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1. Supplementary figures
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Fig. S1 WGS results in HepG2.
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A. The WGS (whole genome sequencing) results showed the distribution of
indel (insertion or deletion mutations) on different DNA segments in HepG2

cells.

B. The indel substitution in HepG2 cells discovered by WGS.
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C. The WGS results showed the distribution of SNV on different DNA segments
in HepG2 cells.

D. The SNV substitution in HepG2 cells discovered by WGS.

E. A Circos plot showing the genomic landscape of mutations (including SNVs,
Indels, CNVs, and gene fusions) in HepG2 cells discovered by WGS. The outer
ring shows chromosome ideograms. The bars along each inner ring represent
mutation events.

F-G. Copy-number variation (CNV) distribution on chromosomes in our cultured
HepG2 cells discovered by WGS.
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Fig. S2 Representative Sanger sequencing results of gRNA-expression
vectors and their targeting sites in HepG2 and Hep3B.
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A. The representative sequences of the designed gRNA-expression vectors
which only target mutated DNA sites in hepatocellular carcinoma (HCC) cell line
HepG2.

B. Representative Sanger sequencing results of the PCR product showed the
emergence of abnormal peaks at the gRNA targeting site, which indicated the
designed CRISPR could successful induce DSBs in HePG2 cells. This
experiment was used to verify the CRISPR cutting efficiency. The cells only
received CRISPR treatment, but not DSB repair inhibitors (DSBRi) treatment.
C. The representative sequences of the designed gRNAs which only target
mutated DNA sites in HCC cell line Hep3B.

D. Representative Sanger sequencing results of the PCR product showed the
emergence of abnormal peaks at the gRNA targeting site, which indicated the
designed CRISPR could successful induce DSBs in HeP3B cells.
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Figure S3 The "i-CRISPR " strategy could induce DSBs and cell death
in HepG2 cells.

A. Representative images of yH2AX foci in HepG2 cells at 48 h after
transfection with three groups of gRNAs together with Cas9. Scale bar, 20pm.
B. Quantitative analysis of the yH2AX foci number in the different groups
indicated above. *P<0.05. **P<0.01.

C-F. At 0, 24, 48, and 72 h after gRNA transfection, cells were pretreated with
DMSO (C), KU55933 (D), NU7441 (E) and KU55933+NU7441 (F), and cell
viability was determined with a CCK-8 assay at OD450.
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Figure S4. Targeted induction of DSB resulted in apoptosis in cancer cells
carrying specific mutations.

A-C. representative images and quantitative analysis of cleaved Caspase 3
(c-Caspase 3) in T8 gRNAs&Cas9 introduced group with/without DNA damage
repair treatments (KU55933+NU7441). Scale bar, 20um. *P<0.05. **P<0.01.

-
=

c-Capase 3 positive cells
o

o

DMSO  KU55933+NU7441

c-Caspase 3 intensity

»n
(=]
]

bl = NC
mm T8 set 142

-
o
1

-
=
1

(2]
1

c-Caspase 3 intensity

=]
I

DMSO KU55933+NU7441



Reads Distribution On Chromosomes

\|H|||I | NG
;. \\\ #/-/ i /
.

ARroNSdoowan

- -g“r’gll!
;.'

3

Nl - .ﬁ‘.-lil
-
®

e
0
F S F S F PR
d‘\‘\ ><9° ‘)9‘, &9‘0 & $ ¥ &
r r s & & * 4
@
< <« A & & &

90
91  Figure S5. WGS results in DU145.

92 A. Sequence GC Content in DU145 discovered by WGS (whole genome
93  sequencing).
94  B. Reads distribution on chromosomes in DU145 discovered by WGS.
95 C. ACircos plot showing the genomic landscape of in our cultured DU145 cells
96 discovered by WGS. The outer ring shows chromosome ideograms. The bars
97 along each inner ring represent mutation events.
98  D.WGS results showed the substitution of indel (insertion or deletion mutations)
99 in our cultured DU145 cells.
100 E. SNP substitution in our cultured DU145 cells discovered by WGS.
101 F. WGS results showed the distribution of indel on different DNA segments in
102 our cultured DU145 cells.
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Figure S6. The "i-CRISPR " strategy could suppress DU145 cell viability.
A. The representative sequences of the designed gRNAs which only target
mutated DNA sites in Prostate cancer cells DU145.

B. Representative Sanger sequencing results of the PCR product of Cas9 and
gRNA introduced DU145 cells showed the emergence of abnormal peaks at the
gRNA targeting sites, which indicated the designed CRISPR could successful
induce DSBs in cells.

C. CCK-8 assay results of cell viability of DU145 cells after the treatment of
Cas9 and different combinations of gRNA-expressing lentiviruses and
Wortmannin (50nM).



114  D. Xenograft experiments showed decreased growth of DU145 cells after
115  4gRNAs-Cas9 and Wortmannin treatment in nude mice.
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Figure S7. The "i-CRISPR" strategy could induce cell death in DU145
cancer cells but not normal 293T cells.

A. Representative of cell apoptosis in DU145 cells transfected with a gRNAs
combined treatment with DNA damage repair inhibitors. A lv-cas9 was used as
a negative control. And NU7441+KU55933 and wortmannin was used as DSB
inhibitors. A normal 293T cells without the relative cutting sites were used to
determine the specificity of this strategy.

B. Quantification of apoptotic cells from different groups were shown. **P<0.01
Vs the relative group.

C.DU145 cells and 293T cells transfected with lv-cas9, or lv-cas9 plus sgRNAs,
and treated with DNA damage repair inhibitors. After 72h later, cell viability was
measured in DU145 cells and 293T cell with a CCK-8 assay.
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Figure S8 CRISPR targeting new targets could overcome the possible
drug resistance problems of our strategy.

A. To test the possible resistance of the strategy, DU145 were treated with a
first round of 4 gRNAs mediated CRISPR cutting. Then the survived cells were
subjected to the same 4 gRNAs or a different group of 3 gRNAs cutting. Cell
apoptosis were measured with flowcytometry assay. Representative of cell
apoptosis in DU145 cells transfected with two round of gRNAs was shown in
Fig. S7A.
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B. Quantification of apoptotic cells from different groups were shown.
***P<0.001 Vs the 4gRNAs group.

C. Cell viability was measured with CCK-8 assay in DU145 cell treated with two
rounds of CRISPR cutting treatments. **P<0.01 Vs the 4gRNAs group.
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HCC-12 organoids

Figure S9. The "i-CRISPR " strategy could only specifically suppress HCC
organoid with the designed mutations.

A. Representative images of organoids (HCC-12) transfected with cas9 and/or
gRNAs (HCC-227) combined with DNA damage repair inhibitor treatment.

B. The viability of organoids was measured with a CCK-8 assay.
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Figure S10. The "i-CRISPR " strategy could not significantly affect the
weight, blood routine and other biochemical indicators of PCa PDX mice.

A. The body weight of PDX bearing mice were recorded every three days after
the injection of gRNA and DSB inhibitor.

B-K. The blood routine test and biochemical parameters were measured on
D12 after the application of CRISPR cutting strategy. No significant difference

was observed in the two groups.
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Figure S11. Sequences of off-target sites identified by GUIDE-seq for the
mixture of Cas9 and 3 gRNAs targeting mutated sites and treated DU145
cells.

A-C. On-target and off-target efficiencies with gRNA targeting the mutation
located on Chr19 (A), Chr12 (B) and Chr1 (C) evaluated using GUIDE-seq.
D-F. Off-targets distributions on all the chromosomes with gRNA targeting the
mutation located on Chr19 (D), Chr12 (E) and Chr1 (F) evaluated using GUIDE-
seq.
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Figure S12. Quantitative phos-phoproteomics analysis elucidate the
molecular mechanism of the "i-CRISPR " strategy in HepG2 cells

A-C. Volcano plot shows differentially phosphorylated proteins between the C-
Cut and NC groups (A), C-Cut-2i and NC groups (B), and C-Cut-2i and C-Cut
groups (C) after quantitative phosphoproteomics analysis using tandem mass
spectrometry. NC: negative control, only treated with Cas9; C-Cut: CRISPR-
Cut, treated with Cas9 and the 8 gRNAs in the T8 set; C-Cut-2i, CRISPR-Cut
treated with the T8 set and 2i (NU7441 and KU55933).

D. Enrichment of GO terms for the proteins with upregulated phosphorylation
between the C-Cut-2i and NC groups.

E. Heatmap shows the selected differentially phosphorylated proteins related
to necroptosis among the 3 groups.
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196 Figure S13 Differentially phosphorylated proteins analysis after the "i-
197 CRISPR" strategy treatment.

198  A. The principal component analysis (PCA) result of the 9 samples (each group
199 has 3 samples) after quantitative phos-phoproteomics analysis using the
200 Tandem Mass. NC: negative control, only treated with Cas9; C-Cut: CRISPR-
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Cut, treated with Cas9 and 8gRNAs in the T8 set; C-Cut&2i, CRISPR-Cut with
T8 set and 2 inhibitors (NU7441 and KU55933).

B. Pearson correlation coefficients between all samples are shown in Heatmap.
C. Heat map shows the landscape of differentially phosphorylated proteins
among the 3 groups.

D. Pie chart shows the distribution of differentially phosphorylated proteins in
cell components based on GO analysis.
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Figure S14 Enrichment of GO terms for differentially phosphorylated
proteins among the 3 groups.

Enrichment of GO terms for differentially phosphorylated proteins among the 3
groups after quantitative phos-phoproteomics analysis using the Tandem Mass.
NC: negative control, only treated with Cas9; C-Cut: CRISPR-Cut, treated with
Cas9 and 8gRNAs in the T8 set; C-Cut&2i, CRISPR-Cut with T8 set and 2
inhibitors (NU7441 and KU55933).
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222 Figure S15. Activation of autophagy mayplay critical role in the molecular
223  mechanism for the increased cell death of our strategy-part 1

224 KEGG pathway of the enriched term “Autophagy-Animal” in GO analysis, and
225  differentially phosphorylated proteins are highlighted in the C-Cut-2i vs NC.
226  Differentially phosphorylated proteins were analyzed using the Tandem Mass.
227 NC: negative control, only treated with Cas9; C-Cut-2i, CRISPR-Cut with T8
228 setand 2 inhibitors (NU7441 and KU55933).
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240 Figure S16. Activation of autophagy mayplay critical role in the molecular
241  mechanism for the increased cell death of our strategy-part 2

242  KEGG pathway of the enriched term “Autophagy-Animal” in GO analysis, and
243  differentially phosphorylated proteins are highlighted in the C-Cut-2i vs C-Cut.
244  Differentially phosphorylated proteins were analyzed using the Tandem Mass.
245  C-Cut: CRISPR-Cut, treated with Cas9 and 8gRNAs in the T8 set; C-Cut-2i,
246  CRISPR-Cut with T8 set and 2i (NU7441 and KU55933).
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Figure S17 DNA methylation analysis in control and treated DU145 cells.
A. Pei chart shown the change of the composition ratio of methylation levels of
CG, CHG, and CHH contexts in the two groups of DU145. NC: negative control,
only treated with Cas9; C-Cut&2i, CRISPR-Cut with 7gRNAs and 2 inhibitors
(NU7441 and KU55933).

B. differentially methylated regions (DMRs) numbers of the two comparison
groups. DU-con:Du145 cells only treated with Cas9; DU-treat: Du145 cells
treated with Cas9 and 7gRNAs (CRISPR-Cut and 2 inhibitors (NU7441 and
KU55933);

C. Enrichment of GO terms for the genes located on the differentially
methylated regions (DMRs) of C between the two comparison groups.

D. Enrichment of GO terms for the genes located on the differentially
methylated regions (DMRs) of CHH between the two comparison groups.
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Figure S18 DNA methylation analysis in control and treated HepG2 cells.
A. Pei chart shown the change of the composition ratio of methylation levels of
CG, CHG, and CHH contexts in the two groups of HepG2. NC: negative control,
only treated with Cas9; C-Cut&2i, CRISPR-Cut with 8gRNAs and 2 inhibitors
(NU7441 and KU55933).

