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1 Supplementary Figures

Appendix Figure S1: Empirical assessment of the computational complexity of CellRegMap and

CellRegMap-Association test. Shown are empirical runtimes for simulated data (setup as described in Ma-

terials and Methods) averaged across 150 eQTL. Runtimes evaluated on an Intel Xeon CPU E5-2660 v4 with

2.00GHz. Shown are runtimes (y-axis) for testing a single eQTL as a function of the number of individuals (a),

the total number of cells (b) and the number of context variables (c); runtimes are evaluated for both the Cell-

RegMap model (interaction test, blue), and the corresponding association test (orange). Stars highlight default

values for fixed parameters. All parameters retained at their default parameter values except the parameter that

is indicated on the x axis.
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Appendix Figure S2: Comparison of CellRegMap when using discrete cell contexts instead of

continuous cell contexts on simulated and real data (Full legend on next page).
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Comparison of CellRegMap when using discrete cell contexts instead of continuous cell contexts

on simulated and real data (continued). Concordance of results when using discrete vs. continuous contexts

for CellRegMap. Left: 2-dimensional visualisation of the gene expression data and discrete clusters. Middle:

Discrete and continuous covariance matrices (based on MOFA factors) sorted by cluster membership. Right:

Result comparison; -log10(P-values) comparing models using continuous (x-axis) vs discrete (y-axis) contexts, as

well as bar plots showing the number of significant GxC eQTL identified using the different context-covariance

matrices. (a-c) Results for 500 semi-synthetic eQTL as used for the results presented in main text Fig. 2 for the

setting of 10 leading MOFA factors and the fraction of genetic variance explained by GxC = 0.5 (Materials and

Methods). We consider discrete contexts at three different resolutions: (a) the original 4 sampling time points

(Day), (b) 12 and (c) 24 Leiden clusters. Number of significant eGenes is out of 500 tested (FDR < 10%). (d-f)

Results on real data, considering the neuronal differentiation data from [1]. Results from running CellRegMap

with 8,479 pseudo cells (Materials and Methods) and testing 2,051 eQTL (1,374 eGenes) in dopaminergic

neurons from the original study. We compare results when using, as contexts, (d) the three discrete conditions

from the original study (day 30, day 52 and rotenone-treated day 52; “condition”), (e) 9 and (f) 18 Leiden

clusters, as opposed to 10 continuous MOFA factors, as done in the main analysis. Number of significant eGenes

is out of 1,374 tested (FDR < 5%, to match results from the main analysis).
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Appendix Figure S3: eQTL statistics stratified for gene properties on simulated data. Results for

simulated genetic effects using the same parameters as in Appendix Fig. S2 (10 MOFA factors with GxC,

fraction of genetic variance explained by GxC = 0.5; Materials and Methods). Shown are the (a) mean

observed gene expression of the simulated eGene (prior to adding the genetic effect), (b) the prior gene expression

variance and (c) the minor allele frequency as a function of the P-value estimated by CellRegMap (blue) and

CellRegMap-Association (orange). Both models are fitted using the same set of ground truth context variables

as used in the simulation. Lines show the regression fit and shaded areas 95% confidence intervals.
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Appendix Figure S4: Concordance of persistent genetic effects on endoderm differentiation data.

Data from [2]. (a) Scatter plot of -log10 p-values from the original study ([2], y-axis) vs -log10 p-values when using

the CellRegMap-association test (x-axis). For the published study, the top variant from each gene is considered

(n=10,493 genes). These results were achieved using aggregated “pseudocounts” from each of the three stages, and

for each gene-SNP pair we are here selecting the smallest p-values between the iPSC, mesendoderm and definitive

endoderm eQTL. (b) For each of the significant eGenes from the original study (n=2,996), we assessed whether

the lead variant identified was the same or in linkage disequilibrium (LD) with the lead variant identified by

CellRegMap-association. Histogram of the LD (D’, as calculated using the R package “LDlinkR”, [3]) distribution

between lead variants from the two tests.
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Appendix Figure S5: Comparison of alternative methods to define cellular contexts. Assessment

based on the endoderm differentiation study [2]. We compared the MOFA workflow to define cellular contexts

to principal component analysis (left), linearly-decoded variational autoencoder (LDVAE [4], middle) and zero-

inflated negative binomial-based wanted variation extraction (ZINB-WaVe [5], right). (a) Correlation matrix

between the leading 10 factors identified by MOFA and the respective alternative method. (b) Scatter plot of

negative log p-value of the CellRegMap interaction test when using MOFA cell contexts (x-axis) versus using a

cell-context covariance derived using the respective alternative method (y-axis). Considered are n=121 SNP-gene

pairs from 88 unique genes on chromosome 22 only.
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Appendix Figure S6: Correlations of GxC with gene expression dynamics. (a) Correlation (R) between

single-cell expression profiles and estimated single-cell genetic effect profiles for 322 and 213 genes with significant

GxC effects respectively (FDR<5%) (left: endoderm differentiation data from Cuomo et al [2], right: neuronal

differentiation data from Jerber et al [1]). (b) Scatter plot between the R2 correlation coefficient between gene

expression and GxC (x axis, as in a, but considering R2 instead of R) versus the statistical significance of

GxC effects (-log10(p-value), y axis) (left: endoderm differentiation data from Cuomo et al, right: neuronal

differentiation data from Jerber et al). (c) For three examples from a (high |R| between expression and GxC

effects dynamics), the top row represents single-cell expression the genes (y-axis) as a function of pseudotime

(x-axis); the bottom row represents the single-cell genetic effect estimates due to GxC (y-axis) as a function of

pseudotime (x-axis). In orange, the R coefficient between expression and GxC effect dynamics, as in a.
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Appendix Figure S7: Calibration of CellRegMap in relation to expression dynamics. Shown are results

obtained from the endoderm differentiation data [2]; (GxC interaction test) considering genes on chromosome 22

only. QQplots demonstrating calibration using permitted genotypes (GxC component only) (a) across all gene-

SNP pairs from (n=540, i.e. 270 genes, 2 SNPs each): median=0.57; (b) across all gene-SNP pairs from (neuron

differentiation data from Jerber et al, [3]) (n=500, i.e., 250 genes, 2 SNPs each): median=0.51. (c) Considering

the endoderm differentiation data, as in a, but stratifying genes by those whose expression is (left) correlated

with differentiation time (|R| >0.2; n=134, median=0.51) and (right) not correlated with differentiation time

(|R| <0.1; n=218, median=0.47).
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Appendix Figure S8: Dopaminergic neuron pseudocell aggregation. Transcriptionally related cells

were aggregated into pseudocells, thereby reducing the sparsity in this dataset (dopaminergic neurons from [1]).

Pseudocells were constructed separately for each individual and conditions (day 30, day 52, rotenone-treated day

52; Materials and Methods). (a) Scatter plot between the number of cells for each individual (x axis) versus

the average number of cells contained in a pseudocell for the corresponding individual (y axis). Colour denotes

the three main cell populations (collected across three conditions). (b) Analogous as in a, comparing the number

of cells per donor versus the number of pseudocells per donor.
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Appendix Figure S9: Opposite effects detected by GxC. Considering data from [2]. (a) Example of “true”

opposite effects. The estimated genetic effects due to GxC (GxC) across all cells for the depicted eQTL (gene:

ZNF738, SNP: chr19:21474173) indicates opposite effects across different populations, as shown by the tSNE plot

on the left. To further assess this effect, we considered two extreme strata of cells (top and bottom 20% of the GxC

values, tSNE plots in the middle) and assessed direction of effect in each stratum using a standard eQTL mapping

strategy (based on pseudo bulk mapping; Materials and Methods), demonstrating true opposite effects (box

plots on the right). (b) Distribution of the portion of cells with different sign from the rest in the GxC values

(0 corresponds to the setting that indicates that GxC estimates for a given eQTL variant have consistent sign

across all cells; 0.5 corresponds to 50% of all cells having an opposite effect signtake on assumes only positive

values across all cells only, 1 negative for all cells), for all significant GxC eQTL (n=213, FDR<5%; neuronal

development data). We define a GxC eQTL as displaying opposite effects when at least 25% of cells have a

different sign compared to the rest in the estimated GxC values. (c) Next, we considered the 45 opposite effects

from (b), and assessed replication, by mapping standard eQTL when considering the top and bottom 20% of cells

(based on GxC values, as shown for the example in a). When comparing the opposite effects that do replicate

(opposite effect sizes using standard strategies as described in a; Materials and Methods) to those that do

not replicate, we observe that (left) portion of cells with different signs is higher for the replicating ones (closer

to a 50-50 split between positive and negative values), and (right) the estimated magnitude of GxC effect sizes

(calculated as the delta of the top and bottom 10% of GxC values) is lower for the non-replicating opposite effects.
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Appendix Figure S10: CellRegMap to fine-map cellular context for human disease variant. Consid-

ering the subset of cells identified as dopaminergic neurons from [1]. (a) GxC profile at rs1972183 for SLC35E2,

which is colocalized with a GWAS variant for sleeplessness and insomnia in the subpopulation of day 52 untreated

cells. Shown is a scatter plot of the first two tSNE coordinates with colour denoting the estimated GxC effect

component GxC. (b) As in a, with colour denoting SLC35E2 single-cell gene expression levels. (c) Manifold of

consensus relative GxC effect sizes estimates for cluster 4, which contains the GxC effects for SLC35E2. Note that

this figure is re-used from Main text Figure 4, panel d. (d) Extract of the gene enrichment analysis for cluster 4

(based on Fig. EV4b).
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Appendix Figure S11: Assessment of two-stage workflow using the CellRegMap-association test

to define candidate eQTL for GxC analysis. Results based on the endoderm differentiation data [2], using

the de-novo for both persistent effects using the CellRegMap-association test and GxC interactions using the

CellRegMap interaction test (+/- 100kb around the gene body, MAF>5%, all expressed genes on chromosomes

20-22). (a) Number of significant GxC effects (FDR<1%; y-axis) as a function of the FDR threshold to filter for

variants based on the association signal (x axis). Second y-axis denotes the number of tested SNP-gene pairs.

While the number of tested SNP-gene pairs increases for less stringent filtering, the number of detected GxC

effects decreases, indicating that no discoveries are lost when considering the top eQTL only, while computation

time is saved, and power to find GxC is also (slightly) increased. (b) Manhattan plots representing examples of

same (left, for the ADA2 gene) vs different (right, for the CRYBB1 gene) signals being picked up by CellRegMap’s

GxC interaction test (blue) and CellRegMap association test (green).
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2 The CellRegMap model

CellRegMap builds on and extends the structured linear mixed model (StructLMM [6]), which has recently been

proposed to test for genotype-environment interactions on physiological traits in population cohorts. CellRegMap

extends this model to test for interactions between genotype and cellular context on gene expression using single-

cell RNA-seq as readout. The model is not designed for variant discovery but instead designed to identify and

characterize genotype-context (G×C) interactions at known expression quantitative trait loci (eQTL). However,

if eQTL are not known a priori, it is possible to run the Association test implemented within the CellRegMap

software, in order to identify candidate eQTL to test for G×C interactions (section 3). In Section 2.1, the

CellRegMap model is motivated and derived, followed by the introduction of an efficient scheme for parameter

inference and statistical testing. Section 3 describes the association test implemented within CellRegMap, while

section 4 describes the procedure to estimate cell-level effect sizes due to G×C.

2.1 Model definition

Commonly used methods for eQTL mapping based on linear or linear mixed models (LMM) relate individual

genetic variants to the expression level of a gene of interest, i.e.,

y = Wα+ gβG +ψ. (1)

Here, y denotes a N × 1 vector of the expression level of a gene of interest across N individuals (typically

measured using bulk RNA sequencing); W is the N × P design matrix of covariates and αi, i = 1, .., P are the

corresponding weights (note that in the main text, i.e., Figure 1d, covariates are omitted for brevity); g is the

N × 1 vector of alleles for each individual at the locus to be assessed and βG denotes the corresponding effect

size. Finally, ψ denotes i.i.d. noise, ψ ∼ N (0, σ2
nI). Additional random effect components have been introduced

to account for relatedness between individuals [7], or to adjust for additive confounding sources of variation on

gene expression [8].

Review of StructLMM

StructLMM [6] extends the conventional linear association test in Eq. (1) by including an additional random effect

component to account for heterogeneity in effect sizes across individuals due to context-specific genetic effects.

Briefly, StructLMM can be cast as:

y = Wα+ gβG + g ⊙ βGxC + c+ψ, (2)

where g ⊙ βGxC accounts for G × C and c for additive contributions of environmental variation. Unlike in

conventional interaction tests, genotype-context interactions due to environmental variation are accounted by

introducing an additional genetic effect with per-individual effects, where each individual has its own effect size.

The symbol ⊙ denotes the Hadamard product and βGxC = [βGxC1 , .., βGxCN ]T is a vector of per-individual effect

sizes to account for heterogeneous genetic effects. Instead of explicitly estimating the GxC effect sizes, these
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parameters are marginalised under a multivariate normal prior distribution that is defined by an environmental

context covariance matrix:

βGxC ∼ N (0, σ2
GxCΣ). (3)

In this case the covariance Σ does not encode relatedness as in a classical LMM, but instead accounts for sample

covariance due to different environmental states. The same environmental covariance matrix can also be used to

parametrize a second random effect component to account for additive environmental contributions,

c ∼ N (0, σ2
cΣ). (4)

Notably, StructLMM does not account for any additional structure across samples, such as population structure

or repeat measurements. While discrete populations can be accounted for as covariates, more subtle relatedness

or repeat structure cannot be effectively encoded using fixed effect covariates. Consequently, the model is not

suitable for any experimental design where multiple observations are available for the same individual, which

is the case in single-cell genetic studies, where multiple cells are assayed from each individual. Such a repeat

structure results in un-calibrated p-values; see also the results from the simulation study to assess calibration

(main text Fig. 2).

CellRegMap

CellRegMap extends StructLMM to allow for applications to single-cell expression data by introducing an ad-

ditional random effect component that accounts for relatedness or sample repeat structure. First, we note that

the phenotype y now represents single-cell resolved expression data, so our samples are expression levels in cells,

not individuals. This introduces additional structure in the data, as typically multiple cells are sampled from the

same individual. To account for this structure, an additional random effect component u is included in the model:

y = Wα+ gβG + g ⊙ βGxC + c+ u+ψ. (5)

Here, y has the cardinality of single-cells rather than individuals, and hence the G×C component (g ⊙ βGxC)

accounts for interactions with cellular states and contexts (which are well defined at the level of single cells) as

well as environmental exposures and stimuli (which can also be individual-level). The terms c ∼ N (0, σ2
cΣ) and

ψ ∼ N (0, σ2
nI) have the same meaning as previously, noting that for these N × 1 vectors N now represents the

total number of cells, not the number of unique individuals. Similarly, Σ) is N ×N and is again defined in the

space of cells. The symbol βGxC ∼ N (0, σ2
GxCΣ) now represents cell-level effect sizes, which again captures

variation in genetic effects across cells. The additional random effect component u accounts for relatedness or

the repeat structure, which is parametrized as a product kernel between relatedness (R) and the environmental

covariance (Σ):

u ∼ N (0, σ2
rcR⊙Σ). (6)
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Here, R denotes the relatedness matrix of individuals expanded to all cells based on the known assignment

of cells to individuals and the covariance Σ again denotes the cell-level environmental context. Notably, this

parametrization extends the classical LMM, which would exclusively consider a relatedness component R. One

way to interpret this covariance is to account for polygenic interactions between environmental and relatedness,

which has previously been considered to estimate the GxE component of heritability [9].

2.2 Construction of the cellular context covariance

Typically, we define Σ = EET , and hence the cellular context covariance is a linear function of a matrix of

environmental states E. In practice, we consider as cellular contexts axes of variation in the dataset (for ex-

ample captured by principal components or MOFA [10] factors), appropriately standardized (mean=0, standard

deviation=1) and build Σ = EET accordingly. Depending on the type and structure of cellular contexts, Σ can

simply separate cells into groups, and appear as a block diagonal or capture continuous transitions (main text

Fig. 1c). In principle, CellRegMap can also be use in conjunction with other parametrizations of the cell context

covariance.

2.3 Statistical testing

The main operations in the CellRegMap model, including parameter inference and tests are implemented in its

marginalised form. Integrating over the random effect components, the marginal likelihood of the model in Eq.

(5) follows as:

y ∼ N (Wα+ gβG, σ
2
GxCdiag(g)Σdiag(g) + σ2

cΣ+ σ2
rcR⊙Σ+ σ2

nI). (7)

While in principle CellRegMap can be used to test for different components, including additive genetics, interac-

tions or the combination of both effects (see [6] for details on StructLMM), we here focus on GxC effects. In order

to evaluate the significant contribution of GxC effects, we consider a statistical test that compares the following

hypotheses, from Eq.(5):

H0 : σ2
GxC = 0,

H1 : σ2
GxC > 0.

We use Rao’s Score test [11] to evaluate significance, which allows us to only calculate the MLE1 of the parameters

under the null hypothesis H0, which follows from Eq.(7) as:

y|H0 ∼ N (Wα+ gβG, σ
2
cΣ+ σ2

rcR⊙Σ+ σ2
nI). (8)

1maximum likelihood estimator
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To test for GxC interactions we adapt the score-based testing scheme employed in StructLMM, which in turn

adopts fast LMM testing in LMMs as first proposed in Lippert et al., [12]. We here review the key steps involved.

First, we define the score-based test statistic Q as:

Q =
1

2
yTP0

∂K

∂θ
P0y, (9)

where K denotes the full covariance matrix, i.e., from Eq. (5):

K = σ2
GxCdiag(g)Σ diag(g) + σ2

cΣ+ σ2
rcR⊙Σ+ σ2

nI, (10)

and

P0 = K−1
0 −K−1

0 X(XTK−1
0 X)−1XTK−1

0 (11)

is a matrix that projects out the fixed effects [12, 13]. In our case (Eq.(5)), the fixed effects include covariates and

the persistent effect of the variant tested: X = [W,g], and K0 is as in Eq.(23). Using Eq.(10) and considering

the parameter θ = σ2
GxC , we can derive:

∂K

∂σ2
GxC

= diag(g)Σ diag(g). (12)

Next, let us define K1 = diag(g)Σ diag(g); substituting in Eq.(9), we can write:

Q =
1

2
yTP0K1P0y. (13)

As before, H1 : σ2
GxC > 0, noting that as a variance parameter, σ2

GxC is constrained to take on positive values.

As a result, the score test statistic Q follows a mixture of χ2 distributions2:

Q ∼
∑
i

λiχ
2
1, (14)

where λi’s are the non-zero eigenvalues of 1
2
P

T
2
0

∂K
∂θ

P
1
2
0 .

It can be shown that for a matrix A the non-zero eigenvalues of AAT are the same as those of ATA , thus we

can re-arrange and compute λi’s as the eigenvalues of:

1

2

∂K

∂θ

T
2

P0
∂K

∂θ

1
2

(15)

instead. To evaluate the significance of the score-best test statistic Q we use the approach described in Sequence

Kernel Association Test (SKAT [14]), thereby using the Davies exact method [15] to compute the corresponding

p values, and switching to the modified moment matching approximation method [16, 17, 18] when this fails to

converge.

2We refer the reader specifically to the supplementary methods from [13] for a proof.
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2.4 Implementation

To enable efficient parameter inference, we extended the strategy in StructLMM [6], which builds on the reparametriza-

tion of the LMM likelihood proposed in [12]. Briefly, the key is to rewrite the overall covariance of y|H0 in the

form: σ2
m(M+ δI), where M is ideally low rank to enable an efficient singular value decomposition. To do so, we

introduce a weight parameter ρ1, such that the covariance matrix of y under the null hypothesis, K0 = Cov(y|H0)

can be cast as:

K0 = σ2
cΣ+ σ2

rcR⊙Σ+ σ2
nI =

σ2
m [ρ1Σ+ (1− ρ1)R⊙Σ] + σ2

nI =

σ2
m{M(ρ1) + δ1I},

(16)

where σ2
mρ1 = σ2

c , σ
2
m(1− ρ1) = σ2

rc, δ1 = σ2
n/σ

2
m, and M(ρ1) = ρ1Σ+ (1− ρ1)R⊙Σ.

We note that M only depends on ρ1. The parameter ρ1 is optimized using a grid search with values in the range

0 to 1, selecting the value of ρ1 that maximises the likelihood of y|H0 under the null. Once ρ1 is fixed, the

decomposition of ρ1Σ + (1 − ρ1)R ⊙Σ can be found using the observation that the decomposition of the linear

combination of two square symmetric matrices, e.g.,:

M = aA+ bB (17)

can be found as a function of the decomposition of the two original matrices, i.e.,:

N = [
√
aC|

√
bD] (18)

such that M = NNT ,A = CCT and B = DDT . In our case, A = Σ and B = R ⊙ Σ. If Σ = EET , its

decomposition is straight-forward, with C = E. The decomposition of the second term (R ⊙ Σ), assuming

Σ = EET and R = GGT is a bit less trivial. Assuming that the rank of R is the number of individuals, that the

rank of Σ is the number of environments, and that the latter is smaller than the former, we can obtain D as the

decomposition of R⊙Σ by:

R⊙Σ = R⊙
∑
i

[viλiv
T
i ] =

∑
i

[R⊙ (viλiv
T
i )]. (19)

The terms in the sum can be rewritten as:
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R⊙ (viλiv
T
i ) = R⊙ (uiu

T
i )

= R⊙ (diag(ui)ee
Tdiag(ui))

= diag(ui)[R⊙ eeT ]diag(ui)

= diag(ui)Rdiag(ui)

= diag(ui)GGTdiag(ui)

= LkiLk
T
i ,

(20)

where Lki = diag(ui)G; λi’s and vi’s are eigenvalues and eigenvectors of EET ; ui =
√
λivi and e is a vector of

ones (e = [1..1]).

Thus, M = Σ+R⊙Σ can be written as the following sum:

M = Σ+
∑
i

LkiLk
T
i , (21)

from which follows:

N = [E |Lk1 |.. |Lkne], (22)

where ne is the number of contexts considered (and the rank of Σ).
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3 CellRegMap-Association test

Within the CellRegMap software suite it is also possible to test for persistent genetic effects, while appropriately

account for cellular context. This model essentially draws from the null hypothesis of CellRegMap, thus comparing

the following two models (where we exclude the G× term from Eq. (5)):

H0 : y = Wα+ c+ u+ψ,

vs

H1 : y = Wα+ gβG + c+ u+ψ.

All variables are defined as in section 2, with the exception of u, which here is defined to account for the repeated

structure due to many cell been drawn from the same individual:

u ∼ N (0, σ2
rR).

This simplifies the implementation, where we note that Eq. (23) becomes:

K0 = σ2
cΣ+ σ2

rR+ σ2
nI =

σ2
m [ρ1Σ+ (1− ρ1)R] + σ2

nI =

σ2
m{M′(ρ1) + δ1I},

(23)

from which follows:

M = Σ+R, (24)

and

N = [E |G], (25)

where we assume, as before, Σ = EET and R = GGT .

To assess significance, we use a likelihood ratio test (LRT). This is well defined since we are testing βG ̸= 0, which

is not at the boundary of possible values of the parameter, as −∞ < βG < ∞.
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4 Predicting cell-specific effect sizes driven by GxC interactions

Using CellRegMap it is possible to estimate cell-level allelic effects due to GxC, (thus estimating βGxC from eq.

(7)) for each gene-SNP pair tested. For this derivation, we will use the function representation of linear mixed

model as a Gaussian process (GP). Briefly (for more details see section 5.1),

f ∼ GP{m; k(X,X)θ}, (26)

or:

f = m+ c, (27)

where we define:

m = Xβθ and c ∼ N (0, k(X,X)θ). (28)

When we model our data (X and y), we consider y as being a sample from the random variable f , and X as being

fixed. Let us collectively call the parameters θ and θ̂BLUP (or θ̂) their best linear unbiased predictor (BLUP)

estimator [19].

For out of sample (∗) prediction, we can define [20]:

y∗ := E[f∗|y]θ̂, (29)

which can be written as (see section 5.1 for intermediate steps):

y∗ = m∗ + k(X∗,X)k(X,X)−1(y −m). (30)

In our case, we use a modified model from eq. (5) where the additive environments are modelled as fixed effects:

y =

m︷ ︸︸ ︷
Wα+ gβG +Eγ+

c︷ ︸︸ ︷
g ⊙ βGxE + u+ψ . (31)

By substituting m and c into eq. (30) we obtain a formula for y∗:

y∗ = W∗α+ g∗βG +E∗γ + k(X,X∗)k(X,X)−1(y −Wα+ gβG +Eγ). (32)

Now, to obtain an estimate for β∗, we can evaluate eq. (32) when g∗ = 0 (y∗(ref)) and when g∗ = 1 (y∗(alt)),

and consider the difference, scaled by a number based on the MAF3 (p):

3minor allele frequency
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β∗
GxC =

1√
2p(1− p)

(y∗(alt)− y∗(ref)), (33)

from which, skipping a few steps:

β∗
GxC =

1√
2p(1− p)

{1βG + σ2
GxCE∗(g ⊙E)TK−1(y −Wα− gβG −Eγ)}, (34)

where K = Cov(y) = σ2
GxE(g ⊙E)(g ⊙E)T + σ2

reR⊙EET + σ2
nI.

By setting E∗ = E, we can perform in-sample estimation of allelic effects.
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5 Derivations

5.1 Detailed derivations from section 4

A linear mixed model is a type of Gaussian Process, that can be written as:

f ∼ GP{m; k(X,X)θ}, (35)

or, equivalently, as:

f = m+ u, (36)

where

m = Xβθ and u ∼ N (0, k(X,X)θ). (37)

When we model our data (X and y), we consider y as being a sample from the random variable f , and X as being

fixed. Let us collectively call the parameters θ. For all parameters, we can find the set of best linear unbiased

predictor (BLUP) estimators (θ̂BLUP or simply θ̂) which i) minimise the variance and ii) are unbiased [19]. We

identify θ̂ by maximising the likelihood:

θ̂ = argmax{p(y)θ} (38)

Let us reason about out-of-sample f∗, assuming that we now have the BLUP-estimated parameters (θ̂):

[
f

f∗

]
= N

([
mθ̂

m∗θ̂

]
;

[
k(X,X)θ̂ k(X,X∗)θ̂

k(X∗,X)θ̂ k(X∗,X∗)θ̂

])
. (39)

We want to know y∗, it seems reasonable (argue better, maybe mentioning that this is also a BLUP estimation)

to define (noise-free prediction according to [20])

y∗ := E[f∗|y]θ̂. (40)

We can show [20] that (note that we omit θ̂ for reading purposes):

f∗|f ∼ N
(
m∗ + k(X∗,X)k(X,X)−1(f −m); k(X∗,X∗)− k(X∗,X)k(X,X)−1k(X,X∗)

)
. (41)

Therefore (needs some steps to prove),
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y∗ = m∗ + k(X∗,X)k(X,X)−1(y −m). (42)

In our case,

m = Wα+ gβG +Eγ, (43)

k(X,X) = K = σ2
GxE(g ⊙E)(g ⊙E)T + σ2

reR⊙EET + σ2
nI. (44)

Note that

k(X∗,X) = K(∗,.) = σ2
GxE(g∗ ⊙E∗)(g ⊙E)T + σ2

reR(∗,.) ⊙E∗E
T + σ2

nδ(X∗,X), (45)

where δ is the Dirac distribution (0 when i ̸= j and 1 when i = j).

Therefore,

y∗ = W∗α+ g∗βG +E∗γ + k(X∗,X)k(X,X)−1(y −Wα+ gβG +Eγ) (46)

Now, for each individual, we consider its environmental profile e∗,i (the ith corresponding row from E∗), and

estimate y∗,i(ref) when setting g∗,i = 0 and then y∗,i(alt) when setting g∗,i = 1 and obtain the corresponding

allelic effect β∗
GxE,i as the difference, normalised by a constant (based on p=MAF):

β∗
i =

1√
2p(1− p)

(y∗,i(alt)− y∗,i(ref)) (47)

For all samples, we consider the vectorial form:

β∗ =
1√

2p(1− p)
(y∗(alt)− y∗(ref)), (48)

where:

y∗(alt) = y∗(g∗ = 1) = m∗(g∗ = 1) +K(∗,.)(g∗ = 1) K−1(y −m) (49)

and

y∗(ref) = y∗(g∗ = 0) = m∗(g∗ = 0) +K(∗,.)(g∗ = 0) K−1(y −m). (50)

Let us set:
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v = K−1(y −m). (51)

Next, we note that:

m∗(g∗ = 1)−m∗(g∗ = 0) = W∗α+ 1βG +E∗γ − (W∗α+E∗γ) = 1βG. (52)

Moreover,

K(∗,.)(g∗ = 1)−K(∗,.)(g∗ = 0) =

σ2
GxEE∗(g ⊙E)T + σ2

reR(∗,.) ⊙E∗E
T + σ2

nI+

−(σ2
reR(∗,.) ⊙E∗E

T + σ2
nI) =

σ2
GxEE∗(g ⊙E)T

(53)

Thus,

y∗(alt)− y∗(ref) = 1βG + σ2
GxEE∗(g ⊙E)Tv (54)

And finally, by substituting eq. (54) in eq. (48):

β∗ =
1√

2p(1− p)
{1βG︸︷︷︸
βG

∗

+σ2
GxEE∗(g ⊙E)TK−1(y −Wα− gβG −Eγ)︸ ︷︷ ︸

βGxE∗

}, (55)

where K is as defined in eq. (44).
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