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1 Datasets

We show the datasets used in further experiments in Supplemental Table S1.

1.1 CAP-SELEX

Combinations of TFs with successful CAP-SELEX experiment are limited after filtering
for quality metrics as described in our BindSpace paper (Nature Methods 2019). Even
after filtering for QC, in only a handful ( 70 of them) is there a composite motif that
differs from the concatenation of individual motifs for which we can assess enrichment
in the latent dimensions. Rather than make systematic statements about composite
motifs given the sparsity of CAP-SELEX data, we are only presenting “analysis vi-
gnettes” that make the point that in some cases the latent dimension can capture a
composite motif.

∗To whom correspondence should be addressed: meghana.kshirsagar@microsoft.com

cleslie@cbio.mskcc.org
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Experiment T cell female adult
URL: https://www.encodeproject.org/experiments/ENCSR977LVI/

replicate 1, number of peaks 79802
replicate 2, number of peaks 82359

overlap in peaks 68682

Experiment naive B cell

female donor, number of peaks 87500
URL: https://www.encodeproject.org/experiments/ENCSR685OFR/

male donor, number of peaks 94007
URL: https://www.encodeproject.org/experiments/ENCSR903WVU/

overlap in peaks 76442

Experiment naive CD8+ T cells
mouse, number of peaks 221,053

URL: https://pubmed.ncbi.nlm.nih.gov/33891860/

human, number of peaks 190,816
URL: https://pubmed.ncbi.nlm.nih.gov/33891860/

Table S1: Details of the ATAC-seq datasets used in the analyses shown in supplementary material
(for the experiments shown in Figure S8). Overlap of at least 50bp is considered for computing the
overlap rows in the table above.
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Fig. S1: The top 100 8-mers from the latent dimension #37, that captures genomic background in
the GM12878 model.

Fig. S2: The latent representation learned for top low complexity regions (LCRs) or regions with
repeats are similar as shown in the heatmap, where most of them have a high value for the same latent
factor (#37).
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Fig. S3: Latent projection of peaks with only repeat regions and peaks with some low-complexity
repeating patterns and TFBS for a TF. This shows the disentanglement done by BindVAE.
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Fig. S4: CIS-BP motifs for TFs from the same family or for paralogous TFs are shown, to illustrate
the difficulty of learning TF-specific patterns for these. We show the TFs from the heatmap of Figure
2b (TFs in the boxes). Each group of TFs gets projected to the same latent factor by our model as
discussed in the main paper.
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Fig. S5: GM12878: Top 50 8-mers from some latent dimensions, aligned using clustal omega to
summarize the patterns found. The CIS-BP motif corresponding to the TF that was assigned to
each latent dimension (using Algorithm 1) is also shown. Since CTCF is assigned to multiple latent
dimensions, the top 25 8-mers from each are shown.
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Fig. S6: PCA done on the decoder parameters θ ∈ RM×D, that capture the k-mer distributions,
from models trained on various cell-types. Each dot on a plot represents a TF binding pattern or
k-mer distribution. (Top left) k-mer distributions from two models trained on naive B cells from two
human donors, male and female. (Top right) k-mer distributions from two models from two repeat
experiments on female naive B cells. In both cases, there is not much variance in the learned patterns,
as these are biologically close samples. (Bottom left) k-mer distributions from the two models
trained on GM12878 and A549. Since these are distinct cell types, we see two distinct manifolds in
the patterns being learned. There is also a cluster of latent dimensions at the bottom of the plot that
captures similar k-mer patterns. (Bottom right) k-mer distributions from four models: GM12878,
A549, mouse CD8 T cells and human CD8 T cells.
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TF GM12878 A549 CIS-BP

motif motif motif

HNF4A

NFIA

SRY

ELF5

OLIG3

Table S2: Motifs constructed from latent factors learned for GM12878 and A549 for TFs learned by
our model. HNF4A, NFIA, SRY have the same ‘accessibility score’ in both GM12878 and A549 trained
models (see Figure 3d in the main paper). ELF5 and OLIG3 are both expressed in both cell types.

2 Comparison to baselines

MEME: We ran MEME in tandem with Tomtom, where the learned motifs from
MEME are used as input to Tomtom which matches the learned motifs with the
PWMs from our dataset of 270 HT-SELEX TFs. We used the default parameters to
run MEME, except for the following: number of motifs=500, background-model=2nd
order, motif distribution=anr, no e-value threshold. The following command was used:

./meme -dna -mod anr -nmotifs 500 -minw 5 -maxw 15 -markov order 2 -p

10 <fasta-file>

MEME was run with 10 processors in parallel. On both datasets, MEME+Tomtom
took 10 to 12 hours to run, with Tomtom taking under 5 minutes.

GADEM: Overall, this genetic algorithm guided approach is non-deterministic (pro-
duces differing number of motifs in each run) and suited for learning a single TF’s
motif/PWM from ChIP-seq data. Since GADEM can only find motifs, we ran it in
conjunction with Tomtom for motif-matching to find which SELEX PWMs are found.
The R-package rGADEM had some limitations (can only work with 44000 sequences,
limited number of motif matches etc.); we modified the source code as per the doc-
umentation and ran it on the GM12878 and A549 datasets. We used the default
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Motif from Jolma et al. Motif generated by MEME BindVAE motif
using enriched

CAP-SELEX probes

Other cooperative TF pairs found

ELK1 SPDEF ELK1 TCF15 MYBL1 MAX
ELK1 NFKB1 TFAP4 FLI1 TFAP4 MAX
E2F1 NHLH1 ETV2 NHLH1 HOXB2 NHLH1

POU2F1 FOXO6 E2F1 ELK1 MYBL1 MAX
FOXJ3 TBX21

Table S3: MYBL1:MAX motifs computed from the GM12878 model are shown in the top row. The
bottom table shows all cooperative binding pairs of TFs found for GM12878 by our model using the
CAP-SELEX data are shown.
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Method Run-time GM12878 A549 T cells female adult
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

GADEM+Tomtom 2-7 hrs 0.634 0.154 0.247 0.571 0.090 0.154 0.760 0.186 0.298
MEME+Tomtom 9-10 hrs 0.530 0.261 0.348 0.791 0.327 0.462 0.686 0.361 0.472
HOMER 6-24 hrs 0.608 0.351 0.444 0.765 0.504 0.607 0.659 0.811 0.728
BindVAE 4-5 hrs 0.636 0.416 0.502 0.806 0.359 0.496 0.785 0.351 0.485
BindVAE+Tomtom 4-5 hrs 0.573 0.952 0.714 0.733 0.900 0.807 0.638 0.821 0.718

(a)

Method p-value / GM12878 A549 T cells female adult
e-value P R F1 P R F1 P R F1

All positive 0.562 1.000 0.720 0.736 1.000 0.828 0.628 1.000 0.771
classifier

HOMER 0.001 0.631 0.386 0.478 0.783 0.377 0.508 0.780 0.414 0.540
HOMER 0.01 0.608 0.351 0.444 0.765 0.504 0.607 0.659 0.811 0.728
HOMER 0.1 0.628 0.452 0.525 0.777 0.350 0.481 0.748 0.505 0.602
HOMER 10 0.719 0.458 0.559 0.800 0.418 0.548 0.764 0.430 0.550

BindVAE 3%, 0.005 0.744 0.208 0.324 0.833 0.113 0.198 0.821 0.164 0.273
BindVAE 5%, 0.05 0.636 0.416 0.502 0.806 0.359 0.496 0.785 0.351 0.485
BindVAE 5%, 0.1 0.636 0.541 0.584 0.779 0.513 0.618 0.766 0.436 0.554
BindVAE 10%, 0.5 0.579 0.803 0.672 0.747 0.754 0.750 0.721 0.611 0.661
BindVAE 10%, 0.8 0.561 1.000 0.718 0.735 1.000 0.847 0.765 0.382 0.509

BindVAE+Tomtom 0.1 0.533 0.047 0.086 0.750 0.040 0.075 0.541 0.038 0.07
BindVAE+Tomtom 1 0.539 0.410 0.464 0.737 0.204 0.318 0.602 0.481 0.534
BindVAE+Tomtom 10 0.573 0.952 0.714 0.733 0.900 0.807 0.633 0.796 0.705
BindVAE+Tomtom 20 0.571 0.976 0.720 0.731 0.954 0.827 0.638 0.821 0.718

(b)

Table S4: Precision, recall, F1 achieved by the various de novo motif discovery approaches in
retrieving TFs from ATAC-seq peaks of the two cell types. Expressed TFs (from RNA-seq data) that
intersect with our HT-SELEX set of TFs are used as the gold-standard for retrieval. (a) Performance
with default p-value and e-value cut-offs for all methods. (b) For the two best approaches, HOMER
and BindVAE, performance upon varying the cut-offs is shown. The performance of a naive match-
every-motif classifier (label everything positive) is shown.

parameters (e-value threshold=0), except for the number of motifs to find, which we
set as: nmotifs=500. We tried several p-value cut-offs, including the recommended
one (0.0002) and less stringent cut-offs. Relaxing the p-value cut-off to values higher
than 0.001 results in millions of motif matches being found and the code segmentation
faults. Oddly, fewer motifs were found for the less stringent cut-offs of 0.001, 0.0008.
The algorithm had run times between 2 to 7 hours (with lower times for more stringent
p-value cut-offs). With a cut-off of 0.0002, 4 to 8 motifs were found ranging in length
from 9 to 31.
BindVAE + Tomtom: In order to understand the contribution of the VAE and Al-
gorithm 1 to the performance separately, we replace Algorithm-1 with a PWM match-
ing approach like Tomtom that takes PWMs generated for each latent dimension and
matches them against a database. This gives us another version of BindVAE.

In general, we find that BindVAE has a higher precision compared to other ap-
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proaches. Replacing the TF-matching procedure (from Algorithm 1) with Tomtom, we
find results in a higher recall and F1-score. HOMER has a better performance on the
T cell dataset.

2.1 Varying the cut-off thresholds

All the motif finding algorithms and our TF-matching algorithm (Algorithm 1) assign
p-values to the matches, which are not appropriate for use as ‘scores’ from a classifier
for generating ROC curves. We show results for the two best performing models:
BindVAE and HOMER, for a few different p-value / e-value cut-offs and show the
results in Table S4(b).
HOMER: The way to achieve more comparisons with HOMER is by changing the e-
value cut-off (the default value is: 0.01). This requires re-running the entire algorithm,
which is also the case for other motif discovery approaches.
BindVAE: being a machine-learning model only requires to be trained once. The
p-value changes need to be made in the post-processing in Algorithm 1, which takes 5
mins to complete. There are two thresholds that can be changed:

• the p-value cut-off on line-8 of Algorithm 1 or

• the top% of all probes where we look for enrichment of a TF’s probes on line-7

BindVAE + Tomtom: Here also, two thresholds can be changed: the e-value cut-off
of Tomtom or the parameters of the MEME algorithm, which we use to generate PWMs
from 10mers. We do not change the MEME parameters however and only modify the
e-value threshold of Tomtom.
All positives classifier: The performance of a naive match-every-motif classifier
(label everything positive) is shown. This gives a sense of the class skew.

Overall, we find that BindVAE+Tomtom has a higher recall and F1-score compared
to HOMER (if one were to plot the area under PR curve, it would be expected to be
higher as well).

3 Latent factors capturing non-TF related patterns

Noisy and redundant dimensions in the model: The model learned on GM12878
peaks has 10 dimensions that capture ‘noise’ and do not contain any TF-specific in-
formation. The k-mer distributions for the noisy latent factors are mostly flat (almost
uniform distributions). When DNA sequences are projected onto these dimensions,
the resultant matrix has small and constant-valued columns. See Figure S11, where
we show the ATAC-seq peaks from our GM12878 dataset projected onto the 10 noisy
dimensions from this model.

Redundant dimensions are ones that capture kmer patterns for the same TF. In Figure
S10, we show the kmer distributions of two latent dimensions that were mapped to

10



HEY1. Similar distributions are shown for NFIA and TFAP4. This redundancy is likely
due to binding sites of homologous TFs that are not part of our HT-SELEX dataset
(which is used by Algorithm-1 to map latent dimensions to TFs).

Low-complexity regions and genomic background: We use Tandem Repeat
Finder (TRF) to find GM12878 peaks that contain low-complexity regions (LCRs):
i.e. regions with an abundance of short tandem repeats or regions with an abundance
of a single base (like AAAAAAAAAA). See Figure S12 for example sequences found in the
GM12878 ATAC-seq peaks. We find that the top scoring 30 peaks (as per scores
assigned by TRF) contain repeats throughout the 200bp region, while the subsequent
peaks contain some TFBS in addition to some repeat regions. We find that the latent
representation learned for these top LCRs or regions with repeats are similar as shown
by the heatmap below, where most of them have a high value for the same latent
factor (#37). We show the top 100 k-mers from latent factor #37 in Figure S1 and
they contain recurring CG-rich k-mers.

To depict the learned theta matrix (k-mer distribution matrix) that is trained on
genomic background regions, we trained two models:

1. (Model 1) Random regions of naked DNA from mouse germ cells. We use the
following dataset to train this model: https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSM1550786

2. (Model 2) flanking regions of GM12878 peaks that are 10kb away

As shown in Figure S13, we find that only a couple of distinct k-mer patterns are
learned by Model 1. On the other hand, Model 2 does learn several distinct TF-like
signatures similar to the GM12878 model trained on peaks only. We believe this to be
the case because distal regions of “promoter peaks” also contain binding sites, and our
flanking set of peaks is likely to contain some of these.
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Fig. S7: Examples of CAP-SELEX probes scoring higher and lower than individual TF probes.
(Top) Example of cooperative binding CAP-SELEX probes of TFAP4:FLI1 being enriched while
the individual TF probes are not enriched for TFAP4 or FLI1 (p = 1). (Bottom) Example where
individual TF probes from the SELEX experiment for EOMES are enriched, while CAP-SELEX
probes of cooperative binding between MYBL1:EOMES are not.
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Fig. S8: Accessibility scores of TFs obtained by summing the latent representations over all ATAC-
seq peaks showing the possible extent of accessibility for each TF. The datasets used here are described
in Table S1. (Left) TFs found in naive B cells by our model and their ‘accessibility scores’ in the
two human donors: male donor (light blue) and female donor (orange).(Right) Averaged relative
accessibility scores in female donor over 5 runs.
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Fig. S9: Select latent dimensions (topics) from the GM12878 model, that are referred to in the main
text. The shown matrix is a sub-matrix of θ ∈ RM×D. Dimensions 69 and 83 are redundant, in that
they both assign high weights to the same k-mer features.
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Fig. S10: Redundant dimensions: Latent dimensions with similar k-mer distributions are shown. In
each plot, the two dimensions were mapped to the same TF; for example: #69 and #83 are both
mapped to HEY1. Along the x-axis is the union of the top 1000 8-mers from both dimensions. The
values in each row are the decoder parameters learned by the model: ~θi for the ith dimension.
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Learned TFs that are expressed Not expressed

CPEB1 ALX1
CREB3L1 AR

CTCF BHLHE23
CUX1 BHLHE41
CUX2 EGR4
E2F2 ELF5
EGR3 EMX2
ELK1 ERG
ELK3 ESRRG
EMX1 FEV
EOMES FOXC2
ERF FOXL1

ESRRA GATA4
ETS1 GATA5

FOXD2 GLI2
FOXG1 HNF1A
FOXJ2 HNF1B
FOXO4 HNF4A
GMEB2 HSFY2
GRHL1 MEIS3
HMX3 MEOX2
HSF1 NFE2
HSF2 NKX3-2
HSF4 OLIG2
IRF4 OLIG3
IRF7 ONECUT3
IRF8 PAX7
KLF16 PKNOX2
LHX2 POU1F1
MAFK POU3F2
MAX POU3F4
MGA POU5F1P1
MLX RXRG

MLXIPL SP8
NFIA SRY
NFIB T
NFIX TBR1

NFKB1 TBX20
NR2C2 TBX4
NR2F1 TCF21
NR2F6 TCFAP2A
NR3C1 TFAP2C
NRF1 UNCX

PKNOX1 ZBTB7C
POU2F2 ZFP740
PRDM1 ZIC3
RARG ZIC4
RFX2 ZNF238
RFX3 ZSCAN4
RFX5
RUNX2
RUNX3
RXRA
RXRB
SMAD3
SPI1
SPIB
SRF

TBX19
TBX21
TCF3
TCF4
TEAD3
TEF

TFAP2A
TFAP4
TGIF1
TGIF2
THRA
VDR
YY2

ZBTB7B
ZNF524

Table S5: TFs learned by the model trained on the GM12878 ATAC-seq data.
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Fig. S12: GM12878 peaks that contain sequences with the most repeats (top 5 are shown), as ranked
by the Tandem Repeat Finder score (TRF algorithm ). We find that the highest-scoring topic for all
of these sequences is the same. The genomic coordinates correspond to the hg19 assembly.
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Fig. S13: Interpreting the models learned on random regions of the DNA. (Top) Matrix showing the
learned decoder parameter θ (that shows the k-mer distributions for each latent factor) for a model
trained on 150,000 random regions of naked DNA from mouse E16.5 sorted germ cells. (Bottom)
Matrix showing the learned decoder parameter θ for a model trained on flanking genomic regions from
GM12878 cells, where regions that are 10kb away from the ATAC-seq peaks were chosen as training
data.

18



0 500 1000 1500

k-mer features

0

20

40

60

80

La
te

nt
 d

im
en

sio
n

Fig. S14: Heatmap showing the top 20 k-mers learned by our model for each latent dimension in the
A549 model
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Fig. S15: Heatmap of the latent space obtained by our A549-trained model, upon doing inference
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Fig. S16: PCA of the k-mer distributions in two isogenic replicates of T cells
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Fig. S17: Box-plots showing the distribution of topic scores for ATAC-seq peaks that overlap with
ChIP-seq peaks and those that do not, for several TFs.

22



ChIP overlapping not overlapping

−
2

0
2

4
6

POU2F2

ChIP overlapping not overlapping

−
2

0
2

4
6

8

RFX5

ChIP overlapping not overlapping

0
2

4
6

8

NFE2

ChIP overlapping not overlapping

0
2

4
6

NR2C2

ChIP overlapping not overlapping

−
2

0
2

4
6

SRF

Fig. S18: Box-plots showing the distribution of topic scores for ATAC-seq peaks that overlap with
ChIP-seq peaks and those that do not, for several TFs.
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