & Medicine [Internet].
9	442		2021:289(September):114413. Available from:
10	443		https://doi.org/10.1016/i.socscimed.2021.114413
11			
12	444	14.	HM Government. The Health Protection (Coronavirus, Restrictions) (England) Regulations
13	445		2020 [Internet]. SI 350. 2020 [cited 2021 Feb 23]. Available from:
14 15	446		https://www.legislation.gov.uk/uksi/2020/350/contents/made
15	117	15	HM Government The Health Protection (Coronavirus Restrictions) (No. 2) (England)
17	118	15.	Regulations 2020 [Internet] SI2020/684, 2020 [cited 2021 Eeb 23]. Available from:
18	440		https://www.logiclation.gov.uk/ukci/2020/684/contents/made
19	449		Thtps://www.legislation.gov.uk/uksi/2020/064/contents/made
20	450	16.	Sun Y, Hu X, Xie J. Spatial inequalities of COVID-19 mortality rate in relation to socioeconomic
21	451		and environmental factors across England. Science of the Total Environment.
22	452		2021;758(January).
23	450	47	
25	453	17.	Platt L, Warwick R. COVID-19 and Ethnic inequalities in England and Wales*. Fiscal Studies.
26	454		2020;41(2):259–89.
27	455	18.	Timson A. What geographic inequalities in COVID-19 mortality rates and health can tell us
28	456		about levelling up The Health Foundation. The Health Foundation [Internet], 2021:(July).
29	457		Available from: https://www.health.org.uk/news-and-comment/charts-and-
30	458		infographics/what-geographic-inequalities-in-covid-19-mortality-rates-can-tell-us-about-
31	459		levelling-un
32	455		
33	460	19.	Griffith GJ, Davey Smith G, Manley D, Howe LD, Owen G. Interrogating structural inequalities
35	461		in COVID-19 mortality in England and Wales. Journal of Epidemiology and Community Health.
36	462		2021;1–7.
37	462	20	Office for National Statistics, Applysic of death registrations not involving coronavirus (COV/ID
38	403	20.	10) Enclored and Welces 28 December 2010 to 1 May 2020, 2020
39	404		19), England and Wales. 28 December 2019 to 1 May 2020. 2020.
40	465	21.	ONS. Deaths due to COVID-19 by local area and deprivation [Internet]. 2021. Available from:
41	466		https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths
4Z 43	467		/datasets/deathsduetocovid19bylocalareaanddeprivation
44			
45	468	22.	iviinistry of Housing Communities & Local Government. English Indices of Deprivation 2019 -
46	469		Summaries at Local Authority Level [Internet]. Open Data. 2019. Available from:
47	470		http://opendatacommunities.org/data/societal-wellbeing/imd2019/indicesbyla
48	471	23.	Office for National Statistics. Local Authority Districts (December 2019) Boundaries UK BUC.
49	472		Open Geography Portal [Internet]. Available from:
5U 51	473		https://geoportal.statistics.gov.uk/datasets/local-authority-districts-december-2019-
52	474		boundaries-uk-buc
53			
54	475	24.	BBC News. Coronavirus: Strict new curbs on life in UK announced by PM [Internet]. 2020.
55	476		Available from: https://www.bbc.co.uk/news/uk-52012432
56			
57			
58			22
59			For peer review only - http://bmionen.hmi.com/site/about/quidelines.yhtml
00			is perferentially interrange interrange in ster about guidelines. And

1

2			
3	477	25.	Richardson DL, Duncan MJ, Clarke ND, Myers TD, Tallis J. The influence of COVID-19 measures
4	478		in the United Kingdom on physical activity levels, perceived physical function and mood in
5	479		older adults: A survey-based observational study. Journal of Sports Sciences [Internet].
6	480		2020;00(00):1–13. Available from: https://doi.org/10.1080/02640414.2020.1850984
7			
8	481	26.	Ball S, Banerjee A, Berry C, Boyle JR, Bray B, Bradlow W, et al. Monitoring indirect impact of
9	482		COVID-19 pandemic on services for cardiovascular diseases in the UK. Heart.
10	483		2020;106(24):1890–7.
11			
12	484	27.	Henry N, Parthiban S, Farroha A. The effect of COVID-19 lockdown on the incidence of
15	485		deliberate self-harm injuries presenting to the emergency room. International Journal of
14	486		Psychiatry in Medicine. 2020;1–12.
15	107	20	Vandaras S. Every martality during the Cavid 10 pandamicy Early avidence from England and
17	467	28.	Value of the Control
18	488		wales. Social Science and Medicine [Internet]. 2020;258(June):113101. Available from:
19	489		https://doi.org/10.1016/j.socscimed.2020.113101
20	490	29	Balmford B. Annan ID. Hargreaves IC. Altoè M. Bateman II. Cross-Country Comparisons of
21	401	25.	Covid 10: Policy, Politics and the Price of Life, Environmental and Pescurse Economics
22	491		[Internet] 2020/76(4)/525_51_Augilable from https://doi.org/10.1007/c10640.020.00466_5
23	492		[Internet]. 2020;76(4):525–51. Available from: https://doi.org/10.1007/510640-020-00466-5
24	493	30.	Jacobucci G. Long covid: Damage to multiple organs presents in young, low risk patients. Bmi,
25	494		2020·m4470
26	131		
27	495	31.	European Centre for Disease Prevention and Control. Risk related to the spread of new SARS-
28	496		CoV-2 variants of concern in the EU/EEA-first update. 2021;(January):29. Available from:
29	497		https://beta.microreact.org/project/r8vBmatkC9mcfrJJ6bUtNr-cog-uk-2021-01-09-sars-cov-
30	498		2-in-the-uk/
31			
32	499	32.	Plümper T, Neumayer E. The pandemic predominantly hits poor neighbourhoods? SARS-CoV-
33	500		2 infections and COVID-19 fatalities in German districts. European journal of public health.
54 25	501		2020;30(6):1176–80.
36			
37	502	33.	Clouston SAP, Natale G, Link BG. Socioeconomic inequalities in the spread of coronavirus-19
38	503		in the United States: A examination of the emergence of social inequalities. Social Science
39	504		and Medicine [Internet]. 2021;268(November 2020):113554. Available from:
40	505		https://doi.org/10.1016/j.socscimed.2020.113554
41	-06		
42	506	34.	Wikipedia. COVID-19 pandemic in the United Kingdom [Internet]. [cited 2021 Feb 4].
43	507		Available from: https://en.wikipedia.org/wiki/COVID-19_pandemic_in_the_United_Kingdom
44	508	25	Correa-Martínez CL Kampmeier S Kümpers P. Schwierzeck V. Hennies M. Hafezi W. et al. A
45	500	55.	nondemic in times of global tourism: Superspreading and expertation of COVID 10 cases from
46	509		pandemic in times of global tourism. Superspicating and exportation of COVID-19 cases from
47	510		a ski area in Austria. Journal of Clinical Microbiology. 2020;58(6):19–21.
48	511	36.	Adams J, Mytton O, White M, Monsivais P. Why Are Some Population Interventions for Diet
49	512		and Obesity More Equitable and Effective Than Others? The Role of Individual Agency, PLoS
50	513		Medicine, 2016:13(4):1–7.
51 52			
52 52	514		
55 54			
55			
56			
57			
58			22
59			23
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Proportion of 312 English local authorities within each IMD decile that began recording COVID-19 deaths between weeks 11 and 15 of 2020.

717x632mm (118 x 118 DPI)

Gradient of death rate to week 15, deaths per 100,000 per week $^{\rm b}$ Decile of IMD Rank of Average Rank (1= Most deprived) Simple linear gradient of age-standardised COVID-19 death rate per 100,000 people between the first week of recorded COVID-19 deaths and week 15, across rank of average rank of IMD deciles. 497x562mm (118 x 118 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Cumulative COVID-19 death rates per 100,000 for areas of each IMD decile over the first wave of the pandemic in 307 local authorities in England. Dotted line marks timing of the announcement of the first lockdown, zoomed in area between weeks 13 and 14.

497x562mm (118 x 118 DPI)

Reporting checklist for cross sectional study.

Based on the STROBE cross sectional guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cross sectional reporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

			Page
		Reporting Item	Number
Title and abstract			
Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the title or the abstract	1
Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary of what was done and what was found	5
Introduction			
Background / rationale	<u>#2</u>	Explain the scientific background and rationale for the investigation being reported	7,8
Objectives	<u>#3</u>	State specific objectives, including any prespecified hypotheses	8
Methods			
Study design	<u>#4</u>	Present key elements of study design early in the paper	9
Setting	<u>#5</u> For	Describe the setting, locations, and relevant dates, including periods of peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	9,10

Page 31 of 31

1			recruitment, exposure, follow-up, and data collection	
2 3 4 5	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of selection of participants.	NA
6 7 8 9		<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	9,10
10 11 12 13 14 15 16	Data sources / measurement	<u>#8</u>	For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.	9,10
10 17 18	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	9,10
19 20	Study size	<u>#10</u>	Explain how the study size was arrived at	NA
21 22 23 24	Quantitative variables	<u>#11</u>	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	9,10
25 26 27 28	Statistical methods	<u>#12a</u>	Describe all statistical methods, including those used to control for confounding	10
29 30 31	Statistical methods	<u>#12b</u>	Describe any methods used to examine subgroups and interactions	NA
32 33 34 35	Statistical methods	<u>#12c</u>	Explain how missing data were addressed	NA
36 37 38 39	Statistical methods	<u>#12d</u>	If applicable, describe analytical methods taking account of sampling strategy	9,10
40 41 42 43	Statistical methods	<u>#12e</u>	Describe any sensitivity analyses	NA
44 45	Results			
46 47 48 49 50 51 52 53 54	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.	11
55 56	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	NA
57 58	Participants	<u>#13c</u>	Consider use of a flow diagram	NA
59 60		For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3 4 5	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable.	11		
6 7 8 9	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each variable of interest	11		
10 11 12	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures. Give information separately for exposed and unexposed groups if applicable.	11		
13 14 15 16 17 18	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	NA		
19 20	Main results	<u>#16b</u>	Report category boundaries when continuous variables were categorized	NA		
21 22 23 24	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA		
25 26 27 28	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses	NA		
20 29 30	Discussion					
31 32	Key results	<u>#18</u>	Summarise key results with reference to study objectives	20		
33 34 35 36 37 38	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	24		
39 40 41 42 43	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	20		
44 45	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study results	21:23		
40 47	Other					
48 49	Information					
50 51 52 53 54	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	3		
55 56 57	The STROBE chee	cklist is o	distributed under the terms of the Creative Commons Attribution License Co	C-BY.		
58	This checklist was	This checklist was completed on 23. October 2021 using <u>https://www.goodreports.org/</u> , a tool made by the				
59 60	EQUATOR Netwo	ork in co	llaboration with <u>Penelope.ai</u> peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			

BMJ Open

Inequalities in the evolution of the COVID-19 pandemic: An ecological study of inequalities in mortality in the first wave and the effects of the first national lockdown in England

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058658.R1
Article Type:	Original research
Date Submitted by the Author:	09-Mar-2022
Complete List of Authors:	Welsh, Claire; Newcastle University Albani, Viviana; Newcastle University Matthews, Fiona; Newcastle University Faculty of Medical Sciences, Population Health Sciences Institute Bambra, Clare; Newcastle University
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Health policy, Infectious diseases, Public health
Keywords:	COVID-19, Epidemiology < INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	1	Inequalities in the evolution of the COVID-19 pandemic: An ecological study of inequalities in
4 5		
6	2	mortality in the first wave and the effects of the first national lockdown in England
7		
8 9	3	
10		
11	4	Claire E. Welsh PhD (0000-0001-9477-0775) ¹ *. Viviana Albani <mark>(</mark> 0000-0001-9584-7631 <mark>)</mark> 1. Fiona E.
12		
13 14	5	Matthews PhD (0000-0002-1728-2388 <mark>)^{1,2}, Clare Bambra PhD <mark>(</mark>0000-0002-1294-6851<mark>)</mark>^{1,2}</mark>
15		
16	6	
17	Ū	
18 19	_	
20	7	¹ Population Health Sciences Institute, Newcastle University, UK, NE4 5PL
21		
22	8	² Applied Research Collaboration North East and North Cumbria, Newcastle University, UK, NE4 5PL
23 24		
25	9	
26	5	
27		
28 29	10	*Corresponding author: <u>Claire.Welsh@newcastle.ac.uk</u> , Room 2.38 Biomedical Research Building,
30	11	Campus for Ageing and Vitality, Newcastle University, Newcastle, NE4 5PI
31	11	Campus for Ageing and vitality, Newcastle Oniversity, Newcastle, NE4 5FL.
32		
33 34	12	
35		
36	13	
37		
38 39		
40		
41		
42 42		
43 44		
45		
46		
47 48		
49		
50		
51		
52 53		
54		
55		
56 57		
57		
59		
60		

1		
2		
4	14	Conflicts of Interest Statement
5		
6 7	15	All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf
8 9	16	and declare: no financial relationships with any organisations that might have an interest in the
10 11 12	17	submitted work in the previous three years; no other relationships or activities that could appear to
12 13 14	18	have influenced the submitted work.
15 16	19	Data Sharing Statement
17		
18 19 20	20	All data used are publicly freely available through the ONS. Code used in the analyses is available
20 21 22	21	upon request.
23		
24	22	Ethical Approval
25		
26 27	23	This study was approved by the Newcastle University Ethics Committee (Ref: 7543/2020).
27		
29		
30	24	Transparency declaration
31		
32	25	The lead author* affirms that this manuscript is an honest accurate and transparent account of the
33	20	The feat dather and the the managempt is an nonest, decarate, and transparent decount of the
34 35	26	study being reported: that no important aspects of the study have been omitted; and that any
36		
37	27	discrepancies from the study as planned (and, if relevant, registered) have been explained.
38		
39		
40	28	
41		
42 43	29	*The manuscript's guarantor
44		
45		
46	30	
47		
48	21	Funding
49 50	51	
50 51	32	This work was supported by a grant from The Health Foundation (Ref [.] 2211473), who took no part in
52	52	
53	33	the design analysis or writing of this study
54		
55		
56	34	
5/		
50 59	35	Keywords
60		

2		
- 3 4	36	COVID-19; geography; inequalities ;mortality;
5	37	
6 7	38	
8 9	39	
10		
11 12		
13		
14 15		
16		
17 18		
19		
20		
21		
23		
24 25		
26		
27 28		
29		
30 31		
32		
33 34		
35		
36 37		
38		
39 40		
41		
42 43		
44		
45 46		
47		
48 40		
-+9 50		
51 52		
5∠ 53		
54		
55 56		
57		
58 59		
60		

2		
3	40	Strengths and limitations of this study
4		
5		
6 7	41	 This study examines the evolution of inequalities in COVID-19 in the first wave of the
/ 8		
9	42	pandemic in England and the impact of the national lock down.
10		
11	43	 National level official (ONS) data used, covering nearly all local authorities in England and
12		
13	44	including all deaths that made any mention of COVID-19 on death certificates, requiring
14		
15	45	sensitive data acquisition.
10 17		
17	46	 Age-standardised deaths rates at lower geographies are not available at the time of
19		
20	47	writing but could lend extra nuance to these findings.
21		
22	48	 Ecological study not using individual level data, so unable to examine the individual level
23		
24	49	risks for COVID-19 mortality.
25 26		
27	50	
28	50	
29	51	Abstract
30		
31	50	
32	52	Objectives
33 34		
35	53	To examine how ecological inequalities in COVID-19 mortality rates evolved in England, and whether
36		
37	54	the first national lockdown impacted them. This analysis aimed to provide evidence for important
38		
39	55	lessons to inform public health planning to reduce inequalities in any future pandemics.
40		
41 42		
43	56	Design
44		
45	57	Longitudinal ecological study
46		5 5 <i>i</i>
47		
48	58	Setting
49 50		
50	59	307 Lower-tier local authorities in England
52		
53		
54	60	Primary outcome measure
55		
56	61	Age-standardised COVID-19 mortality rates by local authority, regressed on Index of Multiple
5/ 58	01	The standardised covid is mortainy rates by local autionity, regressed on much or multiple
59	62	Deprivation (IMD) and relevant epidemic dynamics
60	02	

63 Results

> Local authorities that started recording COVID-19 deaths earlier were more deprived, and more deprived authorities saw faster increases in their death rates. By 2020-04-06 (week 15, the earliest time that the March 23rd lockdown could have begun affecting death rates) the cumulative death rate in local authorities in the two most deprived deciles of Index of Multiple Deprivation (IMD) was 54% higher than the rate in the two least deprived deciles. By 2020-07-04 (week 27), this gap had narrowed to 29%. Thus, inequalities in mortality rates by decile of deprivation persisted throughout the first wave, but reduced during the lockdown.

71 Conclusions

This study found significant differences in the dynamics of COVID-19 mortality at the local authority
level, resulting in inequalities in cumulative mortality rates during the first wave of the pandemic.
The first lockdown in England was fairly strict – and the study found that it particularly benefited
those living in the more deprived local authorities. Care should be taken to implement lockdowns
early enough, in the right places - and at a sufficiently strict level- to maximally benefit all
communities, and reduce inequalities.

79 Word Count:

BMJ Open

4 5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
4/	
48	
49 50	
5U 51	•
ן כ גר	
52 52	
54	
55	
56	
57	
58	
59	•
60	

80 Introductio	'n
----------------	----

81 Since the early days of the SARS-CoV-2 pandemic in 2020, inequalities in case, hospitalisation and 82 death rates have been noted internationally (1-8). The most deprived populations and areas in the 83 USA, Europe and other high-income countries (in terms of a range of deprivation measures) have 84 suffered up to twice the mortality rates of the least deprived sections of society (2,7,9–12). In 85 addition, inequalities in disease burden have been noted across levels of income, education, 86 employment, sex, age, and especially between different ethnic groups, where people of Black and 87 minority ethnic backgrounds have suffered many more cases (and deaths) than their white 88 counterparts (13). However, the evolution of ecological inequalities in the pandemic over time in England - and the impact of national lock downs on them - has not previously been examined. This 89 90 study addresses this evidence gap by providing the first analysis of inequalities in the evolution of 91 the pandemic in different English local authorities and the impact of the first national lock down on 92 them.

93

94 Most countries employed national lockdowns of varying duration and severity to mitigate disease 95 spread, alongside social distancing and hygiene-related advice. The factors used to determine when 96 a lockdown should begin or cease were rarely transparent, but most appeared to reduce infection 97 rates to some degree after a lag phase, and saw a rebound of varying size following their release 98 (14–16). The first confirmed cases of COVID-19 were recorded in England in York in January 2020 99 and the first death in England was on March 5th. From 2020-04-23 until 2020-07-04, a national 100 lockdown was implemented across England. In keeping with many other European countries, this 101 was characterised by a 12 week 'stay at home' order (SI 350) - whereby people could only go outside 102 for certain "very limited purposes" - to buy food, to exercise once a day, for medical reasons or to 103 care for a vulnerable person, or to go to work if they absolutely could not work from home (17). 104 Face-to-face education was suspended and many workplaces closed down - and staff furloughed -

3 4	105	particularly in the hospitality, travel and retail sectors. As nationally cases, hospitalisation and death
5 6	106	rates started to fall the lockdown was gradually released over a period of several months -
7 8	107	culminating in the so-called 'Super Saturday' on 2020-07-04 when pubs, restaurants, hairdressers,
9 10 11	108	and cinemas reopened – albeit with strict social distancing rules (18).
12 13	109	
14	105	
15 16 17	110	It has been noted that when national epidemic dynamics are used to examine population health,
18 19	111	they can mask important sub-national variation in disease spread, thus mitigation strategies that rely
20 21	112	solely on the national data to inform implementation timings could inadvertently worsen health
22 23	113	inequalities across geographical areas (14,16). Previous descriptive studies and reports of
24 25	114	inequalities in COVID-19 mortality have only focused on cumulative measures over set timespans,
26 27 28	115	without documenting the disparities in evolution of mortality rates (5,19,20), have been restricted to
29 30	116	higher geographies (21), or have not focussed on the effects of lockdowns (7,22). An understanding
31 32	117	of how the evolution of the pandemic differed by area and the impact of national mitigation
33 34	118	strategies on ecological inequalities in COVID-19 mortality could help inform future policies targeted
35 36 27	119	at minimising viral spread whilst preventing the widening (or even actively decreasing) health
37 38 39	120	inequalities.
40		
41 42	121	
43 44 45	122	This paper uses COVID-19 mortality data from the first wave of the pandemic in England to provide
46 47	123	the first examination of ecological inequalities in the evolution of the pandemic in this country. It
48 49	124	sets out the first analysis of when death rates rose, peaked and fell in local authorities of differing
50 51	125	levels of deprivation, and it describes the effects – and the timing of - the first national lockdown on
52 53 54	126	these inequalities.
55 56	127	
57 58		
59 60	128	Methods

Page 9 of 33

1

BMJ Open

2	
3	
4	
5	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
~~ 72	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
3/	
25	
22	
30	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
_10 ⊿7	
-+/ /0	
4ð	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
22	
υυ	

