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Supplementary data:  1 

Table S1: Table of screened pathogens summarizing their impact on global health. 2 

 3 

Table S2: C. albicans proteomic analysis after 12 h of MitoTam exposure. 4 

Proteome comparison of C. albicans cultivated in the presence of 4.4 µM MitoTam for 12 h and 5 

untreated culture. The table is organized in four sheets: All detected proteins, Downregulated in 6 

MitoTam, Upregulated in MitoTam and Raw data. The first three sheets are showing fold-abundance 7 

change only for clarity. Upregulated and downregulated proteins were filtered by >2-fold change. 8 

Proteins were identified and, where applicable, subcellular localization was annotated based on 9 

Uniprot [63]. 10 

 11 

Table S3: T. brucei proteomic analysis after 14h of MitoTam exposure. 12 

Proteome comparison of T. brucei cultivated in the presence of 100 nM MitoTam for 14 h and 13 

untreated culture. Table is organized in four sheets: All detected proteins, Downregulated in MitoTam, 14 

Upregulated in MitoTam and Raw data. The first three sheets are simplified to demonstrate fold-15 

abundance change only for clarity. Upregulated and downregulated proteins were filtered by >2-fold 16 

change. Where applicable, manual annotation and localization prediction was based on the T. brucei 17 

927 mitochondrial proteome [46]. 18 

 19 

Table S4: Summary of culture conditions and conditions for viability assays for all organisms used in 20 

this study. 21 

 22 
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Figure S1: Dose-response curves for MitoTam, Tamoxifen and control compounds. 23 

Cells were incubated with increasing concentrations of MitoTam, tamoxifen or control compounds 24 

under cultivation conditions described in Table S4. Cell concentration, viability or absolute OD595 values 25 

were plotted against a compound concentration, dose-response curves and mean IC50 values 26 

(summarized in Table 1) were generated in Prism (8.0) (GraphPad Software). 27 

 28 

Figure S2: Leishmania sensitivity towards MitoTam evaluated by the intramacrophage assay. 29 

Murine macrophage cell culture J774A.1 was infected with amastigotes of L. major (pink line) or L. 30 

infantum (brown line) and incubated with increasing concentration of MitoTam as indicated on the x-31 

axis. Uninfected macrophages (green line) were included as a control.  32 

 33 

Figure S3: Survival analysis of BALB/c mice infected with T. brucei. 34 

Survival of infected mice was monitored daily for 8 days. As depicted (dashed lines) half of the infected 35 

mice were injected with MitoTam (+MitoTam) on days 2 and 4 post-infection (3 mg/kg body weight). 36 

Number of surviving mice from MitoTam treated group (red line) as well as from the untreated control 37 

group (-MitoTam) (blue line) are depicted. 38 

 39 

Figure S4: MitoTam alters the mitochondrial function of bloodstream T. brucei.  40 

Cells were incubated with 40 nM of MitoTam for 16 and 24 hours and their mitochondrial parameters 41 

were assayed as for 100 nM MitoTam. 42 

A) The O2 flux per cell using high-resolution respirometry after addition of glycerol-3-phosphate was 43 

determined in BSF T. brucei untreated control cells (-MT, blue) and BSF cells treated with 40 nM 44 
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MitoTam for 16 hours (+MT 16 h, red) and 24 hours (+MT 24 h, red) (box and whiskers plot, n = 3, **p 45 

< 0.01, ***p < 0.001).  46 

B) Relative ADP/ATP ratio analyzed using a bioluminescence assay kit in BSF T. brucei untreated control 47 

cells (-MT, blue) and BSF cells treated with 40 nM MitoTam for 16 hours (+MT 16 h, red) and 24 hours 48 

(+MT 24 h, red) (box and whiskers plot, n = 3).  49 

C) Cytosolic and mitochondrial ATP levels were assessed in transgenic BSF T. brucei cell lines expressing 50 

firefly luciferase. Results of untreated control cells (-MT, blue) were compared with results of cultures 51 

treated with 40 nM MitoTam for 16 hours (+MT 16 h, red) and 24 hours (+MT 24 h, red). Data were 52 

normalized to the respective values of the untreated control cells and expressed as a percentage 53 

(mean ± s.d., n = 4).  54 

D) Total cellular ATP levels in BSF T. brucei were determined using a bioluminescence assay kit. Data 55 

from cultures treated with MitoTam for 16 hours (+MT 16 h, red) and 24 hours (+MT 24 h, red) were 56 

normalized to the values of the untreated control cells (-MT, blue) and expressed in percentage (box 57 

and whiskers plot, n = 4). 58 

E) Flow cytometry of TMRE stained cells was used to determine ΔΨm of BSF T. brucei. Data from 59 

cultures treated with 40 nM MitoTam for 16 hours (16 h +MT, red) and 24 hours (+MT 24 h, red) were 60 

normalized to the values of the untreated control cells (-MT, blue) and expressed in percentage. 61 

Uncoupler FCCP was added as a control for ΔΨm depolarization (box and whiskers plot, n = 6, ****P 62 

<0.0001). 63 

F) In situ ΔΨm was measured in digitonin-permeabilized BSF T. brucei cells stained with Safranin O dye. 64 

Where indicated, the FoF1-ATP synthase substrate – ATP, the FoF1-ATP synthase inhibitor - oligomycin 65 

(Olgm) and the protonophore SF6847 were added. Representative traces from measurement of 66 

untreated control cells (-MT, blue) in comparison with cells treated with 40 nM MitoTam for 16 hours 67 

(+MT 16 h, orange) and 24 hours (+MT 24 h, red) are shown. 68 



Tab. S1 

Pathogen Ilnesses 
Estimated Annual 
Incidence/human 

infections reported 
Mortality rate Treatment options References 

Trypanosoma 
brucei 

Human African 
trypanosomiasis 

(sleeping sickness) 
≤1000 ~100% 

fexinidazole, pentamidine, nifurtimox–eflornithine combination therapy, suramin, melarsoprol 
[1] 

Trypanosoma 
cruzi 

Chagas disease  30 000 1-50% benznidazole, nifurtimox [2][3][4] 

Leishmania 
major, 

Leishmania 
mexicana 

 cutaneous 
leishmaniosis 

600 000 -1 000 000 N/A 
for immunocompetent patients -no treatment or topical oitments / for immunocompromised 

patients - sodium stibogluconate, miltefosine, fluconazole 
[5][6] 

Plasmodium 
falciparum 

malaria 214 000 000 10-50% artemisinin-based combination therapy [7] 

Candida 
albicans 

superficial mucosal 
and dermal 
infections, 

disseminated 
systemic invasive 

candidiasis  

750 000 
 (invasive candidiasis) 

30 - 70% antibiotics (echinocandin, fluconazole, or amphotericin B) [8][9][10] 

Cryptococcus 
neoformans 

cryptococcosis 223 000 24-95% anti-fungal drugs (amphotericine B, fluconazole, itraconazole)  [11][12] 

Naegleria 
fowleri 

Primary amoebic 
meningoencephalitis 

431 cases reported 
until 2020 

≥ 90% 
combination of antibiotics (such as amphotericin B, fluconazole, miltefosine) and drugs for relieving 

intracranial pressure  
 [13][14] 

Acanthamoeba 
spp. 

Granulomatous 
amoebic 

encephalitis (GAE) 
Acanthamoeba 

keratitis (AK) 

AK around 3,000 cases 
reported, GAE 

approximately 200 
cases have been 

described until 2004 

≥ 90% (GAE) 
antimicrobial drugs used alone or in combined therapy (amphotericin B, pentamidine, sulfadiazine, 
flucytosine, fluconazole or itraconazole, chlorhexidine gluconate, ketoconazole)/antimicrobial and 

anti-inflammatory medicines have to be combined with cystidal drugs 
[15][16][17] 

Giardia 
intestinalis 

giardiasis 28 000 000 N/A Metronidazole, Tinidazole, Albendazole [18]  

Trichomonas 
vaginalis 

trichomoniasis 156 000 000 N/A Metronidazole, Tinidazole [19] 
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