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SUMMARY
Triple-negative breast cancer (TNBC) is a subset of breast cancer with an adverse prognosis and significant
tumor heterogeneity. Here, we extract quantitative radiomic features from contrast-enhancedmagnetic reso-
nance images to construct a breast cancer radiomic dataset (n = 860) and a TNBC radiogenomic dataset (n =
202). We develop and validate radiomic signatures that can fairly differentiate TNBC from other breast cancer
subtypes and distinguish molecular subtypes within TNBC. A radiomic feature that captures peritumoral het-
erogeneity is determined to be a prognostic factor for recurrence-free survival (p = 0.01) and overall survival (p
= 0.004) in TNBC. Combined with the established matching TNBC transcriptomic and metabolomic data, we
demonstrate that peritumoral heterogeneity is associated with immune suppression and upregulated fatty
acid synthesis in tumor samples. Collectively, this multi-omic dataset serves as a useful public resource to
promote precise subtyping of TNBC and helps to understand the biological significance of radiomics.
INTRODUCTION

Breast cancers that lack expression of the estrogen receptor

(ER), progesterone receptor (PR), and human epidermal growth

factor receptor 2 (HER2) are classified as triple-negative breast

cancers (TNBCs). TNBC, which comprises 15%–20% of newly

diagnosed breast cancers,1,2 is characterized by aggressive bio-

logical behavior, high incidence of relapse, and unfavorable

prognosis.3 Recent years have witnessed increasing recognition

of the heterogeneity inside TNBC, while the identification of sub-

type-specific therapeutic targets is still in urgent need.4–9 With

the largest multi-omic database to date, our previous work un-

veiled the genomic and transcriptomic landscape of 465Chinese

TNBC patients and classified TNBCs into four molecular sub-

types with distinct characteristics: (1) basal-like immune sup-

pressed (BLIS), (2) immunomodulatory (IM), (3) mesenchymal

like (MES), and (4) luminal androgen receptor (LAR).7

In the past decade, radiomics has been an emerging field that

transforms medical images into mineable data by acquiring

multiple quantitative image features.10,11 Compared with con-

ventional invasive biopsies, the radiomic approach has two

main advantages. First, radiomics is a non-invasive method to

infer tumor characteristics and can be performed several times
This is an open access article under the CC BY-N
during the follow-up period.12–14 In addition, genomic and tran-

scriptomic profiling selects only a small part of the tumors, while

radiomics elucidates the landscape of a tumor and is not subject

to selection bias, which enables us to explore tumor heterogene-

ity comprehensively.15–17 Previous studies focusing on radiomic

texture analysis have quantified tumor heterogeneity and sug-

gested its associations with an unfavorable prognosis in breast

cancer.18,19 These results warrant further evaluation of tumor

heterogeneity using a radiomic approach.

However, a multi-omic TNBC dataset containing radiomic

data with a large sample size has yet to be reported, and the

correlation between radiomic features and genomic alterations

remains largely unknown. In the present study, we performed

radiomic profiling based on contrast-enhanced magnetic reso-

nance imaging (CE-MRI) images from 860Chinese breast cancer

patients to distinguish TNBCs from non-TNBCs. We further con-

structed a TNBC radiogenomic dataset (n = 202) based on our

previously developed TNBC multi-omic cohort,7 aiming to build

a radiomic model for non-invasive TNBC subtyping and patient

outcome stratification. We also integrated the radiomic data

with our transcriptomic, metabolomic, and clinical data in this

dataset to illustrate the biological basis of prognostic radiomic

features in TNBC.
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RESULTS

Overview of Fudan University Shanghai Cancer Center
(FUSCC) breast cancer radiomic cohort and TNBC ra-
diogenomic cohort
To explore the clinical usefulness of radiomic data in breast can-

cer, we established FUSCC breast cancer radiomic cohort and

TNBC multi-omic cohort, both with high-quality breast CE-MRI

images. FUSCC breast cancer radiomic cohort retrospectively

enrolled 860 primary breast cancer patients between August

2009 and May 2015 and was utilized to differentiate TNBCs

from other breast cancer subtypes (Figure 1A). In this cohort,

hormone receptor positivity was observed in 468 patients,

HER-2 overexpression was observed in 268 patients, and 246

patients were identified as having TNBC (Figure S1A). In addi-

tion, we constructed TNBC radiogenomic cohort consisting of

202 primary TNBC patients based on our previously developed

TNBC multi-omic cohort,7 and this cohort was utilized to distin-

guish TNBC molecular subtypes and explore the biological

significance of important radiomic features (Figure 1A). Tran-

scriptomic, metabolomic, and clinicopathological information

was matched with radiomic data in this dataset (Figure 1B).

The imaging parameters of the CE-MRI machines used in these

two cohorts were summarized in Table S1. Tumoral, peritumoral,

intratumoral, and tumor-peritumoral regions of interest (ROIs)

were delineated (the definitions of these ROIs were included in

STARMethods section). Radiomic featureswere extracted using

the PyRadiomics package based on these ROIs. We proposed

our analysis plan as shown in Figure 1C.

Identification of TNBC in FUSCC breast cancer radiomic
cohort and external validation cohorts
We first randomly divided FUSCC breast cancer radiomic cohort

(n = 860) into 50% training and 50% validation sets (simplified as

FUSCC training cohort and FUSCC validation cohort below) to

develop a non-invasive radiomic approach to distinguish TNBC

from all breast cancers. Using the 10-fold cross validation

least absolute shrinkage and selection operator (LASSO) model

(a = 0), 11 variables were retained to develop TNBC prediction

signature in the training cohort (Figure S1B). These radiomic

features were presented in Table S2.

Using logistic regression (LR) to establish prediction models

based on the retained features, this radiomic signature could

classify TNBC versus non-TNBC with an area under the curve

(AUC) of the receiver operator characteristic curve (ROC) of

0.92 (95% confidence interval [CI]: 0.887–0.953) and an AUC

of the precision-recall curve (PRC) of 0.819 in the validation set

of FUSCC breast cancer radiomic cohort (Figures S1C and

S1D). We further validated the efficacy of this prediction model

in two external validation datasets generated from Chinese

patients. Detailed information of these datasets was listed in
Figure 1. Overview of this integrative radiogenomic study

(A) Description of the radiomic cohorts used in this study.

(B) Generating process of radiomic data and integrative analysis used in TNBC r

(C) Analytical framework of integrative radiogenomic analysis.

CE-MRI, contrast-enhanced magnetic resonance imaging; LR, logistic regression

Figures S1 and S2 and Tables S1–S3.
STAR Methods section. Two external validation datasets from

International Peace Maternal and Children Hospital (IPMCH)

(n = 54) and Shanghai Jiaotong University Renji Hospital

(RENJI) (n = 110) yielded AUCs of 0.723 (95% CI: 0.552–0.894)

and 0.613 (95% CI: 0.461–0.766), respectively (Figures S1E

and S1F). In addition, the density distributions of 11 selected

features curated from different datasets were approximate,

indicating the sound reproducibility of these radiomic features

among independent medical centers despite the distinct

imaging parameters used (Figure S2; Table S1). These data

demonstrated that radiomic features could distinguish TNBC

from other types of breast cancers in Chinese patients.
Predictive value of radiomics in distinguishing TNBC
molecular subtypes
We further explored whether radiomic signatures could distin-

guish different TNBC molecular subtypes. As described above,

202 TNBC patients were retrospectively enrolled in our TNBC ra-

diogenomic cohort. The baseline characteristics of this cohort

were shown in Table S3. A total of 167 cases with radiomic

data had matching transcriptomic data, while 138 cases had

matching metabolomic data. Transcriptomic TNBC subtypes

were regarded as the ground truth.7

LASSO and Student’s t test retained 4, 11, 2, and 7 radiomic

features that weremost relevant to BLIS, IM,MES, and LAR sub-

types in the training cohort, respectively. These features were

presented in Table S4. LR and support vector machine (SVM)

were used to construct prediction models in the training and vali-

dation cohorts based on the selected features. The AUCs and

CIs of the predictionmodels for each TNBC subtype were shown

in Figure 2A. In the validation set, identifying MES, BLIS, IM, and

LAR subtypes yielded AUCs of 0.796 (95% CI: 0.650–0.941;

LR-based model), 0.719 (95% CI: 0.570–0.867; SVM-based

model), 0.669 (95% CI: 0.481–0.858; LR-based model), and

0.598 (95% CI: 0.416–0.781; SVM-based model), respectively.

A previous study investigated immunohistochemistry (IHC) as

a surrogate approach to distinguish molecular subtypes of

TNBC.20 Here, we further explored the discriminatory power of

prediction models combining radiomic features and IHC data.

Because IHC alone could identify the LAR subtype with

outstanding efficacy (AUC = 0.932)20 and a satisfactory radiomic

model was established for MES subtype identification, we built

combined signatures to identify BLIS and IM subtypes. The

AUCs to predict BLIS and IM subtypes were 0.975 (95% CI:

0.906–1; SVM-based model) and 0.731 (95% CI: 0.373–1; LR-

based model), respectively, in the validation set (Figure 2B).

Combined models showed better performance in the BLIS sub-

type than individual IHC and radiomics-based models, but no

statistical significance was found in the IM subtype. Altogether,

these data suggested that radiomics was a promising approach
adiogenomic cohort.

; SVM, support vector machine; TNBC, triple-negative breast cancer. See also
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Figure 2. Efficacy of predicting TNBC molecular subtypes using radiomics and IHC data with machine learning method

(A) AUC of the radiomic signatures for predicting BLIS, IM, MES, and LAR subtypes. Error bar represented the 95% confidence interval of AUC.

(B) Comparison of combined model, individual radiomic model, and IHC model for predicting BLIS and IM subtypes. **0.001 < p % 0.01; *0.01 < p % 0.05; ns,

p > 0.05.

AUC, area under the receiver operating characteristic curve; BLIS, basal-like immune suppressed; IHC, immunohistochemistry; IM, immunomodulatory; LAR,

luminal androgen receptor; LR, logistic regression; MES, mesenchymal like; SVM, support vector machine; TNBC, triple-negative breast cancer. See also

Tables S3 and S4.
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to identify TNBCmolecular subtypes, especially when combined

with other approaches, including IHC.

Prognostic value of peritumoral heterogeneity derived
from radiomics
With the detailed clinical follow-up data of our TNBC radioge-

nomic cohort (n = 202), we evaluated robust prognostic radiomic

features. According to stringent filtering criteria, variance among

theMRI sequences of dependence nonuniformity extracted from

peritumoral ROIs (Peri_V_DN), a feature from the gray level

dependence matrix group, was identified (Figure 3A). Typical

breast CE-MRI images with high and low Peri_V_DN values are

shown in Figure 3B. The stratification of patients with survival

differences using the median value as the cutoff was verified in

the validation set (Figure 3C). The multivariate Cox proportional

hazards model also revealed that low Peri_V_DN independently

predicted better recurrence-free survival (RFS) and overall sur-

vival (OS) in TNBC patients (Table 1). Peri_V_DN represents the

variation pattern of peritumoral heterogeneity through different

imaging phases, with a lower value indicating less change in

peritumoral heterogeneity among the sequences of the image.

Next, we systematically analyzed the correlation between the

Peri_V_DN value and tumor characteristics. We observed

larger tumor sizes andmore pathologically confirmedmetastatic

lymph nodes (p < 0.001 and p < 0.01, respectively) in the high

Peri_V_DN group than in the low Peri_V_DN group (Figure 3D).

The high Peri_V_DN group included more patients with the

BLIS subtype, and the low Peri_V_DN group comprised more

patients with the IM subtype (p = 0.02), while the distribution of

the PAM50 subtypes was balanced (Figure 3E). We analyzed

the correlation between the Peri_V_DN value and TNBC micro-

environment clusters according to TNBC microenvironment

subtypes.21 The results revealed a tendency for the high

Peri_V_DN group to consist of more ‘‘immune-desert’’ cluster

one tumors, while the low Peri_V_DN group included more ‘‘im-

mune-inflamed’’ cluster three tumors (p = 0.09; Figure 3E).

Fibrosis and necrosis grades evaluated by hematoxylin and

eosin staining sections showed no difference between the two

Peri_V_DN groups (Figure S3A). Other molecular biomarkers
4 Cell Reports Medicine 3, 100694, July 19, 2022
for precision treatment of TNBC, including stromal tumor-infil-

trating lymphocytes (TILs), IHC CD8 readings, tumor mutation

burden (TMB), and homologous recombination deficiency

(HRD) score, displayed balanced distributions between the

Peri_V_DN groups as well (Figures S3B–S3E). Overall, we

demonstrated that high Peri_V_DN predicted a poor prognosis

for TNBC and more aggressive tumor characteristics.

Integrative analysis elucidated metabolic
reprogramming in high Peri_V_DN patients
We further investigated the molecular characteristics associated

with Peri_V_DN. Using paired transcriptomics and metabolomics

data from TNBC radiogenomic cohort, metabolite abundance

and gene expression were compared between the Peri_V_DN

groups (FigureS4; TablesS5andS6).Differentially abundant polar

metabolitesmainly comprised lipids. Furthermore, KyotoEncyclo-

pedia ofGenes andGenomes (KEGG) andReactome-based gene

set enrichment analysis (GSEA) demonstrated similar results (false

discovery rate [FDR] < 0.1) that high Peri_V_DN was significantly

associated with aberrant metabolism and suppressed immune-

related pathways (Figure 4A; Table S7).

Previous differentially abundant metabolites and pathway

enrichment analyses revealed that metabolic reprogramming

was related to high Peri_V_DN.On this basis, we performed differ-

ential abundance (DA) score analysis based onmetabolomic data

between the Peri_V_DN groups. Among 53 pathways in which

more than threemetaboliteswere annotated, 21wereupregulated

and four were downregulated in high Peri_V_DN patients

(Table S8). Among the 21 upregulated pathways, three pathways

were upregulated with DA scores of at least 0.25 (Figure 4B).

This result was consistent with that of a previous analysis and

further highlighted fatty acid metabolism reprogramming in high

Peri_V_DN group. We conducted a transcriptomic-metabolomic

integrative analysis to depict a more meticulous fatty acid meta-

bolism alteration in this population. Integrative analysis of fatty

acid metabolism demonstrated that the initial step of fatty acid

synthesis was significantly upregulated (Figure 4C). Taken

together, these results demonstrated that vigorous de novo fatty

acid synthesiswas closely related to a highPeri_V_DNphenotype.
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Table 1. Multivariate Cox proportional hazard models for RFS and OS in TNBC radiogenomic cohort

Variables

RFS OS

HR (95% CI) p HR (95% CI) p

T stage T1 ref.

T2 0.58 (0.27–1.25) 0.17 0.70 (0.24–2.02) 0.51

T3/T4 0.95 (0.24–3.76) 0.94 1.69 (0.29–9.75) 0.59

N stage pN0 ref.

pN1 2.03 (0.81–5.07) 0.13 2.73 (0.77–9.66) 0.12

pN2 5.02 (1.88–13.43) 0.001 5.87 (1.66–20.76) 0.006

pN3 7.62 (2.84–20.43) 5.38 3 10�5 4.85 (1.06–22.24) 0.04

TNBC subtype BLIS ref.

IM 1.12 (0.35–3.52) 0.85 0.67 (0.13–3.49) 0.63

MES 0.93 (0.29–2.96) 0.90 0.82 (0.19–3.46) 0.78

LAR 0.94 (0.34–2.57) 0.90 0.62 (0.16–2.30) 0.47

Peri_V_DN high ref.

low 0.41 (0.18–0.95) 0.04 0.15 (0.03–0.70) 0.02

CI, confidence interval; HR, hazard ratio; OS, overall survival; Peri_V_DN, variance of dependence nonuniformity extracted of peritumoral regions; RFS,

recurrence-free survival; TNBC, triple-negative breast cancer.
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Distinct tumor microenvironments in different
Peri_V_DN groups
The cell subset composition of the tumor microenvironment was

estimated by a published gene signature leveraging transcrip-

tomic data from TNBC radiogenomic cohort.21 The RNA-based

immune cell signatures revealed a major difference in the micro-

environment between tumorswith high and lowperitumor hetero-

geneity (Figures 5A and 5B).22 LowPeri_V_DNwas characterized

by a higher abundance of CD8+ T cells, naive CD4+ T cells, gd

T cells, activated nature killer (NK) cells, M1 macrophages, and

regulatory T cells. Cytolytic activity, which inferred the activity

of effector immune cells,23 was lower in high Peri_V_DN cases

(p = 0.01; Figure 5C). These results confirmed that high

Peri_V_DNwas associatedwith a suppressed immune response.

Moreover,we investigated thepossible immuneescapemech-

anisms of both types of tumors. In addition to the previously

described enrichment of regulatory T cells in low Peri_V_DN

cases, another inhibitory immune cell type,myeloid-derived sup-

pressor cells (MDSCs), also had a relatively higher abundance in

low Peri_V_DN cases (p = 0.05; Figure 5D).24 The expression

levels of a wide range of immune co-inhibitors and co-stimula-

tors, including multiple immune checkpoints, were investigated,

and a more inhibitory immune context was found in low

Peri_V_DNcases (Figure 5E). Overall, the delineation of the tumor

microenvironment implied that the low Peri_V_DN group was

enriched with hot tumors andmight escape immune surveillance

by higher inhibitory immune cell infiltration and stronger immune

checkpoint molecule expression.
Figure 3. Identification of the prognostic feature Peri_V_DN and its clin

(A) Criteria of prognostic feature selection (left) and hazard ratios for RFS and OS

(B) Breast CE-MRI images from one patient with high Peri_V_DN (upper) and one

(C) Kaplan-Meier plots show the prognostic value of Peri_V_DN for RFS and OS

(D) Distribution of tumor size and pathologically confirmed metastatic lymph nod

(E) Distribution of the TNBC transcriptomic subtypes, PAM50 subtypes, and TNB

HR, hazard ratio; OS, overall survival; Peri_V_DN, peritumoral variance in depend

also Figure S3.
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Furthermore, comparison of the two common innate immu-

nity-sensing pathways, cGAS-STING25 and NLRP3 inflamma-

some,26 demonstrated weaker immunity activation in high

Peri_V_DN cases (p = 0.03 and p = 0.02, respectively; Figure 5F).

We also analyzed tumor immunogenicity by comparing major

histocompatibility complex (MHC) molecules expression.

Reduced expression of MHC molecules in the high Peri_V_DN

group is demonstrated in Figure 5G. In summary, the high

Peri_V_DN group exhibited a cold tumor phenotype, and its

potential escape mechanisms included a reduction in innate

immune sensing and rejection of immune infiltration.
DISCUSSION

Recent studies have revealed evident tumor heterogeneity

among TNBCs, and precision treatment based on molecular

profiling has achieved preliminary progress.5,7,27,28 These prom-

ising results encouraged molecular subtyping and genomic

sequencing for TNBC in clinical practice, which is traditionally

conducted by invasive biopsies. Herein, we developed a non-

invasive radiomic approach for the identification and molecular

classification of TNBC. In addition, we identified a prognostic ra-

diomic feature, which reflected peritumoral heterogeneity, with

underlying biological properties. These results demonstrated

the potential role of a surrogate radiomic approach in distin-

guishing TNBC patients and further differentiating TNBC into

different subtypes and clinical outcomes.
icopathological associations

of the radiomic features (right).

patient with low Peri_V_DN (lower).

in the validation set.

es between Peri_V_DN groups.

C microenvironment clusters between Peri_V_DN groups.

ence nonuniformity of peritumoral regions; RFS, recurrence-free survival. See
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In this study, we investigated the value of radiomics to

distinguish TNBC from other subtypes of breast cancer. We

concluded that the non-invasive radiomic approach could identify

TNBC with an AUC of 0.922 in the FUSCC cohort, 0.723 in the

IPMCH cohort, and 0.613 in the RENJI cohort. This conclusion

not only indicated the potential of the MRI-based radiomic

approach to identify TNBCbut alsowarned us that the generaliza-

tion of radiomic signatures remained an important issue to

address. These diverse results might be attributed to the redun-

dancy generated byPyRadiomics in the process of feature extrac-

tion, and a previous study validated this disadvantage of this

widely used open-source tool.29 The significant variation

of imaging parameters between different MRI machines, as

described in Table S1, also contributed to the suboptimal perfor-

mance in independent radiomic datasets. Other studies also

explored the value of radiomics to classify TNBC. Calstaldo

et al.30 found that radiomic signatures identified TNBC with an

AUC of 0.91, while Leithner et al.31 identified TNBC with an accu-

racyof 0.736. In addition,Wuet al.32 conducted ameta-analysis to

summarize the efficacy for breast cancer subtype prediction and

found that the overall sensitivity and specificity were 0.69 and

0.85, respectively. These results together demonstrated that

MRI-based radiomic signatures had the potential to classify

TNBC and were consistent with the results of our study.

As radiomic signature could identify TNBCwith high accuracy,

we further hypothesized that the molecular diversity between

TNBC molecular subtypes would lead to different patterns in

CE-MRI images, which were quantitatively evaluated using a ra-

diomics approach. Two widely used molecular subtyping sys-

tems in TNBC were Lehmann subtype and FUSCC subtype,5,7

which were well correlated with each other. However, consid-

ering that FUSCC subtype was developed based on Chinese

TNBC patients and was more concise compared with Lehmann

subtype, we used FUSCC TNBC subtype as the ground truth in

our study. The results revealed a promising approach to identify

TNBC molecular subtypes and facilitate precision treatment in a

non-invasive way. Combined models including radiomics and

IHC staining data demonstrated higher AUCs than individual ra-

diomic and IHC models in the BLIS subtype. However, the com-

bined models did not establish superiority over IHC models

regarding the prediction efficacy in the IM subtype. Overall,

further studies aiming to optimize the accuracy and simplicity

of TNBC classification are warranted.

Besides, we identified prognostic radiomic features and

illustrated the underlying molecular pathways. Previous

studies have shown that peritumoral heterogeneity can be

used to predict the clinical outcomes of several cancer
Figure 4. Identification of differentially expressed pathways and trans

(A) Enrichment of pathways in high Peri_V_DN group compared with low Peri_V_

tome).

(B) A pathway-based analysis of metabolomic changes between Peri_V_DN group

bolic pathway. A score of 1 indicated that all metabolites in this pathway increased

�1 indicated that all metabolites in this pathway decreased.

(C) Transcriptomics andmetabolomics distinctions in fatty acid biosynthesis pathw

and metabolite abundances in high Peri_V_DN tumor samples compared with lo

CoA, coenzyme A; FA, fatty acid; GSEA, gene set enrichment analysis; KEGG, Ky

TCA, tricarboxylic acid; TCR, T cell receptor. See also Figure S4 and Tables S5,
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types.33–35 Herein, we found that Peri_V_DN was strongly

