Supplementary Online Content Daneshjou R, Smith MP, Sun MD, Rotemberg V, Zou J. Lack of transparency and potential bias in artificial intelligence data sets and algorithms: a scoping review. *JAMA Dermatol*. Published online September 22, 2021. doi:10.1001/jamadermatol.2021.3129 eTable. Table of Characteristics Assessed in Each Study eMethods. Gold Standard Used eFigure. Mappings eReferences This supplementary material has been provided by the authors to give readers additional information about their work. | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set
used for statistical
reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |---|----------|-------------|--|---|---|---------------------------------|----------------------------|--|---|---|--|---|----------------------------|--|---|--|------------------------------| | A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task ¹ | 30852421 | 2019 | Combination
of ISIC
Archive and
HAM10000
(ISIC 2018
Train) | Train,
Internal
Validation | 12378
(Train set)
1359
(Internal
validation
set) | Not
specified | Dermoscopic | Atypical nevi,
melanoma | Melanomas – pathology
Nevi – pathology
(~24%), expert
consensus panel of
dermatologists
(~54%),
monitoring
temporal change
(~22%) | Melanomas – Y
Nevi – Y | N | N | Y | N | Y | N | N | | | | | MClass-Benchmark for clinical images collected from Department of Dermatology of the University Medical Center Groningen (subset of MED-NODE database) | Test | 100 | Not
specified | Clinical | Nevi, melanoma | Melanomas – pathology
Nevi – expert
consensus panel of
dermatologists | Melanomas – Y
Nevi – Y | N | N | Y | N | | | | | A deep learning system for differential diagnosis of skin diseases ² | 32424212 | 2020 | Teledermatolo
gy service
serving 17
primary-care
and specialist
sites from two
states in the
United States | Train,
Internal
Validation | 64,837 for
training | 16,114
cases for
training | Clinical | Acne, Actinic keratosis, Allergic contact dermatitis, Alopecia areata, Androgenetic alopecia, Basal cell carcinoma, Cyst, Eczema, Folliculitis, Hidradenitis, Lentigo, Melanocytic nevus, Melanoma, Post inflammatory hyperpigmentation , Psoriasis, | Expert consensus
panel of
dermatologists | Benign lesions: Y Basal cell carcinoma: N Melanoma: N Squamous cell carcinoma/squam ous cell carcinoma in situ (SCC/SCCIS): N | Y Type I: 46 (0.3%) Type II: 2,807 (17.4%) Type III: 6,641 (41.2%) Type IV: 5,040 (31.3%) Y Type V: 510 (3.2%) Type VI: 46 (0.3%) Unknown: 1,024 (10.2%) | Y American Indian or Alaska Native: 142 (0.1%) Asian: 1,775 (11.0%) Black or African American: 1,087 (6.8%) Hispanic or Latino: 7,044 (43.7%) Y | N | Y | N | Y | N | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |--|----------|-------------|--|---|---------------------------------|---|----------------------------|---|--|--|---|--|------------------------------|--|---|--|--| | | | | | | | | | Squamous cell
carcinoma/squamo
us cell carcinoma
in situ
(SCC/SCCIS),
Seborrheic
keratosis/irritated
seborrheic
keratosis | | | | Native Hawaiian
or Pacific Islander:
224 (1.4%)
White: 5,475
(34.0%)
Not specified: 367
(2.2%) | | | | | | | | | | | Test | 14,883
images for
testing | 3,756 cases for testing | Clinical | (SK/ISK), Scar condition, Seborrheic dermatitis, Skin tag, Stasis dermatitis, Tinea, Tinea versicolor, Urticaria, Verruca vulgaris, Vitiligo, Other | 52 cases of
malignancy were
biopsied (32 BCC,
6 melanoma, 14
SCC/SCCIS). All
others were by an
expert consensus
panel of
dermatologists. | Benign lesions: Y Basal cell carcinoma: N Melanoma: N Squamous cell carcinoma/squam ous cell carcinoma in situ (SCC/SCCIS): N | Y Type I: 9 (0.2%) Type II: 2,807 (17.4%) 383 (10.2%) Type III: 2,412 (64.2%) Type IV: 724 (19.3%) Type V: 101 (2.7%) Type VI: 1 (0.0%) Unknown: 126 (3.4%) | Y American Indian or Alaska Native: 42 (0.1%) Asian: 473 (12.6%) Black or African American: 229 (6.1%) Hispanic or Latino: 1,631 (43.4%) Native Hawaiian or Pacific Islander: 61 (1.6%) White: 1,175 (31.3%) Not specified: 145 (3.9%) | N | Y | | | | | A deep learning,
image-based
approach for
automated diagnosis
for inflammatory
skin diseases ³ | 32566608 | 2020 | Department of
Dermatology,
The Second
Xiangya
Hospital,
Central South
University,
China | Train,
Internal
Validation,
Test | 4740 | Not
specified;
mentioned
that
images
may be
from the
same
patient | Clinical | Psoriasis, eczema,
atopic dermatitis
and healthy skin | Consensus panel of dermatologists | Y | N | N | N | Y | N | N | Y
Smartphone
application
publicly
available to
physicians in
China | | A GAN-based
image synthesis
method for skin
lesion classification ⁴ | 32526536 | 2020 | HAM10000
(ISIC 2018
Train) | Train,
Internal
Validation,
Test | 10,015 | Not
specified | Dermoscopic | Actinic keratosis,
Intraepithelial
carcinoma
(Bowen's), Basal
cell carcinoma, | Actinic keratosis:
consensus,
Intraepithelial
carcinoma
(Bowen's): | Actinic keratosis:
Y, Intraepithelial
carcinoma
(Bowen's): Y,
Basal cell | N | N | Y Data available on request | Y | N | N | N | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) |
Image
processing
described (Y/N) | External test set
used for statistical
reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |---|----------|-------------|---|---|---|--------------------------|----------------------------|---|--|---|--|---|----------------------------|--|---|--|------------------------------| | | | | | Yanualion | | | | Benign keratosis,
Dermatofibroma,
Melanocytic nevi,
Vascular skin
lesions, Melanoma | pathology, Basal cell carcinoma: pathology, Benign keratosis: consensus, Dermatofibroma: consensus, Melanocytic nevi: consensus, Vascular skin lesions: consensus, Melanoma: consensus | carcinoma: Y,
Benign keratosis: Y,
Dermatofibroma: Y, Melanocytic
nevi: Y, Vascular
skin lesions: Y,
Melanoma: Y | | | | | | | | | A machine learning-
based, decision
support, mobile
phone application
for diagnosis of
common
dermatological
diseases ⁵ | 32991767 | 2020 | Dermatology
practices
across India | Train,
Internal
Validation,
Test | 7501
(This
number
was
derived
from
Table 1 of
the paper) | Not
specified | Clinical | Acne, Actinic
keratosis,
Alopecia,
Anogenital warts,
Basal cell
carcinoma,
Bowen's disease,
Bullous | Not specified | Cannot be determined | N | N | N | Y | Y | Y | N | | | | | Public
databases
(Hellenic
Dermatologic
al Atlas, Atlas
of
Dermatology) | Train,
Internal
Validation,
Test | 8227
(This
number
was
derived
from
Table 1 of
the paper) | Not
specified | Clinical | pemphigoid,
Candidiasis,
Chicken pox,
Discoid lupus
erythematosus,
Eczema, Fixed
drug eruption,
Herpes zoster,
Hidradenitis
suppurativa, | Not specified | Cannot be determined | N | N | Y | Y | | | | | Title PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |------------|-------------|---|---|-----------------------------|--------------------------|----------------------------|---|--|-------------------------|--|---|----------------------------|--|---|--|------------------------------| | | | All India Institute of Medical Sciences in New Delhi, an urban private practice in Gurugram, Haryana, India, and a rural health center in Jhajjar, Haryana, India | External Validation | 4254 | 4254 | Clinical | Ichthyosis, Impetigo and Pyodermas, Keloids/Hypertrop hic scar, Keratoacanthoma, Lichen planus, Lichen sclerosus, Melanocytic nevi/Mole, Melanoma, Molluscum contagiosum, Pemphigus, Pityriasis rosea, Pityriasis rosea, Pityriasis versicolor, Psoriasis, Rosacea, Seborrheic keratosis, Squamous cell carcinoma, Tinea capitis, Tinea cruris, corporis or faciei, Tinea manuum, Tinea pedis, Tinea unguium, Urticaria, Viral warts, Vitiligo/Leucoder ma, Normal skin | Clinical examination, laboratory investigation and/or histopathology Not specified by disease | Cannot be determined | N | N | N | Y | | | | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set
used for statistical
reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |--|----------|-------------|---|---|---|--------------------------|----------------------------|--|---|--------------------------|--|---|--|--|---|--|---| | A patient-oriented, general-practitioner-level, deep-learning-based cutaneous pigmented lesion risk classifier on a smartphone ⁶ | 31907926 | 2020 | Taipei
Medical
University | Train,
Internal
Validation,
Test | 5289 | 4635 | Clinical | "High risk" and "low risk" pigmented lesions | High risk:
consensus panel of
dermatologists
Low risk:
consensus panel of
dermatologists | High risk: N Low risk: Y | N | Y
100% Asian | N | Y | N | N (states that images were reserved "for later comparison of performance between models and general practitioners," but no such results are presented) | N | | A Point-of-Care,
Real-Time Artificial
Intelligence System
to Support Clinician
Diagnosis of a Wide
Range of Skin
Diseases ⁷ | | 2020 | VisualDx | Train,
Internal
Validation,
Test | 76,926 (69,195) training images, 3,869 internal validation images, and 3,862 test images) | Not specified | Clinical | No disease:
characterizing
morphology | No disease;
morphology by
consensus panel of
dermatologists | Cannot be determined | N | N | Y VisualDx data is available with a subscription (additional permission needed for machine learning use) | N | Y | N (evaluated against board-certified internal medicine doctors but not dermatologists) | Y
VisualDx
DermExpert is
commercially
available | | | | | Dataset 1:
Selected by
authors, not
specified. | External
Test | 16 | Not
specified | Clinical | | No disease;
morphology by
consensus panel of
dermatologists | Cannot be determined | N | N | N | N | | | | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) |
--|----------|-------------|--|---|-----------------------------|--------------------------|----------------------------|---|--|-------------------------|--|---|----------------------------|--|---|--|------------------------------| | | | | Dataset 2:
Selected by
authors, not
specified | External
Test | 222 | Not
specified | Clinical | | No disease;
morphology by
consensus panel of
dermatologists | Cannot be determined | Y Types I-III: 169 Types IV-VI: 53 | N | N | Y | | | | | A pretrained neural
network shows
similar diagnostic
accuracy to medical
students in
categorizing | 28569993 | 2017 | Not specified | Train,
Internal
Validation | 298 | Not
specified | Dermoscopic | Basal cell
carcinomas,
dermatofibromas,
melanomas,
melanocytic naevi,
seborrheic | Not specified | Cannot be determined | N | N | N | N | N | N (Medical students evaluated against the model's | N | | dermoscopic images
after comparable
training conditions ⁸ | | | Not specified | Test | 50 | Not
specified | Dermoscopic | keratoses and
vascular lesions | Not specified | Cannot be determined | N | N | N | N | | output but not
dermatologists) | | | A superpixel-driven deep learning approach for the analysis of dermatological wounds ⁹ | 31542688 | 2020 | Neurovascular Ulcers Outpatient Clinic of the Clinical Hospital of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil | Train,
Internal
Validation,
Test | 217 | Not
specified | Clinical | Arterial and
venous ulcers (for
wound
quantification) | Clinical diagnosis | Y | N | N | Y | Y | N | N | Y | | Acral melanoma
detection using a
convolutional
neural network for
dermoscopy
mages ¹⁰ | 29513718 | 2018 | Severance Hospital in the Yonsei University Health System, Seoul, Korea and Dongsan Hospital in the Keimyung University Health System, Daegu, Korea. | Train,
Internal
Validation,
Test | 724 | 275 | Dermoscopic | Aacral melanoma
and benign nevi | Pathology
confirmed | Y | N | Y "Asians" | Y | Y | N | Y (compared diagnostic rate of model with those of 2 dermatologists) | N | | Artificial Intelligence and Its Effect on Dermatologists' Accuracy in Dermoscopic | 32915161 | 2020 | ISIC Archive,
with a large
fraction of
images
coming from a
subset of | Train
Internal
Validation
Test | 4944 | Not
specified | Dermoscopic | Melanoma and
benign nevus | Pathology
confirmed | Y | N | N | Y | Y | N | Y | N | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |--|----------|-------------|--|---|---|--------------------------|----------------------------|---|--|------------------------------------|--|---|---|--|---|--|------------------------------| | Melanoma Image
Classification:
Web-Based Survey
Study ¹¹ | | | HAM10000
(ISIC 2018
Trrain) | | | | | | | | | | | | | | | | Assessing the effectiveness of artificial intelligence methods for melanoma: A retrospective review ¹² | 31255749 | 2019 | ISIC Archive,
subset of
dermoscopic
images from
ISDIS-ISIC
(no
specification
of which
year/what set) | Train,
Internal
Validation,
Test | 2200 | Not
specified | Dermoscopic | Melanoma and non-melanoma | Benign (non-
melanoma): expert
consensus
Malignant
(melanoma):
pathology | Non-melanoma:
Y
Melanoma – Y | N | N | Y | Y | N | N | N | | Assessment of Accuracy of an Artificial Intelligence Algorithm to Detect Melanoma in Images of Skin Lesions ¹³ | 31617929 | 2019 | 7 United
Kingdom
hospitals | External
Validation | 289 (Fine tuning) 1550 (External validation) | 514 | Dermoscopic | Melanoma,
dysplastic nevi,
other | 551 biopsied: 125 (22.7%) melanomas, 148 (26.8%) dysplastic nevi, and 278 (50.5%) received other diagnoses 999 lesions: described as thought to be "clinically benign" | Y | Y Type I: 61 (12.4%), Type II: 172 (34.9%), Type III: 184 (37.3%), Type IV: 62 (12.6%), Type V: 10 (2.0%), Type VI: 4 (0.8%), Missing: 8 (1.6%). | Y White: 484 (96.8%) Non-white: 16 (3.2%) Missing: 1 (0.1%) | N | Y | Y External validation only | Y | N | | Association Between Surgical Skin Markings in Dermoscopic Images and Diagnostic Performance of a Deep Learning Convolutional Neural Network for Melanoma Recognition ¹⁴ | 31411641 | 2019 | Department of
Dermatology,
University of
Heidelberg | External
Validation | 130 | Not
specified | Dermoscopic | Benign nevi,
melanoma | Melanomas:
pathology, Benign
nevi: no change
over 2 yeas | Y | N N | N | N | Y | Y External validation only | N | N | | Augmented
Intelligence
Dermatology: Deep
Neural Networks
Empower Medical
Professionals in
Diagnosing Skin
Cancer and | 32243882 | 2020 | ASAN:
Department of
Dermatology
at Asan
Medical
Center | Train,
Internal
Validation | 120,780 | 20,765 | Clinical | 174 disorders | Clinical diagnosis
and/or pathology | Cannot be determined | N | Y
>99% Asian | N | Y | Y | Y | Y
modelderm.com | | Predicting
Treatment Options
for 134 Skin
Disorders ¹⁵ | | | Normal:
scraped from
the internet
and lesions | Train,
Internal
Validation | 48,271 | 5,849 | Clinical | Normal skin or
nonspecific
findings | Consensus panel of dermatologists | Y | N | Y >99% Asian | N
specific web
images not
shared | Y | | | | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set
used for statistical
reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |--|----------|-------------|--|---|-----------------------------|--------------------------|----------------------------|---|--|-------------------------|--|---|--|--|---|--|------------------------------| | | | | cropped out
from ASAN MED-NODE: University Medical Center Groningen | Train,
Internal
Validation | 170 | Not
specified | Clinical | Melanoma vs
nevus | Pathology | Y | N | Y
Mainly Caucasian | Y | Y | | | | | | | | Web: scraped from the internet | Train,
Internal
Validation | 51,459 | Not
specified | Clinical | 174 disorders | Consensus panel of dermatologists | Cannot be determined | N | Y
Mainly Caucasian | N
specific web
images
not
shared | Y | - | | | | | | | Edinburgh
Dermofit
Image
Library | Test,
External
Validation | 1,300 | Not
specified | Clinical | 10 disorders | Pathology | Y | N | Y
Mainly Caucasian | Y Commerciall y available | Y | | | | | | | | SNU dataset: Department of Dermatology at Seoul National University Bundang Hospital, Inje University Sanggye Paik Hospital, and Hallym University Dongtan Hospital. | Test,
External
Validation | 2,201 | 1608 | Clinical | 134 disorders | Clinical diagnosis
and/or pathology | Cannot be determined | N | Y
>99% Asian | Y Partially shared, additional data upon request | Y | | | | | Automated detection of erythema migrans and other confounding skin | 30654165 | 2018 | Online images | Train,
Internal
Validation,
Test | 1,718 | Not
specified | Clinical | Erythema migrans,
tinea corporis,
herpes zoster, and
normal skin | Labeled by a single dermatologist | Y | N | N | N
Specific web
images not
shared | Y | Y | N (only compared against convenience | N | | esions via deep
earning ¹⁶ | | | Mid-Atlantic
region
research
participants | Test,
External
Validation | 116 | 63 | Clinical | Erythema migrans | Clinical diagnosis
in person | Y | N | N | N | Y | | sample of 7 non-
medically-trained
humans) | | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set
used for statistical
reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |--|----------|-------------|--|---|-----------------------------|--------------------------|----------------------------|---|---|-------------------------|--|---|----------------------------|--|---|--|------------------------------| | Classification of the
Clinical Images for
Benign and
Malignant
Cutaneous Tumors
Using a Deep
Learning
Algorithm ¹⁷ | 29428356 | 2018 | Asan: Department of Dermatology at Asan Medical Center | Train,
Internal
Validation,
Test | 17,125 | 4,867 | Clinical | Basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, actinic keratosis, seborrheic keratosis, malignant melanoma, melanocytic nevus, lentigo, pyogenic granuloma, hemangioma, dermatofibroma, wart | 12,656
pathology
confirmed, others
by clinical
diagnosis code | Cannot be determined | N | Y
>99% Asian | N | Y | Y | N | Y | | | | | Additional
Asan | Train,
Internal
Validation | 159,477 | 17,888 | Clinical | 248 diseases | Pathology if
available,
otherwise clinical
diagnosis code | Cannot be determined | N | Y >99% Asian | N | | | | | | | | | Atlas: multiple dermatology online atlases: D@nderm Atlas of Clinical Dermatology (http://www.d anderm- pdv.is.kkh.dk/ atlas/index.ht ml) Dermquest (http://dermqu est.com) Interactive Derm Atlas (http://www.d ermatlas.net) | Train,
Internal
Validation | 3,820 | Not specified | Clinical | Basal cell
carcinoma,
seborrheic
keratosis,
malignant
melanoma,
melanocytic
nevus, lentigo,
wart | Not specified | Cannot be determined | N | N | Y | | | | | | | | | online atlases: D@nderm Atlas of Clinical Dermatology (http://www.d anderm- pdv.is.kkh.dk/ atlas/index.ht ml) Dermquest (http://dermqu est.com) Interactive Derm Atlas (http://www.d | vandauon | | | | keratosis,
malignant
melanoma,
melanocytic
nevus, lentigo, | | | | | | | | | | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Available | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |-------|------|-------------|---|---|-----------------------------|--------------------------|----------------------------|-------------------------|-----------|-------------------------|--|---|-----------|--|---|--|------------------------------| | | | | misroot/en/ho me/index.htm) Loyola University Dermatology Medical Education Website (http://www.m eddean.luc.ed u/lumen/Med Ed/medicine/d ermatology/m elton/atlas.htm | | | | | | | | | | | | | | | | | | | Dermatoweb (http://www.d ermatoweb.net /) | | | | | | | | | | | | | | | | | | | Dermatology Atlas (http://www.at lasdermatolog ico.com.br/) Hellenic Derm Atlas | | | | | | | | | | | | | | | | | | | (http://www.h
ellenicdermatl
as.com/en/?pa
rams=en) | | | | | | | | | | | | | | | | | | | MED-NODE:
University
Medical
Center
Groningen | Train,
Internal
Validation | 170 | Not
specified | Clinical | Melanoma vs
nevus | Pathology | Y | N | Y
Mainly Caucasian | Y | | | | | | | | | Hallym
dataset:
Dongtan
Sacred Heart
Hospital, | Test,
External
Validation | 152 | 106 | Clinical | Basal cell
carcinoma | Pathology | | Not specified | 104 Asian
2 Caucasian | N | _ | | | | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |---|----------|-------------|--|---|-----------------------------|--------------------------|----------------------------|--|--|-------------------------|--|---|--|--|---|--|------------------------------| | | | | Hallym
University,
and Sanggye
Paik Hospital,
Inje
University | | | | | | | | | | | | | | | | | | | Edinburgh
dataset:
Edinburgh
Dermofit
Image
Library | Test,
External
Validation | 1,300 | Not
specified | Clinical | Basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, actinic keratosis, seborrheic keratosis, malignant melanoma, melanocytic nevus, pyogenic granuloma, hemangioma, dermatofibroma | Pathology | Y | N | Y Mainly Caucasian | Y Commerciall y available | | | | | | Clinically Applicable Deep Learning Framework for Measurement of the Extent of Hair Loss in Patients With Alopecia Areata ¹⁸ | 32785607 | 2020 | Yonsei
University
Wonju
Severance
Christian
Hospital | Train,
Internal
Validation,
Test | 2,716 | 679 | Clinical | Alopecia areata | Pixel annotations
by board certified
dermatologist | Y | N | N | Y
Partial:
masks
but
not clinical
images | Y | N | Y | Y | | | | | Yonsei
University
Wonju
Severance
Christian
Hospital | Test | 400 | 100 | Clinical | | Pixel annotations
by board certified
dermatologist | Y | N | N | Y
Partial:
masks but
not clinical
images | Y | | | | | Clinically Relevant
Vulnerabilities of
Deep Machine
Learning Systems
for Skin Cancer
Diagnosis ¹⁹ | 32931808 | 2020 | International
Skin Imaging
Collaboration
Challenge
dataset 2018 | Train,
Internal
Validation,
Test | 23,010 | Not
specified | Dermoscopic | Melanoma, benign
nevi | Not specified | Cannot be determined | N | N | Y | Y | N | N | Y | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set
used for statistical
reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |--|----------|-------------|---|---|-----------------------------|--------------------------|----------------------------|---|--|-------------------------|--|---|----------------------------|--|---|--|------------------------------| | Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study ²⁰ | 31201137 | 2019 | ISIC 2018 challenge train and test: Vienna Dermatologic Imaging Research Group (ViDIR) at the Department of Dermatology at the Medical University of Vienna (Vienna, Austria), and the skin cancer practice of Cliff Rosendahl in Queensland (Capalaba, QLD, Australia) | Train, Internal Validation, Test | 11,210 | Not specified | Dermoscopic | Intraepithelial carcinoma including actinic keratoses and Bowen's disease, basal cell carcinoma, benign keratinocytic lesions including solar lentigo, seborrheic keratosis and lichen planus-like keratosis, dermatofibroma, melanoma. melanocytic nevus, and vascular lesions | Pathology: >50% of all lesions, biology (>1.5 years sequential dermoscopic imaging without changes), and expert consensus in some cases of common, straightforward, non-melanocytic cases that were not excised. | Cannot be determined | N | N | Y | N | Y Mix of test and external test | Y | N | | | | | External test
set: Turkey,
New Zealand,
Sweden, and
Argentina | External
Validation | 316 | Not
specified | Dermoscopic | Not specified | Not specified | Cannot be determined | N | N | N | N | | | | | Computer algorithms show potential for improving dermatologists' accuracy to diagnose cutaneous melanoma: Results of the International Skin Imaging Collaboration 2017 ²¹ | 31306724 | 2020 | ISIC 2017
challenge test | Test | 150 | Not
specified | Dermoscopic | Melanomas (50),
Benign nevi (50),
and seborrheic
keratosis (50) | Not specified | Cannot be determined | N | N | N | N | N | Y | N | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |--|----------|--------------|---|---|-----------------------------|--------------------------|----------------------------|--|---|-------------------------|--|---|--|--|---|--|------------------------------| | Data augmentation
in dermatology
image recognition
using machine
learning ²² | 31140653 | 2019 | DermNet NZ,
Dermatology
Atlas,
Hellenic
Dermatologic
al Atlas, and
Google
Images | Train,
Internal
Validation,
Test | 1088 | Not
specified | Clinical | Acne, atopic
dermatitis,
impetigo,
psoriasis, and
rosacea | Not specified | Cannot be determined | Not Specified | Not specified | Y
(partial,
Google
images not
indicated) | Y | N | N | N | | Deep learning-
based classification
of facial
dermatological
disorders ²³ | 33221639 | 2020
Epub | DermNet NZ,
DermQuest,
DermWeb,
and
Dermatoweb | Train,
Internal
Validation,
Test | 505 | Not
specified | Clinical | Acne vulgaris,
psoriasis,
hemangioma,
seborrheic
dermatitis and
rosacea | Not specified | Cannot be determined | N | N | Y | Y | N | N | N | | Deep Learning for
Diagnostic Binary
Classification of
Multiple-Lesion
Skin Disease ²⁴ | 33072786 | 2020 | Department of
Dermatology,
Aarhus
University
Hospital
(AUH),
Denmark | Train,
Internal
Validation,
Test | 16,543 | 2,342 | Clinical | Acne, rosacea,
psoriasis, eczema,
and cutaneous t-
cell lymphoma | Diagnosed by
trained
dermatologists
according to ICD-
10 codes | Cannot be determined | Y
Fitzpatrick skin
type II and III | Y
Danish | N | Y | N | N | Y | | Deep learning
outperformed 136
of 157
dermatologists in a
head-to-head
dermoscopic
melanoma image
classification task ²⁵ | 30981091 | 2019 | ISIC Archive | Train,
Internal
Validation,
Test | 13,737 | Not
specified | Dermoscopic | Atypical nevi
(18,566) and
melanoma (2,169) | Melanomas: histopathological evaluation of biopsies. Nevi: either by histopathological examination (~24%), expert consensus (~54%) or by another diagnosis method, such as a series of images that showed no temporal changes (~22%). | Y | N | N | Y | N | N | Y | N | | Deep learning-
based, computer-
aided classifier
developed with
dermoscopic images
shows comparable
performance to 164 | 32826613 | 2020 | Dataset I:
Department of
Dermatology,
Peking Union
Medical
College
Hospital | Train,
Internal
Validation,
Test | 7,262 | 1,554 | Dermoscopic | Basal cell
carcinoma,
melanocytic
nevus, seborrheic
keratosis, others | Basal cell
carcinoma
confirmed by
pathology. Others
by expert
consensus | Y | Y
Type IV | Y
Asian | N | Y | N | Y | N | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |--|----------|-------------|--
---|-----------------------------|--------------------------|----------------------------|---|--|--|--|---|----------------------------|--|---|--|------------------------------| | dermatologists in
cutaneous disease
diagnosis in the
Chinese
population ²⁶ | | | Dataset II: Department of Dermatology, Peking Union Medical College Hospital | Train,
Internal
Validation,
Test | 3,175 | 561 | Dermoscopic | Psoriasis, other
inflammatory
disorders | Expert consensus | Y | Y
Type IV | Y
Asian | N | Y | | | | | Deep Neural Frameworks Improve the Accuracy of General Practitioners in the Classification of Pigmented Skin Lesions ²⁷ | 33218060 | 2020 | HAM10000
dataset from
ISIC | Train,
Internal
Validation,
Test | 10,015 | Not
specified | Dermoscopic | Actinic keratosis,
Intraepithelial
carcinoma
(Bowen's). Basal
cell carcinoma,
Benign keratosis,
Dermatofibroma,
Melanocytic nevi
Vascular skin
lesions, Melanoma | Actinic keratosis: consensus, Intraepithelial carcinoma, (Bowen's): pathology Basal cell carcinoma: pathology, Benign keratosis: consensus Dermatofibroma: consensus, Melanocytic nevi: consensus, Vascular skin lesions: consensus, Melanoma: consensus | Actinic keratosis: Y Intraepithelial carcinoma (Bowen's): Y Basal cell carcinoma: Y Benign keratosis: Y Dermatofibroma: Y Melanocytic nevi: Y Vascular skin lesions: Y Melanoma: Y | N | Y Nationality breakdown (as a percentage of the 10,015 images in the dataset): 2.0% Portuguese (PH2) 22.6% Australian (Rosendahl) Austrian (ViDIR) Not specified (Atlas and ISIC 2017) | Y | N | N | N (only against general practitioners) | N | | Deep neural
networks are
superior to
dermatologists in | 31401469 | 2019 | ISIC | Train,
Internal
Validation | 4204 | Not
specified | Dermoscopic | Melanoma and
nevi | Pathologically confirmed | Y | N | N | Y | Y | N | Y | N | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |--|----------|-------------|-------------------------------------|---|-----------------------------|--------------------------|----------------------------|---|--|-------------------------|--|---|----------------------------|--|---|--|------------------------------| | melanoma image
classification ²⁸ | | | ISIC | Test | 804 | Not
specified | Dermoscopic | Melanoma and nevi | Pathologically confirmed | Y | N | N | Y | Y | | | | | Deep neural
networks show an
equivalent and often
superior
performance to
dermatologists in | 29352285 | 2018 | Asan A1 –
Asan Medical
Center | Train,
Internal
Validation | 49567 | 4557 | Clinical | Onychomycosis,
nail dystrophy,
onycholysis,
melanonychia,
other nail
disorders, normal | Diagnosis based
on image by
dermatologist and
chart review | Y | N | N | Y | Y | Y | Y | Y | | onychomycosis
diagnosis:
Automatic
construction of | | | Asan A2 –
Asan Medical
Center | Train,
Internal
Validation | 3741 | 484 | Clinical | Onychomycosis,
nail dystrophy,
onycholysis,
melanonychia | Clinical diagnosis
in clinic and
fungal culture in
64.7% | Y | N | N | Y | Y | | | | | onychomycosis
datasets by region-
based convolutional
deep neural
network ²⁹ | | | Inje B1 – Inje
University | Test,
External
Validation | 100 | 57 | Clinical | Onychomycosis
and nail dystrophy | Onychomycosis – positive KOH or fungal culture or successful treatment with antifungals. Note that all Inje B1 had positive fungal culture. Nail dystrophy – negative KOH or fungal culture, unresponsiveness to antifungals, or responsiveness to triamcinolone intralesional injection | Y | N | N | Y | Y | | | | | | | | Inje B2 - Inje
University | Test,
External
Validation | 194 | 61 | Clinical | Onychomycosis,
nail dystrophy | Onychomycosis – positive KOH or fungal culture or successful treatment with antifungals. Nail dystrophy – negative KOH or fungal culture, unresponsiveness to antifungals, or responsiveness to triamcinolone | Y | N | N | Y | Y | | | | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |--|----------|-------------|---|---|-----------------------------|--------------------------|----------------------------|---|---|-------------------------|--|---|----------------------------|--|---|--|------------------------------| | | | | | | | | | | intralesional
injection | | | | | | | | | | | | | Hallym –
Hallym
University | Test,
External
Validation | 125 | 25 | Clinical | Onychomycosis,
nail dystrophy | Onychomycosis – positive KOH or fungal culture or successful treatment with antifungals. Note all cases here were KOH confirmed. Nail dystrophy – negative KOH or fungal culture, unresponsiveness to antifungals, or responsiveness to triamcinolone intralesional injection | Y | N | N | Y | Y | | | | | | | | Seoul – Seoul
National
University | Test,
External
Validation | 939 | 169 | Clinical | Onychomycosis, nail dystrophy | Onychomycosis – positive KOH or fungal culture or successful treatment with antifungals. Note all cases here were KOH confirmed. Nail dystrophy – negative KOH or fungal culture, unresponsiveness to antifungals, or responsiveness to triamcinolone intralesional injection | Y | N | N | Y | Y | | | | | Deep-learning-
based, computer-
aided classifier
developed with a
small dataset of
clinical images
surpasses board-
certified
dermatologists in
skin tumor
diagnosis ³⁰ | 29953582 | 2018 | University of
Tsukuba
Hospital | Train,
Internal
Validation,
Test | 6009 | 2296 | Clinical | Malignant melanoma (MM), squamous cell carcinoma (SCC), Bowen disease, actinic keratosis, basal cell carcinoma (BCC), naevus cell naevus
(NCN), blue naevus, congenital | All of the diagnoses were based on pathological examination except for the cases of congenital melanocytic naevus, naevus spilus and lentigo | Y | N | Y
Asian | N | Y | N | Y | N | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |--|---|-------------|---|---|-----------------------------|--------------------------|-----------------------------|---|---|-------------------------|--|---|---|--|---|--|------------------------------| | | | | | | | | | melanocytic
naevus, Spitz
naevus, sebaceous
naevus, poroma,
seborrheic
keratosis, naevus
spilus and lentigo
simplex | | | | | | | | | | | Dermatologist-level classification of skin cancer with deep neural networks ³¹ | 28117445 | 2017 | Open-access dermatology repositories, the ISIC Archive (dermoscopic images), the Edinburgh Dermofit Library, and data from the Stanford Hospital. | Train,
Internal
Validation,
Test | 129,450 | Not specified | Clinical and
Dermoscopic | Melanocytic lesions include malignant melanoma and benign nevi. Epidermal lesions include malignant basal and squamous cell carcinomas, intraepithelial carcinomas, pre- malignant actinic keratosis and benign seborrheic keratosis. | Images from the online open-access dermatology repositories are annotated by dermatologists, not necessarily through biopsy. The ISIC Archive data used are composed strictly of melanocytic lesions that are biopsy-proven and annotated as malignant or benign. The Edinburgh Dermofit Library and data from the Stanford Hospital are biopsy-proven and annotated by individual disease names. | Y | N | N | Y, partial -
ISIC Archive
and the
Edinburgh
Dermofit
Library are
available. | Y | N | Y | N | | Dermoscopic
diagnostic
performance of
Japanese
dermatologists for
skin tumors differs
by patient origin: A | 33063398 | 2020 | ISIC 2017
training/valida
tion | Train,
Internal
Validation | 2092 | Not
specified | Dermoscopic | Malignant melanoma (MM), basal cell carcinoma (BCC), melanocytic nevus (MN), or benign keratosis (BK) | Benign nevi:
expert consensus,
Seborrheic
keratosis: expert
consensus,
Melanoma:
pathology | Y | N | N | Y | Y | N | Y | N | | deep learning
convolutional
neural network
closes the gap ³² | by patient origin: A deep learning convolutional neural network | | HAM 10000
(ISIC) | Train,
Internal
Validation,
Test | 7071 | Not
specified | Dermoscopic | including solar
lentigo, seborrheic
keratosis and
lichen planus-like
keratosis | | Y | N | N | Y | Y | | | | | Title PM | ID Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |---|----------------|---|---|-----------------------------|--------------------------|----------------------------|--------------------------------|--|-------------------------|--|---|----------------------------|--|---|--|---| | | | | | | | | | Basal cell carcinoma: pathology, Benign keratosis: consensus Dermatofibroma: consensus, Melanocytic nevi: consensus, Vascular skin lesions: consensus, Melanoma: consensus | | | | | | | | | | | | BCN20000
(ISIC) | Train,
Internal
Validation | 3141 | Not
specified | Dermoscopic | - | ISIC labels | Y | N | N | Y | Y | - | | | | | | Shinshu
Department of
Dermatology
at Shinshu
University
Hospital | Train,
Internal
Validation,
Test | 644 | Not
specified | Dermoscopic | | Histopathology
and/or definite
clinical course
along with the
consensus of three
dermoscopy
experts | Y | N | Japanese | No | Yes | | | | | | | ISIC 2017
(test set) | Test | 600 | Not
specified | Dermoscopic | | Benign nevi:
expert consensus,
Seborrheic
keratosis: expert
consensus,
Melanoma:
pathology | Y | N | N | Y | Y | | | | | Detection of 319 Malignant Melanoma Using Artificial | 21498 | PH2 | Train,
Internal
Validation,
Test | 6430 | Not
specified | Dermoscopic | Melanoma,
benign, nonbenign | Melanoma:
histopathology,
Benign: not
specified. | Y | N | N | Y | N | N (states that the model was "trained | N | Y (DERM is owned by Skin | | Intelligence: An Observational Study of Diagnostic Accuracy ³³ | | Interactive
Atlas of
Dermoscopy
published by
EDRA, | Train,
Internal
Validation,
Test | | Not
specified | | | Nonbenign: not
specified
(paper does not
specify by dataset | | N | N | Y | N | and validated
against a dataset of
archived
dermoscopic images
of skin lesions" but | | Analytics, whose
services are only
available through
clinical partners
in the UK) | | | | ISIC Archive | Train,
Internal
Validation,
Test | | Not
specified | | | but indicates the 3 labels above) | | N | N | Y | N | does not specify
whether there is or
is not any overlap
with the test | | | | | | "a variety of
other sources" | Train, Internal Validation, Test | 672 | Not
specified | | | | | N | N | N | N | datasets) | | | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |---|----------|-------------|---|---|-----------------------------|--------------------------|----------------------------|--|--
--|--|--|----------------------------|--|---|--|------------------------------| | Development and accuracy of an artificial intelligence algorithm for acne grading from smartphone photographs 34 | 31446631 | 2019 | Acne dataset
collected from
France, South
Africa, China,
India | Train,
Internal
Validation,
Test | 5,972 | 1,072 | Clinical | Acne | Three trained dermatologists with expertise in acne graded each patient's acne severity using the European GEA scale based on 3 image views. For each patient, the final GEA grade chosen was that confirmed by at least 2 out of the 3 dermatologists | Y | N | N Describes distinct ethnicities (Caucasian, African, Asian, Latin, Indian) but does not give breakdown by ethnicity | N | Y | N | N | N | | Development and validation of two artificial intelligence models for diagnosing benign, pigmented facial skin lesions ³⁵ | 32772400 | 2020 | Hospital for
Skin Diseases
at the Chinese
Academy of
Medical
Science | Train,
Internal
Validation,
Test | 12,816 | Not
specified | Clinical | Acquired nevi of
Ota, melasmas,
café-au-lait spots,
freckles,
seborrheic
keratoses, nevi of
Ota, other | Complete consensus among 3 dermatologists with >3 years' experience | Y | N | N | N | Y | N | N | N | | Development of a lightweight deep learning model for cloud applications and remote diagnosis of skin cancers ³⁶ | 33211346 | 2020 | Department of
Dermatology,
Kaohsiung
Chang Gung
Memorial
Hospital in
Taiwan | Train,
Internal
Validation,
Test | 1,287 | 1,222 | Clinical | Basal cell
carcinoma, benign
keratosis-like
lesions,
melanoma,
melanocytic nevi | Pathology | Y | N | N | N | Y | N | N | N | | | | | HAM10000
(ISIC 2018
Train) | Train,
Internal
Validation,
Test | 10,015 | Not
specified | Dermoscopic | Actinic keratosis,
Intraepithelial
carcinoma
(Bowen's), Basal
cell carcinoma,
Benign keratosis,
Dermatofibroma,
Melanocytic nevi,
Vascular skin
lesions, Melanoma | Actinic keratosis: consensus, Intraepithelial carcinoma (Bowen's): pathology, Basal cell carcinoma: pathology, Benign keratosis: consensus, Dermatofibroma: consensus. Melanocytic nevi: consensus. Vascular skin lesions: consensus. Melanoma: | Y Actinic keratosis: Y Intraepithelial carcinoma (Bowen's): Y Basal cell carcinoma: Y Benign keratosis: Y Dermatofibroma: Y Melanocytic nevi: Y Vascular skin lesions: Y Melanoma: Y | N | N | Y | Y | | | | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |---|----------|-------------|--|---|-----------------------------|--------------------------|----------------------------|--|---|---|--|---|----------------------------|--|---|--|---| | Diagnostic accuracy
of content-based
dermoscopic image
retrieval with deep
classification
features ³⁷ | 30207594 | 2018 | EDRA,
companion to
Interactive
Atlas of
Dermoscopy | Train,
Internal
Validation,
Test,
External
Test | 888 | Not
specified | Dermoscopic | Benign
keratinocytic
lesions (seborrheic
keratoses, solar
lentigines and
lichen planus-like
keratoses),
melanoma, nevus | | Cannot be determined | N | N | Y | Y | Y Trained three models based on each dataset and tested on both data in the dataset and data from other | N | N
(three models
developed on
each dataset, but
none released) | | | | | ISIC 2017 | Train,
Internal
Validation,
Test,
External
Test | 2750 | Not
specified | Dermoscopic | Benign nevi,
seborrheic
keratosis,
melanoma | Benign nevi:
expert consensus,
Seborrheic
keratosis: expert
consensus,
Melanoma:
pathology, | Nevus: Y
Seborrheic
keratosis: Y
Melanoma: Y | N | N | Y | | datasets. | | | | | | | PRIV | Train, Internal Validation, Test, External Test | 16,691 | Not specified | Dermoscopic | Angioma (including angiokeratoma), BCC (basal cell carcinoma), benign keratinocytic lesions (seborrheic keratoses, solar lentigines and lichen planus-like keratoses, dermatofibromas, inflammatory lesions (including dermatitis, lichen sclerosus, porokeratosis, rosacea, psoriasis, lupus erythematosus, bullous pemphigoid, lichen planus, granulomatous processes and artefacts), melanoma (all types), nevus (all types of melanocytic naevi), SCC (squamous cell carcinomas, | Pathology and clinical diagnosis | Cannot be determined | N | N | N | | | | | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |---|----------|-------------|---|---|-----------------------------|--------------------------|----------------------------|--|--|-------------------------|--|---|----------------------------|--|---|--|------------------------------| | Diagnostic capacity
of skin tumor
artificial
intelligence-assisted
decision-making
software in real-
world clinical
settings ³⁸ | 32810047 | 2020 | Department of
Dermatology
of the China-
Japan
Friendship
Hospital | External
Validation | 212 | 106 | Clinical and dermoscopic | actinic keratoses,
Bowen's) Melanoma, SCC,
BCC, AKs, nevus
cell nevus,
seborrheic
keratosis,
hemangioma,
dermatofibroma,
epidermoid cyst | All lesions were
surgically excised
and
histopathologicall
y proven | Y | N | N | N | N | Y External validation | Y | Y
(Youzhi AI) | | Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined naevi and melanomas ³⁹ | 31856342 | 2019 | Collected from the departments of dermatology of the university medical centres of Heidelberg, Göttingen, and from the medical centre Thalkirchner Straße, Munich | External
Validation | 72 | 72 | Dermoscopic | Benign nevi,
melanoma | Melanomas (n = 36) – all
histologically proven Excised benign nevi (n=34) – histologically proven In non-excised cases of benign naevi (n = 2), the diagnosis was based on expert consensus and an unremarkable follow-up over at least 2 years. | Y | N | N | N | N | Y
External validation | Y | Yes
Moleanalyzer-
Pro | | Diagnostic
performance of the
MelaFind device in
a real-life clinical
setting ⁴⁰ | 28332777 | 2017 | Dermatology
patients within
a single
clinical
practice | External
Validation | 360 | 111 | Dermoscopic | Melanomas and nevi. Targeted: pigmented skin lesions with one or more clinical (e. g. variegated color, border irregularity, eccentric hyperpigmentation , or asymmetry) or historical (e. g. recent | discretion). The rest were followed | Cannot be determined | N | N | N | N | Y External validation only | N | Y
(MelaFind) | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |--|----------|-------------|--|---|-----------------------------|--------------------------|----------------------------|---|---|--|--|--|----------------------------|--|---|--|------------------------------| | | | | | | | | | enlargement,
recent change in
color)
characteristics of
melanoma | | | | | | | | | | | Effects of Label
Noise on Deep
Learning-Based
Skin Cancer
Classification ⁴¹ | 32435646 | 2020 | HAM10000
(ISIC 2018
Train)
ISIC Archive | Train,
Internal
Validation,
Test | 804 | Not
specified | Dermoscopic | Actinic keratosis, intraepithelial carcinoma (Bowen's), basal cell carcinoma, benign keratosis, dermatofibroma, melanocytic nevi, vascular skin lesions, melanoma | Actinic keratosis: consensus, Intraepithelial carcinoma (Bowen's): pathology, Basal cell carcinoma: pathology Benign keratosis: consensus, Dermatofibroma: consensus, Melanocytic nevi: consensus, Vascular skin lesions: consensus, Melanoma: consensus, | Actinic keratosis: Y Intraepithelial carcinoma (Bowen's): Y Basal cell carcinoma: Y Benign keratosis: Y Dermatofibroma: Y Melanocytic nevi: Y Vascular skin lesions: Y Melanoma: Y | | Y Nationality breakdown (as a percentage of the 10,015 images in the dataset): 2.0% Portuguese (PH2) 22.6% Australian (Rosendahl) Austrian (ViDIR) Not specified (Atlas and ISIC 2017) | Y | N | N | N | N | | Enhanced classifier
training to improve
precision of a
convolutional
neural network to
identify images of
skin lesions ⁴² | 31233565 | 2019 | ISIC Archive
(dermoscopic
images) | Train,
Internal
Validation | 13,637 | Not
specified | Dermoscopic | Melanomas and
benign nevi | Melanoma –
biopsy proven Nevi were made
either by
histopathological
examinations
(~24%), by expert
consensus (~54%),
or by another type | Y | N | N | Y | Y | N | N | N | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |--|----------|-------------|---|---|---|--------------------------|----------------------------|---|---|-------------------------|--|---|----------------------------|--|---|--|------------------------------| | | | | International
Symposium
on Biomedical
Imaging 2016
Challenge
(ISIC 2016) | Test | 379 | Not
specified | Dermoscopic | | of diagnosis such as a series of images with no change overtime (~22%). | | N | N | Y | Y | | | | | Expert-Level Diagnosis of Nonpigmented Skin Cancer by Combined Convolutional Neural Networks ⁴³ | 30484822 | 2019 | Clinical
images from
primary skin
cancer clinic
in
Queensland,
Australia | Train | 7895 | Not
specified | Clinical | Actinic keratoses
and intraepithelial
carcinoma
(Bowen's), basal
cell carcinoma (all
subtypes), benign
keratosis-like
lesions (including | Pathology | Y | N | N | N | Y | Y | Y | N | | | | | Dermoscopic
images from
primary skin
cancer clinic
in
Queensland,
Australia | Train | 5829 | Not
specified | Dermoscopic | solar lentigo,
seborrheic
keratosis, and
lichen planus-like
keratosis),
dermatofibroma,
melanoma,
invasive squamous | Pathology | Y | N | N | N | Y | | | | | | | | Educational slides photographed and excised in the practice of one of the authors. | Internal
Validation | 340
dermosco
pic
635
clinical | Not
specified | Clinical and dermoscopic | keratoacanthoma,
benign sebaceous
neoplasms, and
benign hair follicle | | Y | N | N | N | Y | Title PM | IID Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Available | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |----------|-----------------|---|---|-----------------------------|--------------------------|----------------------------|--|---------------|-------------------------|--|---|-----------|--|---|--|------------------------------| | | | Multiple sources, including the Medical University of Vienna, the image database from C.R., and a convenience sample of rare diagnoses. | Test | 2072 | Not specified | Clinical and
dermoscopic | Actinic Keratosis, Intraepithelial Carcinoma (Bowen's), In Situ Squamous Cell Carcinoma, Basal Cell Carcinoma, Basal Cell Carcinoma, Atypical Fibroxanthoma, Kaposi Sarcoma, Merkel Cell Carcinoma, Melanoma Melanoma Metastases, Morbus Paget, Neurofibrosarcom a, Keratoacanthoma, Invasive Squamous Cell Carcinoma, Sebaceous carcinoma, Syringoid carcinoma, Trichilemmal carcinoma, Fibrous papule, Angiofibroma, Angioma; Angiokeratoma, Benign Inverted Follicular Keratosis, Lichen Planus-like Keratosis, Clear Cell Acanthoma, Chromoblastomycosis, Chondrodermatitis nodularis helicis, Collagenoma, Cyst, Dermatofibroma, Eccrine poroma, Epidermolytic acanthoma, Acral | Not specified | Y | N | N N | N | Y | | | | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Available | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated in intended use setting by dermatologist (Reader study include)? (Y/N) | Model
Available?
(Y/N) | |---|----------------|-------------|--------------------|---|-----------------------------|--------------------------|----------------------------|--|---|---|--|---|-----------|--|---|---|------------------------------| | | | | | | | | | fibrokeratoma, Cylindroma; Hidradenoma; Spiradenoma, Lichen sclerosus, Mastocytosis, Molluscum contagiosum, Morphea, Neurofibroma, Neurilemmoma, Nevus, Pilomatrixoma, Porokeratosis, Prurigo nodularis, Pseudolymphoma, Psoriasis, Pyogenic granuloma, Scar, Sebaceous epithelioma, Sebaceous adenoma, Skin tag, Fibroma, Syringocystadeno ma, Tricholentelioma, Tricholestoma, Tricholastoma, Tungiasis, Vascular malformation, Venous lake, Viral wart, Xanthogranuloma | | | | | | | | | | | From Deep
Learning Towards
Finding Skin Lesid
Biomarkers ⁴⁴ | 31946474
on | 2019 | ISIC 2018 | Train,
Internal
Validation,
Test | 10,015 | Not
specified | Dermoscopic | Actinic keratosis,
Intraepithelial
carcinoma
(Bowen's), Basal
cell carcinoma,
Benign keratosis,
Dermatofibroma,
Melanocytic nevi,
Vascular skin
lesions, Melanoma | Actinic keratosis:
consensus,
Intraepithelial
carcinoma
(Bowen's):
pathology,
Basal cell
carcinoma:
pathology,
Benign keratosis:
consensus, | Actinic keratosis: Y Intraepithelial carcinoma (Bowen's): Y Basal cell carcinoma: Y Benign keratosis: Y Dermatofibroma: Y | N | Y Nationality breakdown (as a percentage of the 10015 images in the dataset): 2.0% Portuguese (PH2) | Y | Y | N | N | N | | Title | | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |---|----------|-------------|--------------------|---|-----------------------------|--------------------------|----------------------------|--|--|--|--|---|----------------------------|--|---|--|------------------------------| | | | | | | | | | | Dermatofibroma:
consensus.
Melanocytic nevi:
consensus,
Vascular skin
lesions: consensus,
Melanoma:
consensus | Melanocytic
nevi: Y
Vascular skin
lesions: Y
Melanoma: Y | | 22.6% Australian
(Rosendahl)
Austrian (ViDIR)
Not specified
(Atlas and ISIC
2017) | | | | | | | Human-computer
collaboration for
skin cancer
recognition ⁴⁵ | 32572267 | 2020 | HAM10000 | Train | 10,015 | Not
specified | Dermoscopic | Actinic keratosis,
Intraepithelial
carcinoma
(Bowen's), Basal
cell carcinoma,
Benign keratosis,
Dermatofibroma,
Melanocytic nevi,
Vascular skin
lesions, Melanoma | Actinic keratosis: consensus, Intraepithelial carcinoma (Bowen's): pathology, Basal cell carcinoma: pathology, Benign keratosis: consensus, Dermatofibroma: consensus, Melanocytic nevi: consensus, Vascular skin lesions: consensus, Melanoma: consensus, | Actinic keratosis: Y Intraepithelial carcinoma (Bowen's): Y Basal cell carcinoma: Y Benign keratosis: Y Dermatofibroma: Y Melanocytic nevi: Y Vascular skin lesions: Y Melanoma: Y | N | Y Nationality breakdown (as a percentage of the 10,015 images in the dataset): 2.0% Portuguese (PH2) 22.6% Australian (Rosendahl) Austrian (ViDIR) Not specified (Atlas and ISIC 2017) | Y | Y | | Y | Y (available upon request) | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |-------|------|-------------|----------------------|---|-------------------------------------|--------------------------|----------------------------|--|---|-------------------------|--|---|----------------------------|--|---|--|------------------------------| | | | | ISIC 2018 | Test | 1412 | Not specified | Dermoscopic | Actinic keratosis,
Intraepithelial
carcinoma
(Bowen's), Basal
cell carcinoma,
Benign keratosis,
Dermatofibroma,
Melanocytic nevi,
Vascular skin
lesions, Melanoma | Routine pathology evaluation (n=786) Biology (that is, >1.5 years of sequential dermoscopic imaging without changes (n= 458) Expert consensus in common, straightforward, non-melanocytic cases that were not excised (n= 260) In vivo confocal images (n=7) | Y | Y, partial Description yes, breakdown no Skin types I-III | Y, partial "Mainly European ancestry" | Y | Y | | | | | | | | Telemedicine dataset | External
Validation,
Test | 1,521
images
(596
lesions) | 93 |
Dermoscopic | Actinic keratosis
Intraepithelial
carcinoma
(Bowen's)
Basal cell
carcinoma
Benign keratosis
Dermatofibroma
Melanocytic nevi
Vascular skin
lesions, Melanoma | Face-to-face examination by an experienced board-certified dermatologist (H.P.S.) or the histopathologic report, in cases where the lesion was removed, served as the ground truth. | Cannot be determined | N | N | N | | | | - | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |--|----------|-------------|--|---|-----------------------------|--------------------------|----------------------------|---|--|-------------------------|--|---|---|--|---|--|-------------------------------------| | | | | Department of
Dermatology
at the Medical
University of
Vienna for
dermoscopy
images taken
between April
and
September
2019 | External
Validation | 79 | Not
specified | Dermoscopic | Actinic keratosis
Intraepithelial
carcinoma
(Bowen's)
Basal cell
carcinoma
Benign keratosis
Dermatofibroma
Melanocytic nevi
Vascular skin
lesions, Melanoma | Lesion was excised and had a definite histopathologic diagnosis and if lesions were examined by a physician who was responsible for the face-to-face diagnosis of at | Y | N | N | N | Y | | | | | Keratinocytic Skin
Cancer Detection on
the Face Using
Region-Based
Convolutional
Neural Network ⁴⁶ | 31799995 | 2020 | Primary
training
dataset
(Asan Medical
Center, MED-
NODE,
Seven-point
Checklist
Dermatology
Dataset, | Train, Internal Validation (Note: secondary and tertiary training were created from | 182,348 | Not
specified | Clinical | 178 disorders | least two other cases in this time period Clinical diagnosis and manual annotation based on image findings | Cannot be determined | N | Y, partial - Asan
Medical Center -
Asian
Others not
specified | Y, partial –
MED-NODE
and Seven-
point
Checklist
Dermatology
Dataset are
available | Y | Y | Y | Y
https://rcnn.mode
lderm.com | | | | | Asan Medical Center Validation | primary
training
dataset) | 1570 | 386 | Clinical | basal cell
carcinoma,
squamous cell | Biopsy-proven | | No | Asian | No | Yes | | | | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |---|----------|-------------|--|---|-----------------------------|--------------------------|-----------------------------|--|--|------------------------------------|--|---|----------------------------|--|---|--|------------------------------| | | | | Hallym
National
University
Validation | Test,
External
Validation | 542 | 142 | Clinical | carcinoma,
malignant
melanoma,
squamous cell | Biopsy-proven | | No | Asian | No | Yes | | | | | | | | Chonnam
University
Validation | Test,
External
Validation | 732 | 145 | Clinical | carcinoma in situ,
seborrheic
keratosis, actinic
keratosis,
hemangioma,
pyogenic
granuloma,
melanocytic
nevus, and
dermatofibroma) | Biopsy-proven | | No | Asian | No | Yes | | | | | Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less | 31912788 | 2020 | Convenience
sample, not
otherwise
specified | External
Validation | 100 | Not
specified | Clinical and
Dermoscopic | Melanoma, basal cell carcinoma, squamous cell carcinoma, actinic keratosis, Bowen's disease, melanocytic nevi of various types, seborrheic keratosis, solar lentigo, angioma, dermatofibroma | Histopathology for 100% of malignant lesions Histopathology for 75% of benign lesions, unremarkable follow-up >2 years for 25% of benign lesions | lesions – Y Benign lesions – | N | N | N | N | Y | Y | Y
(Moleanalyzer
Pro) | | artificial conditions ⁴⁷ | | | MSK-1 | External V
alidation | 1100 | Not
specified | Dermoscopie | Not specified in paper | Not specified in paper | Cannot be determined | N | N | Y | N | | | | | | | | ISIC 2018
Challenge
(sub-set) | External
Validation | 1511 | Not
specified | Dermoscopic | Not specified in paper | Not specified in paper | Cannot be determined | N | N | Y | N | | | | | Man against
machine: diagnostic
performance of a
deep learning
convolutional
neural network for
dermoscopic
melanoma | 29846502 | 2018 | ISIC Archive
and
cooperating
dermatologists | Train,
Internal
Validation | Not
specified | Not
specified | Dermoscopic | Non-melanoma
Melanoma | Benign (non-
melanoma): expert
consensus
Malignant
(melanoma):
pathology | Non-melanoma:
Y
Melanoma – Y | N | N | Y | Y | Y | Y | N | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |--|----------|-------------|---|---|-----------------------------|--------------------------|----------------------------|---|---|------------------------------------|--|---|----------------------------|--|---|--|--| | recognition in
comparison to 58
dermatologists ⁴⁸ | | | Validated
image library
of the
Department of
Dermatology,
University
of
Heidelberg,
Germany | Test,
External
Validation | 300 | Not
specified | Dermoscopic | 20% Melanoma
80% benign nevi
of "different
subtypes" not
otherwise
specified | Melanomas (20%) all verified by pathology Of the benign nevi (80%), 2/3 were non-excised lesions confirmed by follow up examinations | Y | N | N | N | N | | | | | | | | ISIC 2016
International
Symposium
on Biomedical
Imaging
(ISBI)
challenge | Test | 100 | Not
specified | Dermoscopic | Non-melanoma
Melanoma | Benign (non-
melanoma): expert
consensus
Malignant
(melanoma):
pathology | Non-melanoma:
Y
Melanoma – Y | N | N | Y | Y | | | | | Melanoma detection
by analysis of
clinical images
using convolutional
neural network ⁴⁹ | 28268581 | 2016 | Digital image
archive of the
Department of
Dermatology
of the
University
Medical
Center
Groningen
(MED-
NODE) | Train,
Internal
Validation,
Test | 170 | Not
specified | Clinical | Melanoma, benign
nevi | Not specified | Cannot be determined | N | N | Y | Y | N | N | N | | | | | Synthesized images | Train,
Internal
Validation,
Test | 5950 | Not
specified | Clinical | Melanoma, benign
nevi | Not specified | Cannot be determined | N | N | N | | | | | | Melanoma detection
using adversarial
training and deep
transfer learning ⁵⁰ | 32252036 | 2020 | ISIC 2016 | Train,
Internal
Validation,
Test | 1279 | Not
specified | Dermoscopic | Benign,
Melanoma | Benign (non-
melanoma): expert
consensus
Malignant | Y | N | N | Y | Y | N | Y | N (model is named Melanet but no | | | | | "Synthesized images obtained via generative adversarial training from ISIC 2016 dataset" | Train,
Internal
Validation,
Test | 727 | Not
specified | Dermoscopic | Benign, Malignant | (melanoma):
pathology | | | | | | | | mention of
public or
commercial
availability) | | Melanoma
recognition by a
deep learning
convolutional
neural network- | 31972395 | 2020 | 6 "dermoscopic image sets were randomly | External
Validation | 780 | Not
specified | Dermoscopic | Superficial
spreading
melanomas,
macular nevi,
lentigo maligna | melanoma cases (n
= 180) -
histopathological
diagnosis | Y | N Mentions that "most images were derived from | N | N | N | Y (external testing only) | N | Y
(Moleanalyzer-
Pro®) | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |--|----------|-------------|--|---|--|--------------------------|-----------------------------|---|--|-------------------------|--|---|----------------------------|--|--|--|------------------------------| | Performance in different melanoma subtypes and localizations ⁵¹ | | | selected from image libraries of Departments of Dermatology, Universities of Heidelberg, Munich and Lyon | | | | | melanomas, facial solar lentigines/seborrhe ic keratoses/nevi, nodular melanomas, papillomatous/der mal/blue nevi, mucosal melanomas, mucosal melanomas, acral (congenital) nevi, nail, subungual melanomas, subungual (congenital), nevi/lentigines/eth nical type pigmentations | benign lesions (n = 600) - either based on histopathology (n = 363, 60.5%), or on an unremarkable follow-up by sequential digital dermoscopy over at least 2 years (n = 210, 35.0%), or on expert opinion (n = 27, 4.5%) | | fair skinned patients" | | | | | | | | Multiclass Artificial Intelligence in Dermatology: Progress but Still Room for Improvement ⁵² | 33049269 | 2020 | ISIC 2018,
JID editorial
images | External
Validation | 100 | Not
specified | Clinical | Cutaneous
melanomas, basal
cell carcinomas,
squamous cell
carcinomas | Sequentially
biopsied | Y | N | Y
100% Caucasian | Y | Y | Y External validation only | N | Y (modelderm.com) | | Multimodal skin
lesion classification
using deep
learning ⁵³ | 30187575 | 2018 | Not specified
other than a
"Multiple skin
cancer clinics" | Train,
Internal
Validation,
Test | At least 5834. Not directly specified: each case contained at least a dermosco pic and macrosco pic clinical image of the lesion, but may have also contained an image with a "general | 2917
cases | Clinical and
Dermoscopic | Benign nevi,
melanoma, basal
cell carcinoma,
squamous cell
carcinoma,
pigmented benign
keratoses | 100% of cases
with
histopathological
diagnosis | Y | N | N | N | Y | N A comparison to ISIC 2017 for single image analysis; however no external testing of multimodal analysis (main task of the paper) | N | N | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number of images used overview of the | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |---|----------|-------------|--|---|--|--------------------------|----------------------------|--|--|--|--|---|----------------------------|--|---|--|------------------------------| | Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification ⁵⁴ | 32028084 | 2020 | ISIC 2016 | Train, Test | body" 1279 | Not
specified | Dermoscopy | Melanoma,
"benign" | Benign (non-
melanoma): expert
consensus
Malignant
(melanoma):
pathology | N | N | Y | Y | Y | N | N | N | | | | | ISIC 2017 | Train,
Internal
Validation,
Test | 2750 | Not
specified | Dermoscopy | "Benign",
seborrheic
keratosis,
melanoma | Benign nevi:
expert consensus
Seborrheic
keratosis: expert
consensus
Melanoma:
pathology | N | N | N | Y | Y | | | | | | | | HAM10000
(ISIC 2018
Train) | Train,
Internal
Validation,
Test | 10,015 | Not
specified | Dermoscopy | Actinic keratosis,
Intraepithelial
carcinoma
(Bowen's), Basal
cell carcinoma,
Benign keratosis,
Dermatofibroma,
Melanocytic nevi,
Vascular skin
lesions, Melanoma | Actinic keratosis: consensus, Intraepithelial carcinoma (Bowen's): pathology, Basal cell carcinoma: pathology, Benign keratosis: consensus, Dermatofibroma: consensus, Melanocytic nevi: consensus, Vascular skin lesions: consensus, Melanoma: consensus, | Actinic keratosis: Y Intraepithelial carcinoma (Bowen's): Y Basal
cell carcinoma: Y Benign keratosis: Y Dermatofibroma: Y Melanocytic nevi: Y Vascular skin lesions: Y Melanoma: Y | | N | Y | Y | | | | | Novel Approaches
for Diagnosing
Melanoma Skin
Lesions Through
Supervised and
Deep Learning
Algorithms ⁵⁵ | 26872778 | 2016 | Various repositories (http://www.b ccancer.bc.ca/ health-professionals/ clinical-resources/skin-cancer-atlas, https://dermne tnz.org, meddean.luc.e du) | Train,
Internal
Validation,
Test | 992 | Not
specified | Dermoscopy | Melanoma, "non-
melanoma" not
otherwise
specified | Not specified (presumably pre- labeled in the contributing datasets) | N | N | N | Y | Y | N | N | N | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |---|----------|-------------|---|---|-----------------------------|--------------------------|----------------------------|--|---|--|--|---|----------------------------|--|---|--|--| | Past and present of computer-assisted dermoscopic diagnosis: performance of a conventional image analyzer versus a convolutional neural network in a prospective data set of 1,981 skin lesions ⁵⁶ | 32534243 | 2020 | Images
collected from
patients at
increased
melanoma risk | External
Validation | 1981 | 435 | Dermoscopic | Melanocytic nevi, seborrheic keratoses, vascular lesions, dermatofibromas, melanomas, basal cell carcinomas | In 785 (39.6%) excised lesions, the results of the histopathological examinations were used as a reference standard. In the remaining 1196 (60.4%) non- excised benign lesions, the diagnoses were based on expert consensus (H.A.H., J.K.W., K.S.) in combination with an uneventful follow-up by sequential digital dermoscopy for at least 2 years. | N | N | N | N | N | Y External validation only | N | Yes CNN = Moleanalyzer- Pro TM CIA = Moleanalyzer- 3 TM /Dynamole TM | | Performance of a
deep learning-based
application for the
diagnosis of basal
cell carcinoma in
Indian patients as
compared to | 33040407 | 2020 | Public
archives
(Hellenic
Derm Atlas,
http://www.da
nderm.dk/atlas | Train,
Internal
Validation | 17,784 | Not
specified | Clinical | Basal cell
carcinoma,
seborrheic
keratosis,
keratoacanthoma,
viral warts,
sarcoidosis, | BCC lesions – proven by histopathology Non-BCC lesions – consensus diagnosis by 2 | BCC: Y Melanoma: Cannot be determined (grouped into non-BCC but not | N | N | Y | N | Unclear what the source of the test images were | Y | N (Mobile app has been developed but no indication in this paper whether it is | | dermatologists and
non-
dermatologists ⁵⁷ | | | Images from
dermatologists
across India | Train,
Internal
Validation | | Not
specified | Clinical | congenital melanocytic nevus, melanoma, keloids, cylindroma, granuloma faciale, nodulocystic acne, nevus sebaceous, rosacea, verrucous, epidermal nevus, nevus comedonicus, angioluymphoid hyperplasia with eosinophilia, angiofibrome, hyperplastic port- wine stain, discoid | dermatologists, or
confirmed by
histopathology | specified whether
melanomas in the
set of images
were biopsy-
proven) Other non-BCC
lesions: Y | N | "Indian skin" only,
not otherwise
specified | N | | | | available,
commercially
and/or by
request) | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race description and breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |---|----------|-------------|---|---|-----------------------------|--------------------------|----------------------------|---|--|-------------------------|---|---|----------------------------|--|---|--|------------------------------| | | | | Test dataset | Test | 100 | Not
specified | Clinical | lupus
erythematosus
BCC and non-
BCC | BCC lesions – proven by histopathology Non-BCC lesions – consensus diagnosis by 2 dermatologists, or confirmed by histopathology | Y | N | N | N | N | | | | | Performance of a deep neural network in teledermatology: a single-centre prospective diagnostic study ⁵⁸ | 33037709 | 2020 | Patients from
telemedicine
dermatology
visits from a
single
academic
medical center | External
Validation | 340 | 281 | Clinical | 5 categories and 13 subcategories: (1) 'inflammatory' (subcategories: dermatitis, acne/rosacea, autoimmune, papulosquamous and other); (2) 'infectious' (subcategories: bacterial, viral, fungal and parasitic); (3) 'neoplastic' (subcategories: malignant and benign); (4) 'alopecia' (subcategories: scarring and non- scarring); and (5) 'other' (e.g. burn, scar, striae and among others) | 2 approaches: First, if the patient was recommended to return for an inperson clinic visit, the diagnosis from this visit (and any associated laboratory testing or skin biopsies) was used as the reference standard. Second, if no inperson clinic visit was performed, a panel of 6 dermatologists evaluated the case and established the reference standard based on consensus agreement. No specification of which lesions | Cannot be determined | Y Type I: 7 (2.1%) Type II: 59 (17.4%) Type III: 190 (55.9%) Type IV: 84 (24.7%) Type V: 0 (0%) Type VI: 0 (0%) | N | N | N | Y External validation only | Y | Y (http://modelder m.com) | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race description and breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) |
---|----------|-------------|--|---|-----------------------------|--------------------------|----------------------------|--|---|--|--|---|----------------------------|--|---|--|---------------------------------------| | | | | | | | | | | were biopsied vs.
only clinically
assessed/consensu | | | | | | | | | | Prospective,
comparative
evaluation of a deep
neural network and
dermoscopy in the
diagnosis of
onychomycosis ⁵⁹ | 32525908 | 2020 | Clinical
images
obtained from
four
hospitals (not
otherwise
specified) | External
Validation | 90 | 90 | Clinical | Onychomycosis | Direct microscopy
with KOH and/or
fungal culture
were performed to
confirm the
diagnosis in all
cases | Y | N | No | N | Y | Y
External validation
only | Y | Y
(https://nail.mode
lderm.com) | | Real-time burn
depth assessment
using artificial
networks: a large-
scale, multicentre
study ⁶⁰ | 32826097 | 2020 | Department of
Burn
Reconstructio
n Surgery,
Xiangya
Hospital | Train,
Internal
Validation,
Test | 484 | Not
specified | Clinical | Shallow burns,
moderate burns,
deep burns | Actual healing time of the burns designated categorization into shallow, moderate, or deep, and then experienced burn experts circled the actual wound surface (no discussion of number of | N Paper specifically says histopathology is the Gold Standards | N | N | N | Y | N | Y | N | | | | | | | | | | | reviewers,
consensus process,
etc.) | | | | | | | | | | Region Extraction
and Classification
of Skin Cancer: A
Heterogeneous
framework of Deep
CNN Features | 31327058 | 2019 | PH2 | Test | 200 | Not
specified | Dermoscopy | "Benign", "common nevi", melanoma | Assessment performed by an expert dermatologist based on clinical features | Melanoma – N | N | N | Y | Y | Y | N | N | | Fusion and Reduction ⁶¹ | | | ISIC 2016
International
Symposium
on Biomedical
Imaging
(ISBI)
challenge | Train,
Internal
Validation,
Test | 1279 | Not
specified | Dermoscopy | Non-melanoma,
melanoma | Benign (non-
melanoma): expert
consensus
Malignant
(melanoma):
pathology | Non-melanoma:
Y
Melanoma – Y | N | N | Y | | | | | | | | | ISIC 2017
International
Symposium
on Biomedical
Imaging
(ISBI)
challenge | Train,
Internal
Validation,
Test | 2750 | Not
specified | Dermoscopy | Benign nevi,
seborrheic
keratosis,
melanoma | Benign nevi:
expert consensus
Seborrheic
keratosis: expert
consensus
Melanoma:
pathology | Nevus: Y
Seborrheic
keratosis: Y
Melanoma: Y | N | N | Y | | | | | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |---|----------|-------------|--|---|---|--------------------------|----------------------------|--|--|-------------------------|--|---|----------------------------|--|---|--|------------------------------| | Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images ⁶² | 28969863 | 2018 | ISIC 2016 International Symposium on Biomedical Imaging (ISBI) challenge | Test | 100 | Not
specified | Dermoscopic | Melanoma, benign
nevi, lentigines | All melanomas and a majority of the nevi/lentigines (n = 869, 84%) had been histopathologicall y examined. Nonhistopathologically examined nevi (n = 162) originated from a longitudinal study of children; selection from this dataset was biased to include lesions with the largest diameters, and all images were reviewed by ≥2 dermatologists to confirm their benign nature | Y | N | N | Y | N | N | Y | N | | Ros-NET: A deep
convolutional
neural network for
automatic
identification of
rosacea lesions ⁶³ | 31849118 | 2019 | Ohio State
University
(OSU)
Division of
Dermatology | Train,
Internal
Validation,
Test | 41
(each
image
contains 3
different
views) | 41 | Clinical | Rosacea | Identifiable features of images are blacked out before the development of the algorithm, and the ground truth was provided by an experienced dermatologist | Y | N | N | N | Y | N | N | N | | Smart identification
of psoriasis by
images using
convolutional
neural networks: a
case study in
China ⁶⁴ | 31541556 | 2019 | XiangyaDerm
-Pso9 dataset
from Xiangya
hospital | Train,
Internal
validation,
Test | 8,021 | Not
specified | Clinical | Lichen planus (LP), parapsoriasis (Par), lupus erythematosus (LE), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), eczema (Ecz), pemphigus (Pem), psoriasis (Pso) and seborrheic keratosis (SK) | All images are verified by pathological examination and medical history by 3 professional dermatologists who have been engaged in dermatology for | Y | N | N | N | Y | N | Y | N | | Superior skin cancer classification by the combination of | 31518967 | 2019 | ISIC Archive
(most from
HAM10000 | Train,
Internal
Validation,
Test | 11,444 | Not
specified | Dermoscopic | Melanoma, nevus,
basal cell
carcinoma, actinic
keratosis, Bower's | 11,444 images,
6390 of which had
been biopsy | Y | N | N | Y | N | N | Y | N | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |--|----------|-------------|--|---|-----------------------------|--------------------------|----------------------------|--|--|-------------------------|--|---|----------------------------|--
---|--|------------------------------| | human and artificial
intelligence ⁶⁵ | | | (ISIC 2018
Train)) | | | | | disease, squamous
cell carcinoma,
seborrheic
keratosis, lentigo
solaris, lichen
ruber planus | set only came
from biopsy
verified samples) | | | | | | | | | | Systematic
outperformance of
112 dermatologists
in multiclass skin
cancer image
classification by
convolutional
neural networks ⁶⁶ | 31419752 | 2019 | ISIC Archive
(most from
HAM10000
(ISIC 2018
Train)) | Train,
Internal
Validation,
Test | 11,444 | Not
specified | Dermoscopic | Actinic keratosis, intraepithelial carcinoma (Bowen disease), squamous cell carcinoma, basal cell carcinoma, benign keratosis, including seborrheic keratosis, solar lentigo, lichen planus—like keratosis, melanocytic nevi, melanoma | 11,444 images,
6390 of which had
been biopsy
verified (note test
set only came
from biopsy
verified samples) | Y | N | N | Y | N | N | Y | N | | The Application of
Deep Learning in
the Risk Grading of
Skin Tumors for
Patients Using
Clinical Images ⁶⁷ | 31300897 | 2019 | XiangyaDerm | Train,
Internal
Validation,
Test | 4,500 | Not
specified | Clinical | Junctional nevus,
intradermal nevus,
dermatofibroma,
lipoma, seborrheic
keratosis, Bowen's
disease, basal cell
carcinoma, actinic
keratosis,
squamous cell
carcinoma,
malignant
melanoma | Each image has a
corresponding
pathological
diagnosis, then
confirmed by
information in the
medical record
and doctors'
experience | Y | N | N | N | Y | N | Y | N | | The Development
of a Skin Cancer
Classification
System for
Pigmented Skin
Lesions Using Deep
Learning ⁶⁸ | 32751349 | 2020 | Department Dermatologic Oncology in the National Cancer Center Hospital (Tokyo, Japan) | Train,
Internal
Validation,
Test | 5846 | 3551 | Clinical | Malignant melanoma, base cell carcinoma, benign nevi, seborrheic keratosis, senile lentigo, hematoma/hemang ioma | All malignant tumors were biopsied and diagnosed histopathologicall y. Benign tumors were diagnosed clinically using dermoscopy, and those cases that were still difficult to differentiate were biopsied to make confirmed diagnosis. | Y | N | N | N | N | N | Y | N | | Title | PMID | Pub
Year | Dataset
Sources | Use of Dataset (Train, Internal Validation, Test, and/or External Validation) | Number
of images
used | Number
of
patients | Clinical or
Dermoscopic | Diseases | Label | Gold Standard?
(Y/N) | Fitzpatrick skin
type description
and breakdown
(Y/N) | Ethnicity or race
description and
breakdown (Y/N) | Data
Available
(Y/N) | Image
processing
described (Y/N) | External test set used for statistical reporting? (Y/N) | Data evaluated
in intended use
setting by
dermatologist
(Reader study
include)? (Y/N) | Model
Available?
(Y/N) | |---|----------|-------------|--|---|---|--------------------------|---|--|---|--|--|---|----------------------------|--|---|--|------------------------------| | The effects of skin
lesion segmentation
on the performance
of dermoscopic
image
classification ⁶⁹ | 32882594 | 4 2020 | 2020 | ISIC 2017 | Train,
Internal
Validation,
Test | 2750 | Not specified Dermoscopic seborrheic keratosis, melanoma Benign nevi: expert consensus, Seborrheic keratosis: Y Melanoma: Pathology Nevus: Y Seborrheic keratosis: Y Melanoma: Y | keratosis: Y | N | N | Y | Y | N | N | N | | | | | | | ISIC 2018
Challenge
(HAM10000) | Train, Test | 10015 | Not
specified | Dermoscopic | Actinic keratosis,
Intraepithelial
carcinoma
(Bowen's), Basal
cell carcinoma,
Benign keratosis,
Dermatofibroma,
Melanocytic nevi,
Vascular skin
lesions, Melanoma | Actinic keratosis: consensus Intraepithelial carcinoma (Bowen's): pathology Basal cell carcinoma: pathology Benign keratosis: consensus Dermatofibroma: consensus Melanocytic nevi: consensus Vascular skin lesions: consensus Melanoma: consensus | Actinic keratosis: Y Intraepithelial carcinoma (Bowen's): Y Basal cell carcinoma: Y Benign keratosis: Y Dermatofibroma: Y Melanocytic nevi: Y Vascular skin lesions: Y Melanoma: Y | N | N | Y | Y | | | | | Towards improving diagnosis of skin diseases by combining deep neural network and human knowledge ⁷⁰ | 30066649 | 2018 | Peking Union
Medical
College
Hospital | Train,
Internal
Validation,
Test | 1067 | Not
specified | Dermoscopic | Melanocytic
nevus, seborrheic
keratosis, basal
cell carcinoma,
psoriasis
dermoscopic | Dermoscopic image reviewed by two dermatologists → if consensus, image labeled; if no consensus, a third dermatologist assessed → if common agreement reached, image labeled; if no common agreement reached, histopathological biopsy performed, then imaged labeled | Cannot be determined | N | N | N | Y | N | N | N | ## eMethods. Gold Standard Used The following diseases (as identified in "Disease" column) require biopsy/histopathological diagnosis to meet the gold standard: - Melanoma - Dysplastic nevi - Basal cell carcinoma - Squamous cell carcinoma - "High risk" pigmented lesions - Intraepithelial carcinoma (Bowen's disease) For all other diseases, clinical exam with consensus among experienced dermatologists +/- long term (i.e. 2 year) follow-up is sufficient to meet the gold standard. ## eFigure. Mappings Number Dataset or Paper - 1 ISIC - 2 MED-NODE: University Medical Center Groningen - 3 Hellenic Dermatological Atlas - 4 D@nderm Atlas of Clinical Dermatology (http://www.danderm.dk/atlas) 5 Visualdx - 6 Neurovascular Ulcers Outpatient Clinic of the Clinical Hospital of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil - 7 PMID 29513718 data - 8 Edinburgh Edinburgh Dermofit Image Library - 9 SNU dataset: Department of Dermatology at Seoul National University, Bundang Hospital, Inje University Sanggye Paik Hospital, and Hallym University Dongtan Hospital. - 10 Dermquest (http://dermquest.com) - 11 Interactive Derm Atlas (http://www.dermatlas.net) - 12 DermIS (https://www.dermis.net/dermisroot/en/home/index.htm) - 13 Loyola University Dermatology Medical Education Website (http://www.meddean.luc.edu/lumen/MedEd/medicine/dermatology/melton/atlas.htm) - 14 Dermatoweb (http://www.dermatoweb.net/) - 15 Dermatology Atlas (http://www.atlasdermatologico.com.br/) - 16 Yonsei University Wonju Severance Christian Hospital Alopecia areata - 17 DermNet NZ - 18 DermWeb (http://www.dermweb.com/photo atlas/) - 19 Asan Medical Center PMID 29352285 - 20 Inje University PMID 29352285 - 21 Hallym University PMID 29352285 - 22 Seoul National University PMID 29352285 - 23 PH2 - 24 Interactive Atlas of Dermoscopy published by EDRA - 25 Seven-point Checklist Dermatology Dataset (http://derm.cs.sfu.ca) - 26 http://www.bccancer.bc.ca/health-professionals/clinical-resources/skin-cancer-atlas - 27 2018 JID editorial images (hosted by ISIC website) - 28 Teledermatology service serving 17 primary-care and specialist sites from two states in the United States. - 29 Department of Dermatology, The Second Xiangya Hospital, Central South University, China - 30 Dermatology practices across India - 31 All India Institute of Medical Sciences in New Delhi, an urban private practice in Gurugram, Haryana, India, and a rural health center in Jhajjar, Haryana, India - 32 Taipei Medical University - 33 PMID 33065109 Dataset 1 - 34 PMID 33065109 Dataset 2 - 35 PMID 28569993 Train set - 36 PMID 28569993 Test set - 37 7 United Kingdom hospitals - 38 Department of Dermatology, University of Heidelberg - 39 ASAN: Department of Dermatology at Asan Medical Center - 40 Normal: scraped from the internet and lesions cropped out from ASAN - 41 Web: scraped from the internet - 42 PMID 30654165 Online images - 43 Mid-Atlantic region research participants - 44 ASAN: Department of Dermatology at Asan Medical Center PMID 29428356 - 45 Additional ASAN: Department of Dermatology at Asan Medical Center PMID 29428356 - 46 Hallym dataset: Dongtan Sacred Heart Hospital, Hallym University, and Sanggye Paik Hospital, Inje University - 47 PMID 31140653 Google Images - 48 Department of Dermatology, Aarhus University Hospital (AUH), Denmark - 49 Dataset I: Department of Dermatology, Peking Union Medical College Hospital - 50 Dataset II: Department
of Dermatology, Peking Union Medical College Hospital - 51 University of Tsukuba Hospital - 52 Stanford hospital PMID 28117445 - 53 Shinshu Department of Dermatology at Shinshu University Hospital - 54 PMID 31921498 "a variety of other sources" - 55 Acne dataset collected from France, South Africa, China, India - 56 Hospital for Skin Diseases at the Chinese Academy of Medical Science - 57 Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital in Taiwan - 58 PRIV - 59 Department of Dermatology of the China-Japan Friendship Hospital - 60 Collected from the departments of dermatology of the university medical centres of Heidelberg, Göttingen, and from the medical centre Thalkirchner Straße, Munich - 61 PMID 28332777 Diagnostic performance of MelaFind - 62 Clinical images from primary skin cancer clinic in Oueensland, Australia - 63 Dermoscopic images from primary skin cancer clinic in Queensland, Australia - 64 Educational slides photographed and excised in the practice of one of the authors. - 65 Multiple sources, including the Medical University of Vienna, the image database from C.R., and a convenience sample of rare diagnoses. - 66 PMID 32572267 Telemedicine dataset - 67 Department of Dermatology at the Medical University of Vienna for dermoscopy images taken between April and September 2019 - 68 Primary training dataset (Asan Medical Center, MED-NODE, Seven-point Checklist Dermatology Dataset, images on the internet). - 69 Asan Medical Center Validation - 70 Hallym National University Validation - 71 Chonnam University Validaiton - 72 PMID 31912788 convenience sample - 73 Validated image library of the Department of Dermatology, University of Heidelberg, Germany - 74.6 dermoscopic image sets were randomly selected from image libraries of Departments of Dermatology, Universities of Heidelberg, Munich and Lyon - 75 Not specified other than a "Multiple skin cancer clinics" - 76 Images collected from patients at increased melanoma risk PMID 32534243 - 77 Images from dermatologists across India - 78 PMID 33040407 Test set - 79 Patients from telemedicine dermatology visits from a single academic medical center - 80 PMID 32525908 Dataset - 81 Department of Burn Reconstruction Surgery, Xiangya Hospital - 82 ROS-NET Ohio State University (OSU) Division of Dermatology - 83 XiangyaDerm-Pso9 - 84 XiangyaDerm - 85 Department Dermatologic Oncology in the National Cancer Center Hospital (Tokyo, Japan) ``` 86 Peking Union Medical College Hospital 87 PMID 30852421 88 PMID 32424212 89 PMID 32566608 90 PMID 32526536 91 PMID 32991767 92 PMID 31907926 93 PMID 33065109 94 PMID 28569993 95 PMID 31542688 96 PMID 29513718 97 PMID 32915161 98 PMID 31255749 99 PMID 31693116 100 PMID 31411641 101 PMID 32243882 102 PMID 30654165 103 PMID 29428356 104 PMID 32785607 105 PMID 32931808 106 PMID 31201137 107 PMID 31306724 108 PMID 31140653 109 PMID 33221639 110 PMID 33072786 111 PMID 30981091 112 PMID 32826613 113 PMID 33218060 114 PMID 31401469 115 PMID 29352285 116 PMID 29953582 117 PMID 28117445 118 PMID 33063398 119 PMID 31921498 120 PMID 31446631 121 PMID 32772400 122 PMID 33211346 123 PMID 30207594 124 PMID 32810047 125 PMID 31856342 126 PMID 28332777 127 PMID 32435646 128 PMID 31233565 129 PMID 30484822 130 PMID 31946474 131 PMID 32572267 132 PMID 31799995 133 PMID 31912788 ``` 134 PMID 29846502 135 PMID 28268581 © 2021 American Medical Association. All rights reserved. 156 PMID 30066649 ## References - 1. Brinker TJ, Hekler A, Enk AH, et al. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. *Eur J Cancer*. 04 2019;111:148-154. doi:10.1016/j.ejca.2019.02.005 - 2. Liu Y, Jain A, Eng C, et al. A deep learning system for differential diagnosis of skin diseases. *Nat Med.* 06 2020;26(6):900-908. doi:10.1038/s41591-020-0842-3 - 3. Wu H, Yin H, Chen H, et al. A deep learning, image based approach for automated diagnosis for inflammatory skin diseases. *Ann Transl Med.* May 2020;8(9):581. doi:10.21037/atm.2020.04.39 - 4. Qin Z, Liu Z, Zhu P, Xue Y. A GAN-based image synthesis method for skin lesion classification. *Comput Methods Programs Biomed*. Oct 2020;195:105568. doi:10.1016/j.cmpb.2020.105568 - 5. Pangti R, Mathur J, Chouhan V, et al. A machine learning-based, decision support, mobile phone application for diagnosis of common dermatological diseases. *J Eur Acad Dermatol Venereol*. Feb 2021;35(2):536-545. doi:10.1111/jdv.16967 © 2021 American Medical Association. All rights reserved. - 6. Chin YPH, Hou ZY, Lee MY, et al. A patient-oriented, general-practitioner-level, deep-learning-based cutaneous pigmented lesion risk classifier on a smartphone. *Br J Dermatol*. 06 2020;182(6):1498-1500. doi:10.1111/bjd.18859 - 7. Dulmage B, Tegtmeyer K, Zhang MZ, Colavincenzo M, Xu S. A Point-of-Care, Real-Time Artificial Intelligence System to Support Clinician Diagnosis of a Wide Range of Skin Diseases. *J Invest Dermatol*. May 2021;141(5):1230-1235. doi:10.1016/j.jid.2020.08.027 - 8. Tschandl P, Kittler H, Argenziano G. A pretrained neural network shows similar diagnostic accuracy to medical students in categorizing dermatoscopic images after comparable training conditions. *Br J Dermatol*. 09 2017;177(3):867-869. doi:10.1111/bjd.15695 - 9. Blanco G, Traina AJM, Traina C, et al. A superpixel-driven deep learning approach for the analysis of dermatological wounds. *Comput Methods Programs Biomed.* Jan 2020;183:105079. doi:10.1016/j.cmpb.2019.105079 - 10. Yu C, Yang S, Kim W, et al. Acral melanoma detection using a convolutional neural network for dermoscopy images. *PLoS One*. 2018;13(3):e0193321. doi:10.1371/journal.pone.0193321 - 11. Maron RC, Utikal JS, Hekler A, et al. Artificial Intelligence and Its Effect on Dermatologists' Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study. *J Med Internet Res.* 09 2020;22(9):e18091. doi:10.2196/18091 - 12. Cui X, Wei R, Gong L, et al. Assessing the effectiveness of artificial intelligence methods for melanoma: A retrospective review. *J Am Acad Dermatol*. Nov 2019;81(5):1176-1180. doi:10.1016/j.jaad.2019.06.042 - 13. Phillips M, Marsden H, Jaffe W, et al. Assessment of Accuracy of an Artificial Intelligence Algorithm to Detect Melanoma in Images of Skin Lesions. *JAMA Netw Open.* 10 2019;2(10):e1913436. doi:10.1001/jamanetworkopen.2019.13436 - 14. Winkler JK, Fink C, Toberer F, et al. Association Between Surgical Skin Markings in Dermoscopic Images and Diagnostic Performance of a Deep Learning Convolutional Neural Network for Melanoma Recognition. *JAMA Dermatol*. Oct 2019;155(10):1135-1141. doi:10.1001/jamadermatol.2019.1735 - 15. Han SS, Park I, Eun Chang S, et al. Augmented Intelligence Dermatology: Deep Neural Networks Empower Medical Professionals in Diagnosing Skin Cancer and Predicting Treatment Options for 134 Skin Disorders. *J Invest Dermatol*. 09 2020;140(9):1753-1761. doi:10.1016/j.jid.2020.01.019 - 16. Burlina PM, Joshi NJ, Ng E, Billings SD, Rebman AW, Aucott JN. Automated detection of erythema migrans and other confounding skin lesions via deep learning. *Comput Biol Med.* 02 2019;105:151-156. doi:10.1016/j.compbiomed.2018.12.007 - 17. Han SS, Kim MS, Lim W, Park GH, Park I, Chang SE. Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm. *J Invest Dermatol*. 07 2018;138(7):1529-1538. doi:10.1016/j.jid.2018.01.028 - 18. Lee S, Lee JW, Choe SJ, et al. Clinically Applicable Deep Learning Framework for Measurement of the Extent of Hair Loss in Patients With Alopecia Areata. *JAMA Dermatol.* 09 2020;156(9):1018-1020. doi:10.1001/jamadermatol.2020.2188 - 19. Du-Harpur X, Arthurs C, Ganier C, et al. Clinically Relevant Vulnerabilities of Deep Machine Learning Systems for Skin Cancer Diagnosis. *J Invest Dermatol*. Apr 2021;141(4):916-920. doi:10.1016/j.jid.2020.07.034 - 20. Tschandl P, Codella N, Akay BN, et al. Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. *Lancet Oncol.* 07 2019;20(7):938-947. doi:10.1016/S1470-2045(19)30333-X - 21. Marchetti MA, Liopyris K, Dusza SW, et al. Computer algorithms show potential for improving dermatologists' accuracy to diagnose cutaneous melanoma: Results of the International Skin Imaging Collaboration 2017. *J Am Acad Dermatol*. Mar 2020;82(3):622-627. doi:10.1016/j.jaad.2019.07.016 - 22. Aggarwal SLP. Data augmentation in dermatology image recognition using machine learning. *Skin Res Technol*. Nov 2019;25(6):815-820. doi:10.1111/srt.12726 - 23. Goceri E. Deep learning based classification of facial dermatological disorders. *Comput Biol Med.* 01 2021;128:104118. doi:10.1016/j.compbiomed.2020.104118 - 24. Thomsen K, Christensen AL, Iversen L, Lomholt HB, Winther O. Deep Learning for Diagnostic Binary Classification of Multiple-Lesion Skin Diseases. *Front Med (Lausanne)*. 2020;7:574329. doi:10.3389/fmed.2020.574329 - 25. Brinker TJ, Hekler A, Enk AH, et al. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. *Eur J Cancer*. 05 2019;113:47-54. doi:10.1016/j.ejca.2019.04.001 - 26. Wang SQ, Zhang XY, Liu J, et al. Deep learning-based, computer-aided classifier developed with dermoscopic images shows comparable performance to 164 dermatologists in cutaneous disease diagnosis in the Chinese population. *Chin Med J (Engl)*. Sep 2020;133(17):2027-2036. doi:10.1097/CM9.000000000001023 - 27. Lucius M, De All JA, et al. Deep Neural Frameworks Improve the Accuracy of General Practitioners in the Classification of Pigmented Skin Lesions. *Diagnostics* (*Basel*). Nov 2020;10(11)doi:10.3390/diagnostics10110969 - 28. Brinker TJ, Hekler A, Enk AH, et al. Deep neural networks are superior to dermatologists in melanoma image classification. *Eur J Cancer*. 09 2019;119:11-17.
doi:10.1016/j.ejca.2019.05.023 - 29. Han SS, Park GH, Lim W, et al. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network. *PLoS One*. 2018;13(1):e0191493. doi:10.1371/journal.pone.0191493 - 30. Fujisawa Y, Otomo Y, Ogata Y, et al. Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. *Br J Dermatol*. 02 2019;180(2):373-381. doi:10.1111/bjd.16924 - 31. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. *Nature*. 02 2017;542(7639):115-118. doi:10.1038/nature21056 - 32. Minagawa A, Koga H, Sano T, et al. Dermoscopic diagnostic performance of Japanese dermatologists for skin tumors differs by patient origin: A deep learning convolutional neural network closes the gap. *J Dermatol*. Feb 2021;48(2):232-236. doi:10.1111/1346-8138.15640 - 33. Phillips M, Greenhalgh J, Marsden H, Palamaras I. Detection of Malignant Melanoma Using Artificial Intelligence: An Observational Study of Diagnostic Accuracy. *Dermatol Pract Concept.* 2020;10(1):e2020011. doi:10.5826/dpc.1001a11 - 34. Seité S, Khammari A, Benzaquen M, Moyal D, Dréno B. Development and accuracy of an artificial intelligence algorithm for acne grading from smartphone photographs. *Exp Dermatol*. 11 2019;28(11):1252-1257. doi:10.1111/exd.14022 - 35. Yang Y, Ge Y, Guo L, et al. Development and validation of two artificial intelligence models for diagnosing benign, pigmented facial skin lesions. *Skin Res Technol*. Jan 2021;27(1):74-79. doi:10.1111/srt.12911 - 36. Huang HW, Hsu BW, Lee CH, Tseng VS. Development of a light-weight deep learning model for cloud applications and remote diagnosis of skin cancers. *J Dermatol*. Mar 2021;48(3):310-316. doi:10.1111/1346-8138.15683 - 37. Tschandl P, Argenziano G, Razmara M, Yap J. Diagnostic accuracy of content-based dermatoscopic image retrieval with deep classification features. *Br J Dermatol*. 07 2019;181(1):155-165. doi:10.1111/bjd.17189 - 39. Fink C, Blum A, Buhl T, et al. Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined naevi and melanomas. *J Eur Acad Dermatol Venereol*. Jun 2020;34(6):1355-1361. doi:10.1111/jdv.16165 - 40. Fink C, Jaeger C, Jaeger K, Haenssle HA. Diagnostic performance of the MelaFind device in a real-life clinical setting. *J Dtsch Dermatol Ges.* Apr 2017;15(4):414-419. doi:10.1111/ddg.13220 - 41. Hekler A, Kather JN, Krieghoff-Henning E, et al. Effects of Label Noise on Deep Learning-Based Skin Cancer Classification. *Front Med (Lausanne)*. 2020;7:177. doi:10.3389/fmed.2020.00177 - 42. Brinker TJ, Hekler A, Enk AH, von Kalle C. Enhanced classifier training to improve precision of a convolutional neural network to identify images of skin lesions. *PLoS One*. 2019;14(6):e0218713. doi:10.1371/journal.pone.0218713 - 43. Tschandl P, Rosendahl C, Akay BN, et al. Expert-Level Diagnosis of Nonpigmented Skin Cancer by Combined Convolutional Neural Networks. *JAMA Dermatol.* 01 2019;155(1):58-65. doi:10.1001/jamadermatol.2018.4378 - 44. Li X, Wu J, Chen EZ, Jiang H. From Deep Learning Towards Finding Skin Lesion Biomarkers. *Annu Int Conf IEEE Eng Med Biol Soc.* Jul 2019;2019:2797-2800. doi:10.1109/EMBC.2019.8857334 - 45. Tschandl P, Rinner C, Apalla Z, et al. Human-computer collaboration for skin cancer recognition. *Nat Med.* Jun 2020;doi:10.1038/s41591-020-0942-0 - 46. Han SS, Moon IJ, Lim W, et al. Keratinocytic Skin Cancer Detection on the Face Using Region-Based Convolutional Neural Network. *JAMA Dermatol*. Dec 2019;doi:10.1001/jamadermatol.2019.3807 - 47. Haenssle HA, Fink C, Toberer F, et al. Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions. *Ann Oncol.* 01 2020;31(1):137-143. doi:10.1016/j.annonc.2019.10.013 - 48. Haenssle HA, Fink C, Schneiderbauer R, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. *Ann Oncol.* 08 2018;29(8):1836-1842. doi:10.1093/annonc/mdy166 - 49. Nasr-Esfahani E, Samavi S, Karimi N, et al. Melanoma detection by analysis of clinical images using convolutional neural network. *Annu Int Conf IEEE Eng Med Biol Soc.* Aug 2016;2016:1373-1376. doi:10.1109/EMBC.2016.7590963 - 50. Zunair H, Ben Hamza A. Melanoma detection using adversarial training and deep transfer learning. *Phys Med Biol.* 07 2020;65(13):135005. doi:10.1088/1361-6560/ab86d3 - 51. Winkler JK, Sies K, Fink C, et al. Melanoma recognition by a deep learning convolutional neural network-Performance in different melanoma subtypes and localisations. *Eur J Cancer*. 03 2020;127:21-29. doi:10.1016/j.ejca.2019.11.020 - 52. Navarrete-Dechent C, Liopyris K, Marchetti MA. Multiclass Artificial Intelligence in Dermatology: Progress but Still Room for Improvement. *J Invest Dermatol*. May 2021;141(5):1325-1328. doi:10.1016/j.jid.2020.06.040 - 53. Yap J, Yolland W, Tschandl P. Multimodal skin lesion classification using deep learning. *Exp Dermatol*. 11 2018;27(11):1261-1267. doi:10.1111/exd.13777 - 54. Al-Masni MA, Kim DH, Kim TS. Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. *Comput Methods Programs Biomed*. Jul 2020;190:105351. doi:10.1016/j.cmpb.2020.105351 - 55. Premaladha J, Ravichandran KS. Novel Approaches for Diagnosing Melanoma Skin Lesions Through Supervised and Deep Learning Algorithms. *J Med Syst.* Apr 2016;40(4):96. doi:10.1007/s10916-016-0460-2 - 56. Sies K, Winkler JK, Fink C, et al. Past and present of computer-assisted dermoscopic diagnosis: performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesions. *Eur J Cancer*. 08 2020;135:39-46. doi:10.1016/j.ejca.2020.04.043 - 57. Pangti R, Chouhan V, Mathur J, et al. Performance of a deep learning-based application for the diagnosis of basal cell carcinoma in Indian patients as compared to dermatologists and nondermatologists. *Int J Dermatol*. Feb 2021;60(2):e51-e52. doi:10.1111/jid.15242 - 58. Muñoz-López C, Ramírez-Cornejo C, Marchetti MA, et al. Performance of a deep neural network in teledermatology: a single-centre prospective diagnostic study. *J Eur Acad Dermatol Venereol*. Feb 2021;35(2):546-553. doi:10.1111/jdv.16979 - 59. Kim YJ, Han SS, Yang HJ, Chang SE. Prospective, comparative evaluation of a deep neural network and dermoscopy in the diagnosis of onychomycosis. *PLoS One*. 2020;15(6):e0234334. doi:10.1371/journal.pone.0234334 - Wang Y, Ke Z, He Z, et al. Real-time burn depth assessment using artificial networks: a large-scale, multicentre study. *Burns*. 12 2020;46(8):1829-1838. doi:10.1016/j.burns.2020.07.010 - 61. Saba T, Khan MA, Rehman A, Marie-Sainte SL. Region Extraction and Classification of Skin Cancer: A Heterogeneous framework of Deep CNN Features Fusion and Reduction. *J Med Syst.* Jul 2019;43(9):289. doi:10.1007/s10916-019-1413-3 - 62. Marchetti MA, Codella NCF, Dusza SW, et al. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. *J Am Acad Dermatol*. 02 2018;78(2):270-277.e1. doi:10.1016/j.jaad.2017.08.016 - 63. Binol H, Plotner A, Sopkovich J, Kaffenberger B, Niazi MKK, Gurcan MN. Ros-NET: A deep convolutional neural network for automatic identification of rosacea lesions. *Skin Res Technol*. May 2020;26(3):413-421. doi:10.1111/srt.12817 - 64. Zhao S, Xie B, Li Y, et al. Smart identification of psoriasis by images using convolutional neural networks: a case study in China. *J Eur Acad Dermatol Venereol*. Mar 2020;34(3):518-524. doi:10.1111/jdv.15965 - 65. Hekler A, Utikal JS, Enk AH, et al. Superior skin cancer classification by the combination of human and artificial intelligence. *Eur J Cancer*. 10 2019;120:114-121. doi:10.1016/j.ejca.2019.07.019 - 66. Maron RC, Weichenthal M, Utikal JS, et al. Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks. *Eur J Cancer*. 09 2019;119:57-65. doi:10.1016/j.ejca.2019.06.013 - 67. Zhao XY, Wu X, Li FF, et al. The Application of Deep Learning in the Risk Grading of Skin Tumors for Patients Using Clinical Images. *J Med Syst.* Jul 2019;43(8):283. doi:10.1007/s10916-019-1414-2 - 68. Jinnai S, Yamazaki N, Hirano Y, Sugawara Y, Ohe Y, Hamamoto R. The Development of a Skin Cancer Classification System for Pigmented Skin Lesions Using Deep Learning. *Biomolecules*. 07 2020;10(8)doi:10.3390/biom10081123 - 69. Mahbod A, Tschandl P, Langs G, Ecker R, Ellinger I. The effects of skin lesion segmentation on the performance of dermatoscopic image classification. *Comput Methods Programs Biomed*. Dec 2020;197:105725. doi:10.1016/j.cmpb.2020.105725 - 70. Zhang X, Wang S, Liu J, Tao C. Towards improving diagnosis of skin diseases by combining deep neural network and human knowledge. *BMC Med Inform Decis Mak.* 07 2018;18(Suppl 2):59. doi:10.1186/s12911-018-0631-9