129 Weekly counts of COVID-19 deaths (based on any mention of Coronavirus on the death certificate) 130 for 312 lower-tier local authorities (excluding county councils) in England were obtained from the 131 Office for National Statistics (ONS) covering the period from 1st January 2020 to 4th July 2020, by date 132 of registration (local authorities are local government organisations covering variable population 133 sizes from just over 2000 to more than 1.5 million residents (23). Weekly COVID-19 death counts at 134 the local authority level were not available per age group, thus age-standardised rates were 135 calculated via monthly age-standardised rates. Monthly age-standardised COVID-19 mortality rates 136 per local authority for the period March to July 2020 were similarly obtained from ONS (24). The 137 monthly rate was divided between the constituent weeks based on the share of monthly deaths in 138 each week. Where all age-standardised rates for a local authority were suppressed by ONS due to 139 disclosure controls, the authority was excluded from analyses (n=4). The level of deprivation of each 140 local authority was determined by the rank of average rank of the Index of Multiple Deprivation 141 (IMD, a relative measure of deprivation across multiple dimensions at small local area level (25)), which was converted into deciles (decile 1 contained the most deprived 10% of local authorities) 142 from downloaded data (26). In addition, data from the Isles of Scilly and the City of London were 143 excluded due to well-known mortality data quality issues and low population counts. 144 145 A number of metrics were calculated for each local authority; the 'starting week' was the first week 146

where 1 or more COVID-19 deaths were registered, the 'peak' was the highest weekly agestandardised mortality rate per area using a 3-week rolling mean of weekly death rates, and the 'total mortality rate' was the cumulative sum of age-standardised weekly mortality rates over the whole study period. The speed of increase was defined as the change in mortality rate between 25% of the peak death rate and the peak rate itself, divided by the number of weeks between them, and similarly the speed of descent was calculated using the peak death rate and subsequent reduction to 50% of this peak rate (25 and 50% selected to include time window when epidemic peaks were

visibly most stable). An assumption was made that any change in population incidence of COVID-19 cases may begin to be seen 2 weeks later in mortality data, thus analyses of the effect of lockdown focused on the period before or after week 15 (lockdown was announced in week 13 [March 2020] and ended on 'Super Saturday' [July 4th, week 27], which is shown in timeline plots). The 'peak difference' was the difference in weeks between the peak mortality rate and the week in which lockdown began to take effect (week 15). Weekly age-standardised mortality rates per IMD decile (as opposed to per local authority) were not available at the time of writing, thus they were calculated from the age-standardised estimates from the local authority data (please see supplement for more details). Simple linear models were employed to analyse the associations between visually normally distributed measures such as the total cumulative mortality rate with other metrics (e.g. the speed of increase in death rate) and IMD decile. The purpose of these simple models was to understand the relative contribution of deprivation (measured by IMD) and relevant epidemic dynamics (e.g. date of first recorded COVID-19 deaths) to the metric of interest, therefore no model selection was employed, and covariate inclusion was based on empirical knowledge. Any covariates found to fall above the threshold of statistical significance (Wald p-value >0.05 in multivariable models) would be removed from the model (however no covariates needed to be removed in this way). Differences between mean speed of increase or decrease per IMD decile were assessed by non-overlap of 95% confidence intervals. Maps were drawn based on 2020 geographical boundaries from the ONS Open Geography Portal

(27).

1		
2		
3 4	178	
5		
6	179	All analyses were conducted in R statistical software version 3.6.2.
7		
8	100	
9 10	180	
11		
12	181	Patient and Public Involvement
13		
14 15	187	Our public involvement papel inputted into project design and considered the research topic to be of
16	102	our public involvement puter inputted into project design and considered the rescarch topic to be of
17	183	contemporary importance and value. The data used do not require patient permissions for use and
18		
19 20	184	are publicly available. 🦳
20 21		
22	185	
23	105	
24		
25	186	Results
20 27		
28	187	All 307 lower-tier local authorities in England began registering deaths involving COVID-19 between
29		
30	188	weeks 11 and 15. The proportion of areas of each IMD decile per 'starting week' is shown in Figure 1.
31 32 33		
	189	From this it can be seen that more deprived areas (most deprived decile = 1) tended to begin
34		
35	190	recording COVID-19 deaths earlier than less deprived areas (least deprived decile = 10).
36		
37 38	191	
39		
40	102	Figure 1. Drepartian of 212 English local authorities within each IMD desile that began recording
41	192	Figure 1. Proportion of 312 English local authorities within each IND decile that began recording
42	193	COV/ID-19 deaths between weeks 11 and 15 of 2020
43 44	193	COVID-15 deaths between weeks 11 and 15 of 2020.
45		
46	194	
47		
48	195	Figure 2 depicts the weekly mortality rates per 100.000 people for each IMD decile. After the first
49 50	200	
51	196	two weeks of the epidemic, the two most deprived deciles (20% of local authorities) had the highest
52		
53	197	speed of increase in age-standardised mortality rates and reached higher peak rates than less
54		
55 56	198	deprived areas.
57		
58	199	
59		
60		

2		
3 4	200	Figure 2. Weekly age-standardised COVID-19 mortality rates per 100,000 in areas of each IMD
5 6 7	201	decile. Dotted line indicates the start of the first national lockdown (26 th March).
, 8 9	202	
10 11 12	203	From the week of their first COVID-19 deaths to week 15 (when lockdown could plausibly have
13 14	204	begun affecting death rates), local authorities in the two most deprived deciles had the highest
13 16 17	205	speed of increase in death rate (albeit not statistically significantly different), and the less deprived
18 19	206	deciles increased more slowly (Figure 3). The mean speed of increase in the two most deprived IMD
20 21	207	deciles was 4.03 deaths per 100,000 persons per week, and in the two least deprived deciles was
22 23	208	2.18 deaths per 100,000 persons per week (a difference of 46%).
24 25 26	209	
27 28 29 20	210	
30 31 32	211	Figure 3. Simple linear gradient of age-standardised COVID-19 death rate per 100,000 people
33 34	212	between the first week of recorded COVID-19 deaths and week 15, across rank of average rank of
35 36 27	213	IMD deciles.
37 38 39 40	214	
41 42	215	All local authorities' death rate curves peaked and began to decline between 3 and 10 weeks
43 44	216	following the start of the first lockdown. Those local authorities whose death rates were increasing
45 46 47	217	faster before lockdown peaked sooner after lockdown commenced compared to slower local
48 49 50	218	authorities.
50 51 52	219	The total age-standardised cumulative mortality over the first wave (up to week 27, week
53 54	220	commencing 2020-06-28) varied from 119 to 2349 deaths per 100,000 persons per local authority.
55 56	221	Table 1 describes the multivariable linear model of total cumulative death rates per local authority.
57 58	222	It shows that, compared to the most deprived 10% of local authorities, less deprived areas (deciles 3-
59 60	223	10) recorded lower cumulative death rates, and that areas with higher speeds of increase - and more

BMJ Open

weeks of recorded COVID-19 deaths before lockdown (plus those that peaked later) - saw higher

total death rates.

Table 1. Linear multivariable model of the total cumulative age-standardised COVID-19 death rate

per 100,000 persons between weeks 1 and 27 of 2020, among 307 local authorities in England.

Metric	Adjusted Beta Coefficient (SE)	P-value
IMD decile		
1 (most deprived)	REF	
2	-41.16 (49.30)	0.40
3	-108.20 (50.46)	0.03
4	-132.11 (49.80)	0.008
5	-140.82 (50.83)	0.006
6	-183.66 (50.64)	<0.001
7	-225.06 (50.81)	<0.001
8	-170.43 (51.01)	<0.001
9	-213.73 (50.82)	<0.001
10	-262.16 (50.28)	<0.001
Speed of increase (to week		1
15), deaths per 100,000 per	12.87 (0.47)	<0.001
week		
Weeks from week of first		
registered COVID-19 deaths to	216.98 (13.04)	<0.001
lockdown		

2	
3 4	
5	
6 7	
8	229
9	
10 11	230
12	
13	231
14 15	
16	232
17	
18 10	233
20	
21	234
22 23	
23 24	235
25	
26 27	
27	
29	
30	
31 32	
33	
34	
35	
30 37	
38	
39	
40 41	
42	
43	
44 45	
46	
47	
48 40	
49 50	
51	236
52	
53 54	237
55	_0,
56	220
57 58	238
59	239
60	200

Weeks between peak and

rom 2 weeks before the an	nouncement of the first lock	down, to 2 we	eks after. The differenc
otal cumulative death rates	s for areas grouped by starting	ng week are as	seen in Table 2.
able 2. Mean cumulative (COVID-19 death rate per 100),000 persons	over the first wave (we
o 27, 2020) of the pandem	ic among 307 local authorit	ies in England	
Timing of start week	Total cumulative age-		
relative to week 13	standardised COVID-19		
(when lockdown 1 was	death rate per 100,000	Number o	flocal
announced)	persons for whole of	authori	ties
	wave 1 (weeks 1 to 27,		
	2020), (SD)		
2 weeks before	465 (451)	14	
1 week before	780 (324)	124	
Same week	984 (407)	101	5
1 week after	1188 (505)	63	
		5	
2 weeks before 1 week before Same week	2020), (SD) 465 (451) 780 (324) 984 (407)	14 124 101	
1 week after	1188 (505)	63	
		5	

9 wave. Mortality rates in more deprived areas (deciles 1 and 2) were rising faster than others at the

3 4	240	start of lockdown (vertical dotted line), and the disparity in cumulative mortality grew as the
5 6 7	241	pandemic progressed.
8 9 10	242	
11 12	243	Figure 4. Cumulative COVID-19 death rates per 100,000 for areas of each IMD decile over the first
13 14	244	wave of the pandemic in 307 local authorities in England. Dotted line marks timing of the
15 16 17	245	announcement of the first lockdown, zoomed in area between weeks 13 and 14.
18 19 20	246	
21 22	247	Up until week 15 when the effects of lockdown may have started to be seen in mortality data, the
23 24 25	248	cumulative death rate per 100,000 persons already differed by IMD decile. The two most deprived
26 27	249	deciles recorded 77.16 deaths per 100,000 persons by this time, whereas the two least deprived
28 29	250	deciles recorded only 50.01 deaths per 100,000 persons. This inequality reduced by the time the first
30 31	251	wave had passed (by week 27), but did not equalise, with the most deprived two deciles recording
32 33	252	316.14 total deaths per 100,000 persons, and the least deprived recording 245.10 deaths per 100,00
34 35 36	253	persons. These equate to an excess of 54% before lockdown versus 29% after lockdown.
37 38	254	
39		
40 41 42	255	Figure 5 illustrates the geographical distribution of deprivation based on IMD and the total
42 43 44	256	cumulative age-standardised COVID-19 death rate per 100,000 persons over the first wave of the
45 46	257	pandemic. London and the North West featured many of the areas with the highest overall death
47 48	258	rates. Although these areas featured many deprived local authorities, the distributions were not
49 50	259	identical.
51 52 53 54	260	
55 56	261	Figure 5. Average rank of the index of multiple deprivation (IMD) and total cumulative COVID-19
57 58	262	death rate per 100,000 persons over the first wave of the pandemic (weeks 1 to 27, 2020) per local
59 60	263	authority in England.
		14

1		
2 3	264	
4	204	
5 6 7	265	Discussion
8 9 10	266	This study has provided the first examination of the evolution of inequalities in the COVID-19
11 12	267	pandemic. It has found that inequalities in COVID-19 mortality rates by deprivation in England began
13 14	268	to appear early in the first wave. More deprived local authorities generally started recording COVID-
15 16 17	269	19 deaths earlier than less deprived areas, and mortality rates also increased faster in more deprived
17 18 19	270	areas, and rose to higher peak rates. All of the 307 lower-tier local authorities in England began
20 21	271	recording COVID-19 deaths as early as 2 weeks before first national lockdown in England was
22 23	272	announced, or up to 2 weeks afterwards, with the latter – less deprived - group of local authorities
24 25 26	273	recording fewer cumulative deaths over the whole of the first wave, compared to the former – more
20 27 28	274	deprived – group of local authorities.
29 30 31	275	
32 33 34	276	The study has also provided the first assessment of the impacts of the first English national lock
35 36	277	down on the evolution of the pandemic. It has found that following the implementation of the
37 38	278	national lockdown, local authorities where death rates had been rising faster (i.e. more deprived
39 40	279	areas), peaked and began to descend earlier than the other – less deprived – local authorities.
41 42 43	280	Cumulative death rates were higher in more deprived areas by the time lockdown began, but the
44 45	281	difference narrowed moderately towards the end of the first wave.
46 47 48	282	
49 50 51	283	
52 53	284	England imposed a national lockdown during the first wave of the COVID-19 epidemic in March 2020
54 55 56	285	(28). This measure aimed to drastically reduce instances of interpersonal contact between infected
57 58	286	individuals (whether symptomatic or not) and the wider susceptible population. Confining the public
59 60	287	to their homes, suspending face-to-face education and restricting travel placed great burdens upon

Page 17 of 33

BMJ Open

the health and welfare of many individuals and communities, through a number of pathways that are still being elucidated, and which will continue to emerge (29–31). There is no doubt that the economic implications of such lockdowns can be severe, and disruptions to usual health care provision have led to increased mortality from non-COVID causes (32). However, the risks posed to society of not imposing such lockdowns are likely much greater (33). Unchecked viral spread would lead to mass fatalities, increased disability rates especially in the young from the effects of non-fatal infection (so-called 'Long COVID'(34)), and an increased risk of viral mutation into forms which may pose even greater threat (35). Importantly, the National Health Service (NHS) could potentially be filled beyond capacity with COVID-19 patients, leaving insufficient resources for non-COVID patients of all ages and diagnoses. Economic implications of unchecked viral spread are likely to be considerably worse than those caused by national lockdowns, and could continue for longer due to the likelihood of future outbreaks of mutated viral strains and multiple waves of infection (33). A well-timed national lockdown has the ability to reduce case incidence to low levels at which 'test, trace and isolate' programs can efficiently extinguish local outbreaks, and lends time for mass vaccination to offer protection, especially to the most vulnerable. However, a lockdown that is imposed too late, i.e. when disease incidence is already high and rising, needs to be substantially more stringent and protracted to offer the same slowing effect on case numbers and, subsequently, deaths (33). Previous work has focused on comparing COVID-19 mortality rates between areas of England using set time periods without considering the evolution of the inequalities reported (36), or have identified inequalities in case rates and other metrics (16). Using mortality data removes some of

310 the uncertainty surrounding early case ascertainment, since early in the English epidemic, testing

311 was only being performed in hospitals on symptomatic individuals, and so many infections would

312 not have been recorded.

1 2

3 4 5	313	
6 7	314	It has been noted internationally that the seeding of SARS-CoV-2 into a country tends to be via travel
8 9	315	by people at the upper end of the socio-economic spectrum, taking international holidays or
10 11	316	travelling for business (37,38). Cases then increase within these less deprived populations until social
12 13 14	317	distancing and national lockdowns are advised or mandated. At this point, the disease burden shifts
14 15 16	318	to the more deprived, who are less able to fully adhere to these guidelines due to les ability to work
17 18	319	from home, fewer resources, precarious work, higher population densities and other pre-existing
19 20	320	factors (37). These communities may also face barriers to health system access and differences in
21 22 22	321	treatment or care. These two 'phases' of pandemic spread likely apply to COVID-19 cases in
23 24 25	322	England, where the index cases were holidaymakers returning from skiing trips to Austria (39,40).
26 27	323	Plümper et al (2020) reported that in Germany, despite a somewhat reduced likelihood of infection
28 29	324	for those in more deprived areas in the first phase of the epidemic, these communities were
30 31 22	325	nevertheless at similar risk of death. This relative risk of mortality increases for more deprived areas
32 33 34	326	once transmission is established in 'phase 2' of the pandemic – due to population vulnerabilities
35 36	327	including poverty, overcrowding and pre-existing chronic conditions (a so-called 'syndemic'
37 38	328	pandemic) (41). Our analysis of early-stage mortality in England confirmed this structure, in that
39 40	329	mortality rates rose first to a small initial 'peak' in less deprived areas, before being dominated by
41 42 43	330	more deprived local authorities. The earliest data available to the German study began more than 2
43 44 45	331	weeks following the implementation of government lockdowns, whereas the analysis we present
46 47	332	here predate the UK lockdown by a number of months, and hence capture the very earliest data
48 49	333	available on COVID-19 deaths.
50 51 52 53	334	
54 55	335	We have shown that inequalities in cumulative death rates during the first wave of infection in
56 57	336	England existed from the earliest stages of COVID-19 mortality reporting, and were entrenched by
58 59 60	337	differences in the speed of increase, leading to unequal burdens of cumulative mortality at local

BMJ Open

2	
л Л	
4 7	
5	
6	
7	
8	
9	
10	
11	
12	
12	
14	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22 22	
ג∠ גר	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
JJ ⊃⊿	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
Δ <u>Λ</u>	
77	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
22	
56	
57	
58	
59	
60	

338 authority level by the time the first national lockdown was called. These inequalities reduced 339 marginally but were not abolished by the national control measures implemented in the lockdown. 340 The first national lockdown in England was fairly strict (e.g. a 'stay at home order') and it was a 341 universal intervention, enforced and applied to the whole population and thereby requiring little by 342 way of individual agency. Previous public health research has shown that such measures are more 343 likely to reduce inequalities in health than those that require individual choice/compliance (42). That 344 the lockdown did not completely eliminate ecological inequalities in COVID-19 mortality may well be 345 as a result of inequalities in (1) vulnerability (whereby more deprived areas had a higher burden of 346 clinical risk factors); (2) susceptibility (whereby immune response was lower in more deprived 347 populations due to the adverse consequences of long term exposures to harmful living and 348 environmental conditions); (3) exposure (inequalities in working conditions notably less ability to 349 work at home in the low income jobs predominating within more deprived local authorities); and (4) 350 transmission (higher rates of overcrowding and population density in the community may have 351 impacted on infection spread in more deprived areas (41)).

353 Conclusion

352

354 This study has found that inequalities in death rates during the first wave of infection in England 355 existed from the earliest stages of the COVID-19 pandemic, and were entrenched by differences in 356 the speed of increase. This led to a significant unequal burden in cumulative mortality between the 357 most and least deprived local authorities by the time the first national lockdown was implemented. 358 These inequalities reduced marginally - but were not abolished - during the national lockdown. It is 359 impossible to say with certainty whether an earlier – or longer - national lockdown could have 360 further reduced these inequalities, but it should be noted that, although the lockdown did reverse 361 the trend in mortality rates across the country, it had to do so at more advanced stages of the 362 epidemic in more deprived areas, compounding the unequal disease burden upon these

communities and local health care systems. Susceptibility to infection and fatality from COVID-19 is
 undoubtedly closely associated with deprivation, but other factors also play an important part, as
 well as the stochasticity implicit in viral spread. Nevertheless, our understanding of how deprivation
 associates with mortality from a novel infectious disease within a virgin population it can help to
 focus future public health attention on those communities most in need and at risk.

Limitations

Weekly age-standardised mortality rates were not available at local authority level at the time of writing. However, we were able to pro rata monthly age-standardised rates to weekly ones using weekly death counts. Age-standardised weekly rates are unlikely to become available at lower geography levels due to disclosure risks. Death counts did not include deaths of non-residents of England, nor where place of residence was unknown, and was based on date of registration rather than date of death.

5 376 Deprivation is undoubtedly linked to COVID-19 mortality, it cannot explain all of the variation in 7 area-level mortality rates, hence COVID-19 mortality and IMD are not perfectly correlated. Many 9 other factors including comorbidity, healthcare provision, employment types and variation in 1 transport links all likely play a part in the causal web linking lockdowns to mortality inequalities. A 380 deeper analysis of these underlying associations was beyond the scope of the current paper, but 5 warrants further scrutiny.

382 Testing was limited to hospitalised patients in the earliest months of the pandemic in England. This
 383 may have introduced bias to our initial analyses since deaths from COVID-19 may not have been
 384 correctly attributed, had the person not received a positive test prior to death. However, we were
 385 unable to retrospectively account for this, and it would have applied to a small number of deaths in
 386 the earliest time period. Given consistency of trends across areas that began recording deaths at

1		
2 3	707	different stages of the national nandemic, we do not believe that this would have introduced serious
4	387	different stages of the national pandemic, we do not believe that this would have introduced serious
5 6 7	388	bias.
8 9 10	389	
10 11 12	390	
13 14 15	391	Author Statement
16 17 18	392	FM, CB and CW designed the study. CW completed all analyses with input from FM and CB. CW, VA,
19 20	393	FM and CB all contributed to drafting the manuscript. The corresponding author attests that all listed
21 22 23	394	authors meet authorship criteria and that no others meeting the criteria have been omitted. CW is
24 25	395	guarantor of the analysis.
26 27 28	396	The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of
29 30	397	all authors, a worldwide licence to the Publishers and its licensees in perpetuity, in all forms, formats
31 32	398	and media (whether known now or created in the future), to i) publish, reproduce, distribute, display
33 34 35	399	and store the Contribution, ii) translate the Contribution into other languages, create adaptations,
35 36 37	400	reprints, include within collections and create summaries, extracts and/or, abstracts of the
38 39	401	Contribution, iii) create any other derivative work(s) based on the Contribution, iv) to exploit all
40 41	402	subsidiary rights in the Contribution, v) the inclusion of electronic links from the Contribution to
42 43 44	403	third party material where-ever it may be located; and, vi) licence any third party to do any or all of
45 46	404	the above.
47 48 49	405	
50 51 52	406	References
53	407	1. Pillai J, Motloba P, Motaung KSC. Ozougwu LU. Ikalafeng BK. Marinda E. et al. The effect of
54	408	lockdown regulations on SARS-CoV-2 infectivity in Gauteng Province, South Africa. South
55 56	409	African Medical Journal. 2020;110(11):1119–23.
57	410	2. Chen JT. Krieger N. Revealing the unequal burden of COVID-19 by income race/ethnicity and
58 59	411	household crowding: US county versus zin code analyses. Journal of Public Health
60	412	Management and Practice. 2021;27(1):S46–56.

3 4 5	413 414	3.	Laster Pirtle WN. Racial Capitalism: A Fundamental Cause of Novel Coronavirus (COVID-19) Pandemic Inequities in the United States. Health Education and Behavior. 2020;
6 7 8 9	415 416 417	4.	van Barneveld K, Quinlan M, Kriesler P, Junor A, Baum F, Chowdhury A, et al. The COVID-19 pandemic: Lessons on building more equal and sustainable societies. Economic and Labour Relations Review. 2020;
10 11 12	418 419	5.	Nazroo J, Becares L. Evidence for ethnic inequalities in mortality related to COVID-19 infections: Findings from an ecological analysis of England and Wales. medRxiv. 2020;
13 14 15 16 17	420 421 422	6.	Roxo L, Bambra C, Perelman J. Gender Equality and Gender Inequalities in Self-Reported Health: A Longitudinal Study of 27 European Countries 2004 to 2016. International Journal of Health Services. 2020;1–9.
18 19 20 21	423 424 425	7.	Public Health England. Disparities in the risk and outcomes of COVID-19. 2020;89. Available from: https://www.gov.uk/government/publications/covid-19-review-of-disparities-in-risks-and-outcomes
22 23 24 25 26	426 427 428 429	8.	Dahal S, Luo R, Swahn MH, Chowell G. Geospatial Variability in Excess Death Rates during the COVID-19 Pandemic in Mexico: Examining Socio Demographic, Climate and Population Health Characteristics. International Journal of Infectious Diseases [Internet]. 2021;113:347–54. Available from: https://doi.org/10.1016/j.ijid.2021.10.024
27 28 29 30 31	430 431 432	9.	Baena-Diéz JM, Barroso M, Cordeiro-Coelho SI, Diáz JL, Grau M. Impact of COVID-19 outbreak by income: Hitting hardest the most deprived. Journal of Public Health (United Kingdom). 2020;42(4):698–703.
32 33 34 35	433 434 435	10.	Benita F, Gasca-Sanchez F. The main factors influencing COVID-19 spread and deaths in Mexico: A comparison between phases I and II. Applied Geography [Internet]. 2021;134(July):102523. Available from: https://doi.org/10.1016/j.apgeog.2021.102523
36 37 38 39 40	436 437 438 439	11.	Martines MR, Ferreira R v., Toppa RH, Assunção LM, Desjardins MR, Delmelle EM. Detecting space–time clusters of COVID-19 in Brazil: mortality, inequality, socioeconomic vulnerability, and the relative risk of the disease in Brazilian municipalities. Journal of Geographical Systems. 2021;23(1):7–36.
41 42 43 44 45	440 441 442	12.	Franch-Pardo I, Desjardins MR, Barea-Navarro I, Cerdà A. A review of GIS methodologies to analyze the dynamics of COVID-19 in the second half of 2020. Transactions in GIS. 2021;25(5):2191–239.
46 47 48 49	443 444 445	13.	Katikireddi SV, Lal S, Carrol ED, Niedzwiedz CL, Khunti K, Dundas R, et al. Unequal impact of the COVID-19 crisis on minority ethnic groups: A framework for understanding and addressing inequalities. Journal of Epidemiology and Community Health. 2021;75(10):970–4.
50 51 52 53 54 55	446 447 448 449	14.	Salvatore M, Basu D, Ray D, Kleinsasser M, Purkayastha S, Bhattacharyya R, et al. Comprehensive public health evaluation of lockdown as a non-pharmaceutical intervention on COVID-19 spread in India: National trends masking state-level variations. BMJ Open. 2020;10(12).
56 57 58 59 60	450 451 452	15.	Desvars-Larrive A, Dervic E, Haug N, Niederkrotenthaler T, Chen J, di Natale A, et al. A structured open dataset of government interventions in response to COVID-19. Scientific Data. 2020;7(1):1–9.

Page 23 of 33

$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\2\\13\\14\\15\\16\\17\\18\\9\\20\\21\\22\\3\\4\\25\\26\\27\\28\\29\\30\\1\\22\\33\\4\\5\\36\\37\\38\\9\\40\\1\\42\\43\\44\\5\\6\\7\\8\\9\\0\\1\\52\\3\\54\\5\\56\\57\\8\\9\\60\end{array}$	453 454 455 456	16.	Morrissey K, Spooner F, Salter J, Shaddick G. Area level deprivation and monthly COVID-19 cases: The impact of government policy in England. Social Science & Medicine [Internet]. 2021;289(September):114413. Available from: https://doi.org/10.1016/j.socscimed.2021.114413
	457 458 459	17.	HM Government. The Health Protection (Coronavirus, Restrictions) (No. 2) (England) Regulations 2020 [Internet]. SI2020/684. 2020 [cited 2021 Feb 23]. Available from: https://www.legislation.gov.uk/uksi/2020/684/contents/made
	460 461 462	18.	HM Government. The Health Protection (Coronavirus, Restrictions) (England) Regulations 2020 [Internet]. SI 350. 2020 [cited 2021 Feb 23]. Available from: https://www.legislation.gov.uk/uksi/2020/350/contents/made
	463 464 465	19.	Sun Y, Hu X, Xie J. Spatial inequalities of COVID-19 mortality rate in relation to socioeconomic and environmental factors across England. Science of the Total Environment. 2021;758(January).
	466 467	20.	Platt L, Warwick R. COVID-19 and Ethnic Inequalities in England and Wales*. Fiscal Studies. 2020;41(2):259–89.
	468 469 470 471 472	21.	Timson A. What geographic inequalities in COVID-19 mortality rates and health can tell us about levelling up The Health Foundation. The Health Foundation [Internet]. 2021;(July). Available from: https://www.health.org.uk/news-and-comment/charts-and- infographics/what-geographic-inequalities-in-covid-19-mortality-rates-can-tell-us-about- levelling-up
	473 474 475	22.	Griffith GJ, Davey Smith G, Manley D, Howe LD, Owen G. Interrogating structural inequalities in COVID-19 mortality in England and Wales. Journal of Epidemiology and Community Health. 2021;1–7.
	476 477	23.	Office for National Statistics. Analysis of death registrations not involving coronavirus (COVID- 19), England and Wales: 28 December 2019 to 1 May 2020. 2020.
	478 479 480	24.	ONS. Deaths due to COVID-19 by local area and deprivation [Internet]. 2021. Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsduetocovid19bylocalareaanddeprivation
	481 482 483	25.	Ministry of Housing Communities & Local Government. English Indices of Deprivation 2019 - Summaries at Local Authority Level [Internet]. Open Data. 2019. Available from: http://opendatacommunities.org/data/societal-wellbeing/imd2019/indicesbyla
	484 485	26.	Ministry of Housing C& LG. English indices of deprivation [Internet]. 2020. Available from: https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019
	486 487 488 489	27.	Office for National Statistics. Local Authority Districts (December 2019) Boundaries UK BUC. Open Geography Portal [Internet]. Available from: https://geoportal.statistics.gov.uk/datasets/local-authority-districts-december-2019- boundaries-uk-buc
	490 491	28.	BBC News. Coronavirus: Strict new curbs on life in UK announced by PM [Internet]. 2020. Available from: https://www.bbc.co.uk/news/uk-52012432
	492 493	29.	Richardson DL, Duncan MJ, Clarke ND, Myers TD, Tallis J. The influence of COVID-19 measures in the United Kingdom on physical activity levels, perceived physical function and mood in

3 4 5 6 7 8 9	494 495		older adults: A survey-based observational study. Journal of Sports Sciences [Internet]. 2020;00(00):1–13. Available from: https://doi.org/10.1080/02640414.2020.1850984
	496 497 498	30.	Ball S, Banerjee A, Berry C, Boyle JR, Bray B, Bradlow W, et al. Monitoring indirect impact of COVID-19 pandemic on services for cardiovascular diseases in the UK. Heart. 2020;106(24):1890–7.
10 11 12 13	499 500 501	31.	Henry N, Parthiban S, Farroha A. The effect of COVID-19 lockdown on the incidence of deliberate self-harm injuries presenting to the emergency room. International Journal of Psychiatry in Medicine. 2020;1–12.
15 16 17 18 19	502 503 504	32.	Vandoros S. Excess mortality during the Covid-19 pandemic: Early evidence from England and Wales. Social Science and Medicine [Internet]. 2020;258(June):113101. Available from: https://doi.org/10.1016/j.socscimed.2020.113101
19 20 21 22	505 506 507	33.	Balmford B, Annan JD, Hargreaves JC, Altoè M, Bateman IJ. Cross-Country Comparisons of Covid-19: Policy, Politics and the Price of Life. Environmental and Resource Economics [Internet]. 2020;76(4):525–51. Available from: https://doi.org/10.1007/s10640-020-00466-5
23 24 25 26 27 28 29 30 31 23 34 35 36 37 38 9 40 41 42 43 44 50 51 52 53 45 56 57 58 59 60	508 509	34.	lacobucci G. Long covid: Damage to multiple organs presents in young, low risk patients. Bmj. 2020;m4470.
	510 511 512 513	35.	European Centre for Disease Prevention and Control. Risk related to the spread of new SARS-CoV-2 variants of concern in the EU/EEA-first update. 2021;(January):29. Available from: https://beta.microreact.org/project/r8vBmatkC9mcfrJJ6bUtNr-cog-uk-2021-01-09-sars-cov- 2-in-the-uk/
	514 515 516 517	36.	ONS. Coronavirus (COVID-19) Infection Survey, UK: 16 July 2021 [Internet]. 2021. Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsan ddiseases/bulletins/coronaviruscovid19infectionsurveypilot/16july2021
	518 519 520	37.	Plümper T, Neumayer E. The pandemic predominantly hits poor neighbourhoods? SARS-CoV- 2 infections and COVID-19 fatalities in German districts. European journal of public health. 2020;30(6):1176–80.
	521 522 523 524	38.	Clouston SAP, Natale G, Link BG. Socioeconomic inequalities in the spread of coronavirus-19 in the United States: A examination of the emergence of social inequalities. Social Science and Medicine [Internet]. 2021;268(November 2020):113554. Available from: https://doi.org/10.1016/j.socscimed.2020.113554
	525 526	39.	Wikipedia. COVID-19 pandemic in the United Kingdom [Internet]. [cited 2021 Feb 4]. Available from: https://en.wikipedia.org/wiki/COVID-19_pandemic_in_the_United_Kingdom
	527 528 529	40.	Correa-Martínez CL, Kampmeier S, Kümpers P, Schwierzeck V, Hennies M, Hafezi W, et al. A pandemic in times of global tourism: Superspreading and exportation of COVID-19 cases from a ski area in Austria. Journal of Clinical Microbiology. 2020;58(6):19–21.
	530 531	41.	Bambra C, Riordan R, Ford J, Matthews F. The COVID-19 pandemic and health inequalities. Journal of Epidemiology and Community Health. 2020;74(11):964–8.
	532 533 534	42.	Adams J, Mytton O, White M, Monsivais P. Why Are Some Population Interventions for Diet and Obesity More Equitable and Effective Than Others? The Role of Individual Agency. PLoS Medicine. 2016;13(4):1–7.

1 2 3			
4 5	535		
6 7			
8 9 10			
11 12			
13 14			
15 16 17			
18 19			
20 21			
22 23 24			
25 26			
27 28 29			
30 31			
32 33 34			
35 36			
37 38 30			
40 41			
42 43			
44 45 46			
47 48			
49 50 51			
52 53			
54			

Figure 1. Proportion of 312 English local authorities within each IMD decile that began recording COVID-19 deaths between weeks 11 and 15 of 2020.

Figure 2. Weekly age-standardised COVID-19 mortality rates per 100,000 in areas of each IMD decile. Dotted line indicates the start of the first national lockdown (26th March).

Figure 3. Simple linear gradient of age-standardised COVID-19 death rate per 100,000 people between the first week of recorded COVID-19 deaths and week 15, across rank of average rank of IMD deciles.

Figure 4. Cumulative COVID-19 death rates per 100,000 for areas of each IMD decile over the first wave of the pandemic in 307 local authorities in England. Dotted line marks timing of the announcement of the first lockdown, zoomed in area between weeks 13 and 14.

Figure 5. Average rank of the index of multiple deprivation (IMD) and total cumulative COVID-19 death rate per 100,000 persons over the first wave of the pandemic (weeks 1 to 27, 2020) per local authority in England.

BMJ Open

Supplemental material

S1. Supplementary methods.

Weekly age-standardised mortality rates per IMD decile (as opposed to per local authority) were not available at the time of writing, thus they were calculated from other existing data, in a similar but distinct method from local authority rates. This method is as follows: Firstly, the denominators from local authority-level monthly age standardised mortality rates were calculated using the death counts and rates provided. These 'age-standardised' population estimates were summed across local authorities within the same IMD decile, and counts of COVID-19 deaths were similarly summed by decile. Weekly age-standardised rates per 100,000 people were then calculated as the sum of deaths divided by the modified summed population estimate, multiplied by 100,000.

Reporting checklist for cross sectional study.

Based on the STROBE cross sectional guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cross sectional reporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

			Page
		Reporting Item	Number
Title and abstract			
Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the title or the abstract	1
Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary of what was done and what was found	5
Introduction			
Background / rationale	<u>#2</u>	Explain the scientific background and rationale for the investigation being reported	7,8
Objectives	<u>#3</u>	State specific objectives, including any prespecified hypotheses	8
Methods			
Study design	<u>#4</u>	Present key elements of study design early in the paper	9
Setting	<u>#5</u> For	Describe the setting, locations, and relevant dates, including periods of peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	9,10

Page 33 of 33

1 2 3 4 5			recruitment, exposure, follow-up, and data collection	
	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of selection of participants.	NA
6 7 8 9		<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	9,10
10 11 12 13 14 15 16	Data sources / measurement	<u>#8</u>	For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.	9,10
10 17 18	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	9,10
19 20	Study size	<u>#10</u>	Explain how the study size was arrived at	NA
21 22 23 24	Quantitative variables	<u>#11</u>	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	9,10
25 26 27 28	Statistical methods	<u>#12a</u>	Describe all statistical methods, including those used to control for confounding	10
29 30 31	Statistical methods	<u>#12b</u>	Describe any methods used to examine subgroups and interactions	NA
32 33 34 35	Statistical methods	<u>#12c</u>	Explain how missing data were addressed	NA
36 37 38 39	Statistical methods	<u>#12d</u>	If applicable, describe analytical methods taking account of sampling strategy	9,10
40 41 42 43	Statistical methods	<u>#12e</u>	Describe any sensitivity analyses	NA
44 45 46	Results			
47 48 49 50 51 52 53 54	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.	11
55 56	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	NA
57 58	Participants	<u>#13c</u>	Consider use of a flow diagram	NA
60		For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \end{array}$	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable.	11		
	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each variable of interest	11		
	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures. Give information separately for exposed and unexposed groups if applicable.	11		
	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	NA		
	Main results	<u>#16b</u>	Report category boundaries when continuous variables were categorized	NA		
	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA		
	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses	NA		
28 29 30	Discussion					
31 32 33 34 35 36 37 38 39 40 41 42 43	Key results	<u>#18</u>	Summarise key results with reference to study objectives	20		
	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	24		
	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	20		
44 45	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study results	21:23		
46 47 49	Other					
40 49	Information					
50 51 52 53 54 55 56	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	3		
	The STROBE checklist is distributed under the terms of the Creative Commons Attribution License CC-BY.					
58	This checklist was completed on 23. October 2021 using <u>https://www.goodreports.org/</u> , a tool made by the					
59 60	EQUATOR Network in collaboration with Penelope.ai For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml					