Supplementary Table 1: Studies of Clustering Analysis of Patients with HFpEF

Authors	Data source	Study outcomes	Phenotypic approach	Number of features included	Number of clusters	Characteristics of each phenotype (proportion of patients out of studied patients, %)
Shah et al.Error! Bookmark not defined. (2015)	397 patients from Northwestern University HFpEF program	CV and non- CV hospitalisation	Hierarchical clustering	67 (Demographic, echocardiographic parameters, invasive haemodynamic assessments) *No comorbidities included	3	1. Younger, lower BNP, least myocardial remodeling and dysfunction (32%) 2. Highest prevalence of obesity, DM, obstructive sleep apnoea, highest PCWP and PVR (30%) 3. Oldest, high prevalence of AF, CKD, high BNP, high MAGGIC score, longest QRS duration, highest LVMI, worst RV function, worst outcome (38%) *Cluster 3 had the highest HR of 1.7 (95% CI 0.6-4.9) versus Group 1 for all-cause death HF duration was similar across phenotypes
Kao et al.Error! Bookmark not defined. (2015)	4,113 patients from I- PRESERVE	All-cause mortality or CV hospitalisation	Latent class analysis	11 (Age, gender, BMI, AF, CAD, DM, hyperlipidaemia, valvular disease, alcohol use, eGFR, haematocrit)	6	1. 100% men, younger, more alcohol use, low rates of AF, renal disease, valvular disease (15%) 2. Predominantly women, younger, more anaemia, low rates of AF, renal disease, valvular disease (17%) 3. High rates of obesity, DM, hyperlipidaemia, CAD, anaemia, worse renal function (8%) 4. 100% women, average rates of DM, hyperlipidaemia, obesity, renal insufficiency (30%) 5. 100% men, lower BMI, excess AF and CAD (18%) 6. Predominantly women advanced age, lower BMI, higher rates of AF, valvular disease, renal dysfunction, anaemia, worst outcome (12%) *Cluster 6 had the highest HR of 3.1 (95% CI 2.4-4.0) versus Group 1 for all-cause death or CV hospitalisation
Segar et al.Error! Bookmark not defined. (Oct 2019)	654 patients from TOPCAT Outcome;	Composite of aborted cardiac arrest, HF hospitalisation or CV death	Penalized finite mixture model-based clustering analysis	61 (Demographics, clinical variables, laboratory data, electrocardiographic characteristics, and echocardiographic parameters)	3	1. Higher BMI , severe HF symptoms, higher NP, highest prevalence of DM , dyslipidaemia, and atherosclerotic CV disease, worst abnormalities in LV and LA structure and function, worst outcome (21%) 2. lowest DM , mild HF symptoms , lower CV disease , higher burden of diastolic dysfunction (17%) 3. lowest BMI, intermediate burden of atherosclerotic vascular disease, DM, lowest NP level, most favourable diastolic function profile (63%) *Cluster 1 had the highest HR of 1.9 (95%CI 1.4-2.7) versus Group 3 for the composite of aborted cardiac arrest, HF hospitalisation or CV death
Hedman, et al. Error!	320 patients from KaRen study	Composite of all-cause mortality and	Model-based clustering	32 echo variables	6	1. Younger , risk factors such as HTN, CAD, DM , larger LV volumes and CKD (9%) 2. Older , less hypertrophy but worse LV and RV systolic function and more severe HF, and notably high prevalence of COPD , worst outcome (13%)

Bookmark not defined. (Jan 2020)		HF hospitalisation		11 laboratory and routine clinical variables		3. Younger, male, obesity, less left and right diastolic and systolic function, and milder HF (15%)4. Male, hypertension, LV hypertrophy, LA enlargement and AF (16%) 5. Older, female, HTN, CAD, large left side but good RV function (32%) 6. Older, female, low BMI, hypertension, AF and right-sided failure (15%) *Cluster 2 had the highest HR of 5.73 (95% CI 2.57 to 12.77) versus Group 3 for Composite of all-cause mortality or HFH (13%)
Cohen et al.Error! Bookmark not defined. (March 2020)	3442 patients from TOPCAT	Composite of CV death, HF hospitalisation, or aborted cardiac arrest	Latent class analysis	8 (Age, sex, race, DM, AF, obesity, NYHA class CKD)	3	1. Younger, smoking, preserved functional class, highest smoking rate, preserved renal function, low DM, least evidence of LV hypertrophy and arterial stiffness, lowest NT-proBNP (35%) 2. Older, high prevalence of AF and CKD, low DM and obesity, small concentric LV with lowest LV mass, largest LA enlargement, large-artery stiffening, biomarkers of innate immunity and vascular calcification (IL-8, pentraxin-3, soluble intercellular adhesion molecule-1) (39%) 3. Very high prevalence of obesity and DM, high prevalence of CKD and depression, impaired functional class, concentric LV hypertrophy, high TNF-alpha, liver fibrosis, tissue remodeling, worst outcome (26%) *Cluster 3 had the highest HR of 3.4 (95%CI 2.8-4.2) versus Group 1 for composite of CV death, HFH, aborted cardiac arrest
Schrub et al.Error! Bookmark not defined. (May 2020)	356 patients from KaRen study	Composite of all-cause mortality or first hospitalisation for HF	Hierarchical clustering	55 (Demographic, comorbidities, echocardiographic parameters of left and right-side heart including strain measurements)	3	1. Younger male, highest rate of HTN, DM , obesity and renal insufficiency (36%) 2. Female dominant, lowest rates of DM, less sinus rhythm, preserved renal function, subnormal LV function (38%) 3. Oldest, female prevalent, highest rate of rhythm disorder , highest incidence of MR and atrial remodeling (26%) *No statistical difference in all-cause death or HF hospitalisation
Woolley et al.Error! Bookmark not defined. (March 2021)	429 patients from BIOSTAT- CHF	Occurrence of death or HF hospitalisation	Hierarchical clustering	363 biomarkers	4	1. Highest prevalence of DM , and renal disease, activation of inflammatory pathways (14%) 2. Oldest and frequent age-related comorbidities (38%) 3. Youngest , highest prevalence of obesity , least symptoms , lowest NT-proBNP (39%) 4. Highest prevalence of COPD , ischaemic aetiology, smoking, more symptom , highest NT-proBNP and troponin (10%) *Occurrence of death or HFH was highest in Group 1 (62.1%) and 4 (62.8%) and lowest in Group 3 (25.6%)
Uijl et al.Error! Bookmark not defined.	6909 patients from SwedeHF registry	Composite of CV mortality and HF hospitalisation	Latent class analysis	10 (Age, sex, NYHA class, classified BMI, classified eGFR, AF, COPD, DM, HTN, IHD)	5	1. Young, low comorbidity burden, highest implantable device (10%) 2. AF, HTN, without DM (30%) 3. Oldest, high prevalence of AF (25%) 4. High prevalence of obesity, DM and HTN (15%)

(May 2021)			5. Older, high prevalence of AF, HTN, low eGFR, frequent diuretic prescription (20%)
			*Cluster 5 had the highest HR of 4.7 (95%CI 3.4-6.4) versus Group1 for composite of all-cause death or HFH

^{*}Features used to further classify into five common phenotypes (Figure 1) are bolded.

Abbreviations: AF = atrial fibrillation; BIOSTAT-CHF = Biology Study to Tailored Treatment in Chronic Heart Failure; BMI = body mass index; BNP = brain natriuretic peptide; CAD = coronary artery disease; CI = confidence interval; CKD = chronic kidney disease; CV = cardiovascular; DM = diabetes mellitus; HFH = heart failure hospitalisation; eGFR = estimated glomerular filtration rate; HFpEF = heart failure with preserved ejection fraction; HTN = hypertension; HR = hazard ratio; IHD = ischaemic heart disease; IL = interleukin; I-PRESERVE = Irbesartan in Heart Failure with Preserved Ejection Fraction Study; KaRen, Karolinska-Rennes; LA = left atrial; LV = left ventricular; LVMI = left ventricular; MAGGIC = Meta-Analysis Global Group in Chronic Heart Failure; MR = mitral regurgitation; NT-proBNP = N-terminal pro brain natriuretic peptide; NP = natriuretic peptide; NYHA = New York Heart Association classification; PCWP = pulmonary capillary wedge pressure; PMI = pacemaker implantation; PVR = pulmonary vascular resistance; RV = right ventricle; SBP = systolic blood pressure; SwedeHF = Swedish Heart Failure Registry; TNF = tumour necrosis factor; TOPCAT = Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist.