Supplementary materials

Supplementary Figure 1. The percentage of explained and unexplained CL(A) and $V_C(B)$ variability in the base and final models for nivolumab, pembrolizumab, dostarlimab and camrelizumab.

Supplementary Figure 2. The effects of included covariates on CL of (A) pembrolizumab, (B) dostarlimab, (C) cemiplimab and (D) camrelizumab.

Supplementary Table 1. The effects of included covariates on V_C of nivolumab, pembrolizumab, dostarlimab and cemiplimab.

Supplementary Figure 1. The percentage of explained and unexplained CL(A) and V_C(B) variability in the base and final models for nivolumab, pembrolizumab, dostarlimab and camrelizumab. The covariates included in the final model can minimize the interindividual variability in the base model. The figure shows that four anti-PD-1 mAbs' final model reduced the percentage of unexplainable variation by including CL and V_C covariates. As the covariates affecting cemiplimab V_C were not included in the final model, the figure of interindividual variability of cemiplimab V_C was not presented. IIV interindividual variability, CL clearance, V_C central volume of distribution

	Covariate Categorical=Comparator:Reference										Effect values (95% CI)
	Continuous=Re	eference (PUS - P95)									
		Estimate Maria		_							04.00 (04.00, 00.00)
	Anamadi, M., et al. (2017)	Female:Male		0		1					04.00 (01.00, 00.30) 90.67 (77.00, 94.12)
	Li, H., et al. (2017)	Female:Male		۱.							80.07 (77.00, 84.13)
	LI, II., et al. (2013)	T emale.indie		Ĭ		8					00.10 (14.03, 05.50)
	PS										
	Ahamadi, M., et al. (2017)	PS>0:PS=0			~	0					107.39 (103.74, 110.80)
	Li, H., et al. (2017)	PS>0:PS=0			0	1					106.36 (102.97, 109.75)
	Li, H., et al. (2019)	PS>0:PS=0			0	1 1 1					102.41 (98.26, 107.33)
	TUMOR TYPE										
	Ahamadi, M., et al. (2017)	NSCLC:MEL									114.50 (109.22, 119.30)
	LI, H., et al. (2017)	NSCLC:MEL			0	~					105.16 (102.25, 107.92)
	Hurkmans, D. P., et al. (2021)	UCC.Other				0					129.00 (102.00, 156.00)
	IPI					8					
	Ahamadi, M., et al. (2017)	IPI-treated:IPI-naïve			0						114.00 (109.48, 118.60)
	· · · · · · · · · · · · · · · · · · ·				_						, , , , , , , , , , , , , , , , , , , ,
				·+							
	ALB										
	Ahamadi, M., et al. (2017)	3.96 (3-4.6) [g/dL]				-0					128.64 (123.46, 133.85)
				-		1					87.29 (85.44, 89.25)
	Li H. et al. (2017)	4 (3,4,6) [a/d]]									131.00 (126.00, 135.42)
<u> </u>	LI, H., et al. (2017)	4 (3-4.0) [g/dL]		i							87 68 (86 30 89 07)
U U											01.00 (00.00, 00.01)
ab	Li, H., et al. (2019)	3.9 (3-4.6) [a/dL]									129.12 (122.32, 135.57)
Ę											85.15 (82.57, 88.09)
ct on Pembrolizu											
	Hurkmans, D. P., et al. (2021)	4.3 (3-4.6) [g/dL]									167.33 (127.28, 219.99)
				i							90.81 (86.27, 95.58)
	BTSIZE										
	Ahamadi, M., et al. (2017)	8.96 (2-21.6) [cm]									87.74 (85.05, 90.69)
					-						107.97 (105.90, 109.97)
fe		0.4 (0.04.0) []									04 52 (02 42 00 02)
Ξ	LI, H., et al. (2017)	9.1 (2-21.6) [cm]				1					04.32 (02.12, 00.92)
					-						110.07 (100.32, 111.09)
	Li H. et al. (2019)	94 (2-216) [cm]									83 44 (79 16 87 96)
	21, 11, 0101 (2010)				-						110 22 (107 14 113 39)
											110.22 (101.11, 110.00)
	eGFR					1					
	Ahamadi, M., et al. (2017)	88.47 (46.9-114) [mL/min/1.73 m ²]		-							91.79 (88.25, 95.04)
					•						103.48 (102.05, 105.12)
	Li, H., et al. (2017)	88.43 (46.9-114) [mL/min/1.73 m ²]		. +-	_						92.91 (90.29, 95.58)
					•	1					102.99 (101.82, 104.17)
					_						00 00 (00 07 00 00)
	LI, H., et al. (2019)	89.16 (46.9-114) [mL/min/1.73 m ²]				1					93.66 (89.37, 98.22)
					-						102.34 (100.69, 104.39)
	BIL										
	Li, H., et al. (2017)	9 (5.5-10.6) [umol/L]			₽						102 48 (100 90, 104 08)
		() [.]			0	1					99.19 (98.68, 99.70)
											· · · · · · · · · · · · · · · · · · ·
	Li, H., et al. (2019)	8.55 (5.5-10.6) [µmol/L]									102.67 (99.49, 104.88)
				-							98.72 (97.71, 100.25)
	201										
	BSA	4 00 (4 04 0 00) 5 2									00.02 (04.02, 02.02)
	nurkmans, D. P., et al. (2021)	1.90 (1.81-2.09) [m*]			-						09.03 (04.33, 93.98) 100 83 (105 14, 114 73)
											103.03 (103.14, 114.73)
			60	80 10	00 12	20 140	160	180	200	220	
				Cov	ariate E	ffect [% l	Reference	Value]			

 ○ Estimate (95% CI): Categorical
 □ Estimate (95% CI): Continuous P05 Estimate (95% CI): Continuous P95

А

С

D

Supplementary Figure 2. The effects of included covariates on CL of (A) pembrolizumab, (B) dostarlimab, (C) cemiplimab and (D) camrelizumab. *Categorical covariate effects (95% confidence interval [CI]) are represented by open symbols (horizontal lines). Continuous covariate effects (95% CI) at the 5th/95th percentiles of the covariate are represented by the end of horizontal boxes (horizontal lines). The typical value of clearance in each study was considered to be 1. The effect of each covariate for clearance is displayed by the ratio of clearance in the range of each covariate to the typical clearance value. PS performance status, IPI ipililumab prior treatment status: naive or treated, BTSIZE baseline tumor size described by the sum of long diameters of target tumor lesions, eGFR estimated glomerular filtration rate, BIL bilirubin, BSA body surface area, ALB albumin, ALT alanine aminotransferase, BW body weight, IgG immunoglobulin G, P05 5th percentile, P95 95th percentile*

Supplementary Table 1. The effects of included covariates on $V_{ m C}$ of nivolumab, pembrolizumab, dostarlimab and cemiplimab.									
anti-PD-1 mAbs	Continuous covariate	Reference	Reference value (P05-P95)	Estimate (95%CI): P05	Estimate (95%CI): P95	Categorical covariate	Reference	Comparator: Reference	Estimate (95%CI)
Nivolumab	BW	Bajaj, G., et al. (2017)	80 (51-111) [kg]	76.43 (73.6, 79.34)	121.59 (118.33, 124.99)	SEX	SEX al. (2017)		85.9 (81.87, 89.58)
		Hamuro, L., et al. (2019)	80 (51-111) [kg]	78.07 (74.66, 81.62)	119.74 (115.92, 123.68)		Hamuro, L., et al. (2019)	Female: Male	85.81 (81.79, 90.03)
		Osawa, M., et al. (2019)	80 (51-111) [kg]	82.47 (79.59, 85.38)	115.05 (112.18, 118.06)		Osawa, M., et al. (2019)	Female: Male	82.78 (78.66, 86.85)
		Wang, X., et al. (2019)	80 (51-111) [kg]	75.82 (72.9, 78.85)	122.31 (118.87, 125.85)		Wang, X., et al. (2019)	Female: Male	90.3 (86.18, 94.63)
		Zhang, J., et al. (2019) ^a	80 (51-111) [kg]	71.67 (68.54, 74.9)	127.42 (123.4, 131.62)		Zhang, J., et al. (2019) ^a	Female: Male	87.63 (82.94, 92.24)
		Zhang, J., et al. (2019) ^b	80 (51-111) [kg]	78.63 (77.05, 80.24)	119.11 (117.37, 120.88)		Zhang, J., et al. (2019) ^b	Female: Male	85.13 (82.78, 87.63)
						TUMOR TYPE	Wang, X., et al. (2019)	SQ+NSQ: Other	85.21 (82.07, 88.48)
Pembrolizu mab	ALB	Ahamadi, M., et al. (2017)	3.96 (3-4.6) [(g/dL)]	105.94 (103.16, 108.81)	96.93 (95.55, 98.34)	SEX	Ahamadi, M., et al. (2017)	Female: Male	86.6 (84.2, 89.1)
		Li, H., et al. (2017)	4 (3-4.6) [(g/dL)]	106.72 (104.26, 109.24)	96.89 (95.8, 97.99)		Li, H., et al. (2017)	Female: Male	85.32 (82.54, 87.98)
		Li, H., et al. (2019)	3.9 (3-4.6) [(g/dL)]	107.28 (104.23, 110.48)	95.67 (93.92, 97.43)		Li, H., et al. (2019)	Female: Male	84.26 (80.24, 88.64)
	LDH	Hurkmans, D. P., et al. (2021)	238(190-316) [(IU/L)]	92.63 (89.75, 95.6)	110.12 (105.83, 114.58)	IPI	Ahamadi, M., et al. (2017)	IPI-treated: IPI-naïve	107.36 (104.16, 110.6)
						TUMOR TYPE	Hurkmans, D. P., et al. (2021)	Meso: other	58 (32, 84)
Dostarlimab	BW	Melhem, M., et al. (2022)	70 (51- 111) [kg]	87.57 (86.36, 88.77)	121.31 (118.93, 123.8)	SEX	Melhem, M., et al. (2022)	Female: Male	83.8 (79.8, 87.8)

	ALB	Melhem, M., et al. (2022)	3.9 (3- 4.6) [g/dL]	104.1 (101.22, 107.09)	97.51 (95.78, 99.24)		
Cemiplimab	BW	Yang, F., et al. (2021)	75 (51- 111) [kg]	68.79 (64.9, 72.92)	146.27 (137.86, 155.19)		
	BMI	Yang, F., et al. (2021)	26.5(14.8-56.3) [kg/m ²]	138.57 (125.66, 152.81)	65.57 (57.78, 74.42)		

V_C central volume of distribution, P05 5th percentile, P95 95th percentile, 95% CI 95% confidence interval, BW body weight, ALB albumin, LDH lactate dehydrogenase, IPI ipilimumab treatment status: naive or treated, BMI body mass index, ^a reference [31], ^b reference [32]