
ADDITIONAL FIGURES

Figure S1. Detailed workflow of the ‘optimize_parameters’ module. The module 'optimize_parameters'

is the core, most novel function of perSVade. It requires the argument --regions_SVsimulations, which

specifies the regions of the genome for simulations of SVs. These can be either around some specific



regions (with the argument --regions_SVsimulations <regions>.bedpe) or randomly placed across the

genome (with the argument --regions_SVsimulations random). Note that perSVade has modules to infer

either regions with previously known SVs (through 'find_knownSVs_regions') or regions with pairwise

homology (through 'find_homologous_regions'). The SV simulations around such regions may be more

realistic than random simulations, which is why they may be considered. The module

‘optimize_parameters’ finds a set of optimum parameters through simulations around these regions. By

default, it generates two simulated genomes (tunable with --nsimulations) with 50 SVs of each type

(tunable through --nvars) based on the reference genome and the provided regions. There are two

simulated genomes for each of the desired ploidies/zygosities, tunable through --simulation_plodies. For

example, we set ‘--simulation_plodies haploid’ for haploid organisms and ‘--simulation_plodies

diploid_hetero’ for diploids (which means that the simulated genomes will have only heterozygous

variants) in the testing of perSVade on several organisms (see Methods). For each simulated genome

perSVade 'optimize_parameters' simulates reads with equal insert size, coverage and read length as the

input mapped reads (provided with the argument -sbam). Then it aligns the reads and runs gridss to

obtain a list of 'raw breakpoints'. This module then tries several combinations of filters on them (by

default >278,000,000, which is tunable through --range_filtering_benchmark) to generate many 'filtered

breakpoints'. Each of these is processed with clove to generate a set of 'raw SVs'. PerSVade

‘optimize_parameters’ next tries several combinations of filters on each of them to get a set of filtered

SVs. These are compared against the true set of SVs (inserted in the simulated genome) to calculate the

accuracy (F-value) of each combination of gridss and clove filters on each simulated genome, ploidy and

SV type. These filters are optimized for each simulation, and thus may not be accurate on independent

sets of SVs (due to overfitting). In order to reduce this effect, this module tests how each of these 'best'

filters perform on all simulations, ploidies and SV types (not only in those that yielded the given filters as

optimum). The heatmap shows the F-value for an example sample (BG2 based on random simulations

from Candida glabrata, see Methods), where the filters in the second row are accurate on all simulations

(indicating that there is no overfitting on them) and thus they are chosen as the final set of best

parameters. Note that the filters in the first row are only accurate on some simulations, suggesting that

they are overfitted and thus they are not chosen as good filters. At the end, this module writes the

accuracy of these best parameters into a .tab file, which will allow the user to understand how much the

results are to be trusted. In addition, these optimized filters (or parameters) are written into a .json file

that may be used for calling SVs with 'call_SVs'.



Figure S2. PerSVade’s parameter optimization requires extra resources. We tested perSVade’s SV calling

modules (‘optimize_parameters’, ‘call_SVs’ and ‘integrate_SV_CNV_calls’) on six eukaryotes (three

samples per species) using either no parameter optimization (gray) or different types of simulations

(black, red, blue) for the ‘optimize_parameters’ module in a machine with 16 cores. Shown are the

running time and maximum RAM used ignoring the resources related to read alignment (which was

performed independently). Thus, each point reflects the resources used by 'optimize_parameters'

(except in the gray points), 'call_SVs' and 'integrate_SV_CNV_calls'. Of note, perSVade was run with a

different setting for the human datasets to avoid excessive resource consumption. First, we skipped the

marking of duplicate reads on the .bam files. Second, we ran the simulations on a subset of the genome

(only chromosomes 2, 7, 9, X, Y and mitochondrial). Third, we skipped the ‘homologous’ simulations in

human samples due to excessive memory consumption. The x axes reflect the reference genome size

(left) and the number of mapped read pairs (right), which are correlated with resource consumption.

This data may be useful to allocate computational resources for running perSVade.



Figure S3. PerSVade’s parameter optimization improves the recall of SVs. We ran perSVade’s SV calling

modules on three samples per species for six eukaryotes (see Methods) using either ‘random’, ‘known’

or ‘homologous’ simulations. These plots show the recall (left) and precision (right) of either default or

optimized parameters (for each sample and simulation type) on these simulations. The x axis represents

the type of SV (deletions (del), tandem duplications (tan), inversions (inv), insertions (ins), translocations

(tra) and the average of all SVs (all)).



Figure S4. Global vs SV type-specific parameter optimization. To understand whether using separate

optimal parameters for each SV type is necessary to achieve maximal accuracy we analyzed the

intermediate files from the parameter optimization on different species and simulation types (see

Methods, Figure 2,3). Note that perSVade’s parameter_optimization module returns a set of parameters

that are optimized for all (not only one) simulated genomes and SV types (global parameters).

Understanding whether these global parameters are as accurate as those specifically obtained for each

simulated genome and SV type is relevant to validate that a single set of parameters can be used for

calling all SV types. To find these global parameters, the module first calculates the best parameters for

each simulated genome and SV type (SV type-specific parameters) and then tests the accuracy of these

parameters on each simulated genome and SV type (see Additional file 1: Figure S1). We used these

accuracy measurements to understand whether using SV-type specific parameters is more accurate than

using global parameters. Each point in these scatter plots represents the SV calling accuracy for a

simulated genome considering a given SV type (rows), species (columns) and type of simulations (colors).

The x axis represents the calling accuracy (F-value) when using SV type-specific parameters, while the y

axis represents the accuracy when using global parameters. Note that we only considered the cases

where the global parameters were obtained from a different simulated genome / SV type than the

SV-type specific parameters. In addition, note that global parameters perform slightly better than the SV

type-specific ones for tandem duplications in some samples of diploid species. This is due to the

behavior of the coverage threshold that defines true tandem duplications



(min_rel_coverage_to_consider_dup parameter, see Methods), where the rationally-designed value set

in global parameters (from non-tandem duplication SV types) is more accurate than any of the values

tried in the SV type-specific optimization.





Figure S5. Each sample yields a different set of optimum parameters. (A) We ran perSVade’s

‘optimize_parameters’ module on six eukaryotes (three samples per species) and a parameter

optimization based on either ‘random’, ‘homologous’ or ‘known’ simulations (see Methods). Shown are

the chosen values for each parameter (only those that changed across samples) in each optimization

procedure. Each group of rows refers to the values chosen for one type of parameter (see Methods)

used for gridss or clove. The color indicates how many samples (from zero to three) yielded a specific

value for each parameter type. For example, the threshold to discard breakpoints (called by gridss)

based on allele frequency was set to 0.05 in most samples (see “GRIDSS min_af”). However, the

optimization for ‘known’ SVs in C. glabrata yielded a threshold of 0.2 in one sample (out of three) (see

the second column). (B) To understand the effect of changing each parameter, we measured the SV

calling accuracy of different parameter sets, each with only one tuned parameter while all other

parameters were kept to default values. We tested all the values obtained in an optimal set (those from

A) and the default values. This explains why there are some extra parameters in this panel

(dif_between_insert_and_del, max_to_be_considered_small_event, min_QUAL, min_length_inversions

and min_af_EitherSmallOrLargeEvent). Each row corresponds to a different parameter set. Each column

represents a simulation from a given sample / simulation type to be “tested”. The heatmap shows the

F-value of each parameter set on each tested simulation, relative to the maximum F-value derived from

combinatorial parameter optimization (see Figure 3A). Each cell is hereafter referred to as ‘testing

instance’. The asterisks refer to instances where the changing parameter value is the one picked in the

optimization of each sample / simulation type. In addition, the row colors indicate which parameter is

tuned in each set. The column color indicates the parameter that is changing (each with a different

color), and the fontweight of the label indicates whether the parameter set has default values (labels in

bold) or has some parameter value changed. This means that all the rows with default values (bold

labels) correspond to the same parameter set. We repeat them for each parameter to aid visual

comparisons.



Figure S6. PerSVade’s parameters optimization mostly changes the recall of SVs in simulations. To

assess whether perSVade’s parameter optimization is necessary for all samples / simulations (mentioned

in Figure 2 and Additional file 1: Figure S3) we measured the SV calling accuracy of each parameter set

on the other samples / simulations. Each row indicates a different “training” parameter set optimized for

each sample and simulation type in all tested species. In addition, the first row refers to the default

parameters. Each column represents a simulation from a given sample / simulation type to be tested.

The heatmap shows either the recall (A) or the precision (B) of each parameter set on each tested

simulation. Note that the species are ordered alike in rows and columns. In addition, note that each

sample (from a given species and simulation type) yielded one set of “training” parameters and two

simulated genomes tested here, which explains why there are two columns for each row. The asterisks



refer to testing instances where both the sample and type of simulation are equal in the training and

testing (equivalent to the ‘optimized’ parameters from Figure 2 and Additional file 1: Figure S3).



Figure S7. Coverage constrains SV calling accuracy in C. glabrata simulations. To assess whether the

high coverage of C. glabrata samples (>300x, see Table S1) constrained SV calling, we measured the

accuracy of each parameter set (optimized for each species / simulations (see Figure 3A)) on the C.

glabrata simulations with varying coverage. For each simulation (based on a sample and a type of

simulation (homologous / known / uniform)), we subsampled randomly the reads to get a coverage of

10x, 30x, 50x, 100x, 200x or 300x. . Each row indicates a different “training” parameter set optimized for

each sample and simulation type in all tested species (the same parameters as in Figure 3A). In addition,

the first row refers to the default parameters. Each column represents a simulation from a given sample

/ simulation type / coverage to be tested. The heatmap shows the F-value of each parameter set on each

tested simulation. Note that the species symbols correspond to C. glabrata, C. albicans, C. neoformans,

A. thaliana, D. melanogaster and H. sapiens, respectively. Note that the cells related to 300x coverage

are similar to the original simulations (Figure 3A).



ADDITIONAL TABLES

target_species target_taxID sample_taxID sample_species SRA_run % reads map. cov.

C. glabrata N/A N/A C. glabrata BG2 SRR15498429 N/A 319

C. glabrata N/A N/A C. glabrata CST34 SRR15498440 N/A 342

C. glabrata N/A N/A C. glabrata M12 SRR15498481 N/A 337

C. albicans 5476 1182531 C. albicans 3153 SRR641729 94.58 128

C. albicans 5476 1182537 C. albicans A123 SRR538772 88.77 89

C. albicans 5476 1182540 C. albicans A203 SRR538786 95.91 92

C. neoformans 5207 1423894 C. neoformans
Bt35

SRR1063293 99.93 30

C. neoformans 5207 1423915 C. neoformans
RSA-MW-1281

SRR1063017 99.86 37

C. neoformans 5207 1423916 C. neoformans
RSA-MW-5465

SRR1063214 99.94 40

A. thaliana 3702 38785 A. arenosa SRR4128971 76.76 22

A. thaliana 3702 378006 A. arenosa x
A. thaliana

ERR5032500 89.59 25

A. thaliana 3702 2608267 A. arenosa x
A. lyrata

ERR3514861 65.98 21

D. melanogaster 7227 7238 D. sechellia SRR5860659 89.70 37

D. melanogaster 7227 7240 D. simulans ERR1597900 84.44 45

D. melanogaster 7227 7243 D. teissieri SRR13202235 86.61 6

Table S1. Datasets used for the testing in simulations in C. glabrata, C. albicans, C. neoformans, A.

thaliana and D. melanogaster. We chose these datasets automatically from the SRA database for C.

albicans, C. neoformans, A. thaliana and D. melanogaster. In order to have enough SV calls we selected

mildly divergent samples (as compared to the reference genome) with a NCBI taxonomy taxon ID

(indicated by each sample_taxID) different from the ID of species of interest (target_taxID). However, we

only kept samples with most reads mapped (specified in the column ‘% reads map.’) in order to discard

datasets from highly divergent taxa. Note that it was not possible to find such samples for C. glabrata at

the time of this study. We thus used three datasets for C. glabrata strains from our lab (see Methods).

‘N/A’ indicates that the column (i.e. taxID or % of mapped reads) was not taken into consideration for

selecting these samples. See Methods for more information. Note that the ‘cov.’ column indicates the

read depth of each of these samples.