B. differentially methylated regions (DMRs) numbers of the two comparison
groups. HepG2-con: HepG2 cells only treated with Cas9; HepG2-treat:
HepG2 cells treated with Cas9 and 8gRNAs (CRISPR-Cut and 2 inhibitors
(NU7441 and KU55933);

C. Enrichment of GO terms for the genes located on the differentially
methylated regions (DMRs) of C between the two comparison groups.

D. Enrichment of GO terms for the genes located on the differentially
methylated regions (DMRs) of CHH between the two comparison groups.
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Figure S19 Joint analysis of the DNA methylation data in DU145 and

HepG2 cells.

A. Heat map shown the of the regional methylation rate of the top 100 DMRs
of C. DU-con: DU145 cells only treated with Cas9; DU-treat: DU145 cells
treated with Cas9 and 7gRNAs CRISPR-Cut and 2 inhibitors (NU7441 and
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KU55933); HepG2-con: HepG2 cells only treated with Cas9; HepG2-treat:
HepG2 cells treated with Cas9 and 8gRNAs (CRISPR-Cut and 2 inhibitors
(NU7441 and KU55933);

B. Heat map shown the of the regional methylation rate of the top 100 DMRs
of CHH.

C. Venn diagram shows the common and specific DMRs of C located genes in
DU145 and HepG2. Genes in the intersection are genes have DMRs of C in
both DU145 and HepG2.

D. Venn diagram shows the common and specific DMRs of CHH located genes
in DU145 and HepG2. Genes in the intersection are genes have DMRs of CHH
in both DU145 and HepG2.

E. Enrichment of GO terms for the genes (in the intersection of C) that have
DMRs of C in both DU145 and HepG2.

F. Enrichment of GO terms for the genes (in the intersection of D) that have
DMRs of CHH in both DU145 and HepG2.
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A. IGV software depicts the methylation of FAS gene body region in two groups
of DU145 cells.NC: negative control, only treated with Cas9; C-Cut&2i,

CRISPR-Cut with 7gRNAs and 2 inhibitors (NU7441 and KU55933).

B. IGV software depicts the methylation of FAS gene body region in two groups
of HepG2. NC: negative control, only treated with Cas9; C-Cut&2i, CRISPR-

Cut with 8gRNAs and 2 inhibitors (NU7441 and KU55933).

C. IGV software depicts the methylation of JAK2 gene body region in control

DU145(DU-Con) and gRNA and 7 gRNAs-Cas9 treated DU145(DU-Treat).

D. IGV software depicts the methylation of JAK2 gene body region in control
HepG2(HepG2-Con) and gRNA and 8 gRNAs-Cas9 treated HepG2(HepG2-

Treat).
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Figure S21 Whole-genome sequencing results of DU145 and the 3 DU145

derived single cells (A6 , B12, B13) cultured in our laboratory
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A. Venn diagram shows the common and specific mutations in the 3 DU145
derived single cells (A6 , B12, B13)discovered by whole genome sequencing
(WGS). A6 is a single-cell clone derived from DU145 that has been cultured
alone for approximately 60 passages in our laboratory. From outside to inside:
common and specific mutations in B12, B13 and A6. A6 is a single-cell clone
derived from DU145 that has been cultured alone for approximately 60
passages in our laboratory. B12 and B13 are two single-cell clones derived from
DU145 that has been cultured alone for approximately 80 passages in our
laboratory.

B. Circos plot showing the distribution of the common and specific mutations in
B12, B13 and A6. From outside to inside: common and specific mutations in
B12, B13 and A6.

C. Venn diagram shows the common and specific mutations in DU145 and the
3 DU145 derived single cells (A6 , B12, B13) discovered by WGS. From
outside to inside: common and specific mutations in B12, B13 and A6.

D. Circos plot showing the distribution of the common and specific mutations in
DU145, A6, B12, and B13. From outside to inside: common and  specific
mutations in B12, B13, A6 and DU145.
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2. Supplementary materials and methods
Materials and methods

DNA sequencing and CRISPR-Cas9 gene editing

The WGS (whole genome sequencing) and was conducted by OE Biotech Co.,
Ltd. (Shanghai, China). TruSeq Nano DNA LT Sample Prepararion Kit (lllumina,
San Diego, CA, USA) was used for DNA libraries construction. lllumina
sequencing platform HiSeq X Ten platform (lllumina Inc., San Diego, CA, USA)
was used for WGS of the libraries. Data analysis was also conducted by OE
Biotech Co., Ltd. (Shanghai, China).

In our criteria, the sgRNAs were selected manually based on the following
criteria: 1. High specificity in tumor cells; 2. Each site including 3 continuous
base mutations. 3. For cell lines, the sites were both identified in sequencing
and public database, which could be present in early passages of cells and
shared by most labs in the world. 4. The length of indel bases were also
considered for cutting purpose. For the design of each gRNA targeting the
selected specific mutated DNA site in tumor cells, we first uploaded the mutated
sequence to the gRNA design website CRISPick
(https://portals.broadinstitute.org/gppx/crispick/public).Then, we used NCBI
BLAST to exclude the gRNA sequences that could target any other human
normal genomic DNA loci. Then, the selected gRNA sequence targeting
mutation in HepG2, DU145 and Hep3B cells was synthesized and cloned into
adenovirus expression vector h9350 (padeno-u6-spgrnav2.0-cmv-sfgfp-p2a-
3flag-spcas9, Obio Technology, Shanghai) after U6 promotor. And the plasmid
expressing both gRNA and Cas9 was then packaged into adenovirus by Obio
Technology, Shanghai. The selected gRNA sequence targeting mutation in
DU145 was synthesized and cloned into lenti-virous expression vector H6805,
pCLenti-U6-spgRNA v2.0-CMV-EGFP-F2A-BSR-WPRE (Obio Technology,
Shanghai) after U6 promotor. And the plasmid expressing gRNA was then
packaged into lenti-virus (Obio Technology, Shanghai). The usage of the virus

was in accordance with the company's instructions and adenovirus safe use
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principles. All the target sites as well as gRNA sequences in HepG2 cells,
Hep3B cell, DU145 cells, organoids and PDX model were listed in the

supplementary tables.

Cells and treatments

Human liver carcinoma HepG2 cells, Hep3B cells, Huh-7 cells and prostate
cancer DU145 cells were purchased from ATCC (USA). Human embryonic
kidney cells were purchased from the ATCC and maintained in our lab. Cells
were maintained in DMEM or RPMI1640 medium supplemented with 10% fetal
bovine serum at 37°C in a 5% CO2 humidified incubator. For delivering gRNA
and Cas9 into HepG2 cells and Huh-7 cells, cells were infected with adenovirus
carrying Cas9 and the designed gRNAs targeting the HepG2 mutated
sequences in the following group: 4 Targets set 1 (T4-set 1, mixture of 4 Cas9-
gRNAs adenovirus targeting 4 HepG2 mutated sites); 4 Targets set 2 (T4-set 2,
mixture of another 4 Cas9-gRNA adenovirus targeting another 4 HepG2
mutated sites); 8 Targets set (T8-set,mixture of all the 8 Cas9-gRNA adenovirus
targeting all the 8 HepG2 mutated sites)and NC control group(NC, negative
control gRNA sequence).For delivering gRNA and Cas9 into DU145 cells, cells
were infected with lentivirus in the following groups: 3gRNAs(mixture of 3 gRNA
lentivirus targeting 3 DU145 mutated sites),4gRNAs(mixture of 4 gRNA
lentivirus targeting 4 DU145 mutated sites), 7gRNAs(mixture of all the 7 gRNA
lentivirus targeting the 7 selected DU145 mutated sites) and NC groups. And
another Cas9-expressing lentivirus was added into all 4 groups. For delivering
gRNA and Cas9 into Hep3B cells, cells were infected with lentivirus carrying
Cas9 and the designed gRNAs targeting 4 Hep3B mutated sequences. To verify
the cutting efficacy of the gRNAs, PCR products of specific DNA sites from
HepG2 cells introduced with 8gRNAs, DU145 cells with the 7gRNA, and Hep3B
cells with the 4gRNAs and Cas9 were subjected to Sanger sequencing with
(Applied Biosystems, ABI3730).

For inhibition of DNA damage repair in HepG2, adenovirus infected cells were
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treated with ATM inhibitor KU55933, DNA-PKcs inhibitor NU7441 and the
combination of “KU55933+NU7441”. For inhibition of DNA damage repair in
DU145, lentivirus infected cells were treated with PISKK inhibitor Wortmannin.
To test the resistance resulted from the first-round treatment, DU145 cells
treated with first set of sSgRNAs were further treated with the same group of
sgRNA or a different set of sgRNA for a second round. At indicated time points

after transfection, cells were treated and used for next experiments.

Organoids and treatment

As previously described, patient derived organoids (PDO) of hepatobiliary
tumor were established before and were applied to test the anti-tumor efficacy
of our strategy [1]. Briefly, the organoids were kindly provided form our
collaborators Prof. Lei Chen from Eastern Hepatobiliary Surgery Hospital in our
university. DNA sequencing were performed in the organoids (HCC227) and
targeting sgRNAs were designed. Cells of organoids were plated into 384 well
plates and after 3 days culture, organoids were infected with lentivirus
expressing only Cas9 protein or Cas9 plus sgRNAs. Then the images were
taken with a light microscope every day up to 7 days. Alternatively, CCK-8
assay was also used to measure the viability of organoids. Data from three

independent experiments were statistically analyzed.

Animal experiments and patient derived xenograft (PDX) models

The xenograft experiments were performed using nude mice. As we reported
previous, prostate cancer cells DU145 cells were subcutaneously injected into
the 4-week-old male nude mice [2]. Each nude mouse received 3x10° cells in
100 pl of serum-free medium blended with an equal volume of BD Matrigel
Matrix (BD Biosciences). After 3 weeks, the mixture of 4 gRNAs lentivirus
targeting 4 DU145 mutated sites (treated group) or NC lentivirus were injected
intratumorally with Wortmannin and Cas9-expressing lentivirus. The injections

were given every three days for a total of four times. Mice were sacrificed at6
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weeks. All procedures were obeying to the Animal Care and Use Committee of
the Naval Medical University, Shanghai, China.

For PDX model, tumor tissues from patients with prostate cancer were resected
surgically and implanted into mice with the technique assistance from Shanghai
Lidi Co. Ltd as previously described [3]. Briefly, the tumor tissues were cut into
size of 1 to 3 mm and implanted subcutaneously into the flank region of male
NOG mice. the engrafted tumor tissues were passaged and implanted into
different male NOG mice. At the same time, DNA sequencing were also
performed in isolated tumor tissues, based on which the sgRNAs were
designed and synthesized. Once the PDX model grew to 50 to 80 mm3,
lentivirus carrying sgRNAs and Cas9 were intratumorally injected, together with
the DNA damage repair inhibitor (KU55933 and NU7441). The lentivirus
combinations were injected every two days for three times. Then the tumor
volumes were monitored up to 12 days after CRISPR cutting, and the blood
routine examination as well as biochemical analysis were performed. At the end
point of observation, tumors were resected and tumor weight were measured.
the data were expressed as mean SEM, and statistical analysis were further

performed (n=6).

Immunofluorescence staining and analysis

Immunofluorescence staining was used to detect yH2AX foci, the cleaved
Caspase 3 and Caspase 3 by using methods described in our previous
studies[4, 5]. Briefly, cells were seeded on 22X22mm? cover glasses. After
different treatments, cells were fixed in 4% paraformaldehyde for 20 min at
room temperature, followed by treatment with 0.5% Triton X-100 for
permeabilization. Then the slides were blocked with goat serum and incubated
with primary antibodies as follows: yH2AX S139 (CST, 1:1000), c-Caspase 3
(Abcam, 1:500), Caspase 3 (CST, 1:200). Then the fluorescence images were
obtained with a Zesis LSM-880 confocal microscope in the State Key

Laboratory of Genetic Engineering in Fudan University. Image pro plus (Media
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Cybernetics) were used to count yH2AX foci and analyze the fluorescence

density.

Cell apoptosis

At 48h and 72h after CRISPR-virus infected and treatments with DNA damage
repair inhibitors, cells were collected and stained with Annexin V-FITC and PI
apoptosis kit according to the manufacture’s instructions (Yeasen, Shanghai,
China). After Annexin V-FITC and PI double staining, cells were analyzed with

a cytoflex flow cytometry (Beckman cytoflex, USA).

Cell viability

At 0, 24, 48h and 72h after CRISPR-virus infected and treatments with DNA
damage repair inhibitors, cells were stained with CCK-8 solution and cell
viability was determined with a BioTech reader at the wavelength of OD450.
For organoids experiments, CCK-8 solution was added into the wells with
organoid and incubated with 4-8 h, after then the wavelength of OD450 were

detected with a plate reader.

Phos proteomics

The HepG2 cells were divided into three groups: NC, C-Cut and C-Cut-2i, with
three samples in each group. The NC (negative control) group was only treated
with Cas9; the C-Cut (CRISPR-Cut) group was treated with Cas9 and 8gRNAs
in the T8 set; and the C-Cut-2i (CRISPR-Cut& 2i) group was treated with Cas9
and 8gRNAs in the T8 set and 2 DNA damage repair inhibitors (NU7441 and
KU55933). After 72 hours of treatment, the cells were harvested and prepared
for phos-phoproteome analysis.

Briefly, an integrated approach involving TMT kit (Thermo Fisher) labeling, high
performance liquid chromatography (HPLC) fractionation, immobilized metal
affinity chromatography (IMAC) affinity enrichment, and LC-MS/MS using a Q

Exactive™ HF-X Hybrid Quadrupole-Orbitrap mass spectrometer coupled with
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EASY-nLC 1000 liquid chromatography pump (Thermo Fisher Scientific) was
employed to quantify the dynamic changes in the whole phos-phoproteome of
the three groups of cells. Both methods were performed with the support of
PTM-Biolabs Co. Ltd. (310018; HangZhou, Zhejiang, China). Metascape
webtool (www.metascape.org) was used to conduct Gene ontology (GO)
biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis, allowing us to visualize the functional patterns of DEGs and

conduct statistical analysis.

Whole-Genome Bisulfite Sequencing
The HepG2 cells were divided into two groups: NC and C-Cut-2i. The NC
(negative control) group was only treated with Cas9, and in the C-Cut-2i
(CRISPR-Cut& 2i) group, mixture of the Cas9-gRNA adenovirus targeting the
selected 8 HepG2 mutated sites and 2 DNA damage repair inhibitors (NU7441
and KU55933) were added into cultured HepG2 cells. Similarly, the DU145 cells
were also divided into two groups: NC and C-Cut-2i. The NC (negative control)
group was only treated with Cas9, and the C-Cut-2i (CRISPR-Cut& 2i) group
was treated with Cas9 lentivirus and mixture lentivirus of the 7 gRNAs and 2
DNA damage repair inhibitors (NU7441 and KU55933). Three days after
treatment, cells were harvested and genomic DNA was extracted using the
QlAamp Mini DNA kit (Qiagen,) according to the instructions. The DNA
concentration were detected by NanoDrop spectrophotometer and fragmented
into 100-300bp by sonication (Covaris, USA) and purified before end repairing
and a single “A” nucleotide adding onto the 3’ end of the blunt fragments. Then
the DNA fragments were ligated to methylated sequencing adapters, and were
bisulfite converted using Methylation-Gold kit. The converted DNA were
amplified and sequenced using lllumina HiSeqTM 2500 and the Data were

analysed by Gene Denovo Biotechnology Co. (Guangzhou, China).

Off-target detection by Guide-seq
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DsODN (200pmol) was transfected into cultured DU145 cells(2 X 108) by
Lipofectamine 3000 (Invitrogen), and then Cas9 and gRNA lentivirus targeting
3 DU145 mutated sites were added into the cells. Three days after treatment,
cells were harvested and genomic DNA was extracted using the QlAamp Mini
DNA kit (Qiagen) according to the instructions. Library construction, Guide
sequencing and data analysis was performed by GeneRulor Company Bio-X
Lab, Guangzhou 510006, Guangdong, China.

Statistical analysis

Data were expressed as the means =+ standard error of mean (SEM). GraphPad
Prism 8 software was applied for statistical analysis as previously described.
Briefly, one was ANOVA was used for comparison among multiple groups. For
comparison between two groups, Student’s t test was used. P<0.05 was
considered as statistically significant. All the experiments were performed at

least 3 independent times.
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