associated with adverse clinical outcomes. We further pro-

posed that aberrant metabolism and suppressed immune re-

actions might be related to peritumoral heterogeneity using

transcriptomic and metabolomic data. Several studies have

attempted to explore the association between radiomic fea-

tures and transcriptomic data.17,36 Lee et al.15 found that a

four-feature radiomic signature could predict the clinical out-

comes of pathological T1 renal cell carcinoma and was asso-

ciated with the abundance of certain immune cell types. This

was consistent with our findings, but the exact mechanisms

for the formation of an immunosuppressive microenvironment

were not explored in the present study. Wu et al.37 analyzed

radiomics and transcriptomics data from TCGA database

and found that features extracted from peritumoral regions

of CE-MRI were related to clinical outcomes and tumor necro-

sis factor (TNF) signaling pathway, which were similar to the

results of our integrative radiomic analysis.

In conclusion, we presented a radiomic dataset originating

from a sizable breast cancer radiomic cohort (n = 860) and a

TNBC radiogenomic cohort (n = 202) containing multi-omic

data. The radiomic approach showed promising efficacy in

identifying TNBC and predicting TNBC molecular subtypes via

a non-invasive approach. In addition, peritumoral heterogeneity

quantified by radiomics stratified patient outcomes and

represented distinct tumor metabolism and immune response

patterns. These results demonstrated the potential application

of radiomics in the analysis of tumor heterogeneity and clinical

management of TNBC.

Limitations of the study
Our study has several limitations. First, more refined models are

needed to further improve the prediction efficacy of the radiomic

signatures, particularly for predicting TNBCmolecular subtypes.

These predictive models should also be further verified in a pro-

spective setting. Second, most patients were recruited from a

single institution, and the sample size of the independent external

validation cohorts was limited. Third, the biological characteris-

tics associated with the Peri_V_DN feature were subjected to

the nature of exploratory analysis.
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Figure 5. Landscape of the tumor microenvironment of the Peri_V_DN groups and distinct escape mechanisms

(A) Differences in the abundance of immune cell types in high Peri_V_DN group compared with low Peri_V_DN group.

(B) Scores of the immune signature (left) and stromal signature (right) inferred by ESTIMATE22 between Peri_V_DN groups.

(C) Comparison of cytolytic activity showed higher effector immune cell activity between Peri_V_DN groups.

(D) Comparison of the abundance of MDSCs between Peri_V_DN groups.

(E) Normalized mRNA expression levels of immune co-inhibitors and co-stimulators between Peri_V_DN groups.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

RNA-seq data Jiang et al.7 OEP000155; http://www.biosino.org/node

Metabolomics data Xiao et al.38 OEP000155; http://www.biosino.org/node

Software and algorithms

ANTs toolbox version 2.3.5 Avants et al.39 http://stnava.github.io/ANTs/

3D Slicer version 4.8.1 Fedorov et al.40 https://www.slicer.org/

Python version 3.6 N/A https://www.python.org/

PyRadiomics version 3.0 van Griethuysen et al.41 https://pyradiomics.readthedocs.io/en/

latest/

R version 3.6.1 N/A https://www.r-project.org/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Prof.

Zhi-Ming Shao (zhimingshao@fudan.edu.cn).

Materials availability
This study did not generate novel reagents.

Data and code availability
d The raw breast CE-MRI images used in this paper are available from the lead contact upon request.

d RNA-seq and metabolomics data can be viewed in The National Omics Data Encyclopedia (NODE) (http://www.biosino.org/

node): OEP000155 or through the URL: http://www.biosino.org/node/project/detail/OEP000155.

d Custom codes are available in Supplementary Information.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient cohorts
We retrospectively recruited patients diagnosed with malignant breast cancer whose baseline breast CE-MRI images were suitable

for radiomics analysis. FUSCC breast cancer radiomic cohort was composed of a total of 860 Chinese patients who were treated at

Fudan University Shanghai Cancer Center (FUSCC) from 1 August 2009 to 31 May 2015 and met the following criteria: 1) female pa-

tients diagnosed with unilateral invasive ductal carcinoma with known ER, PR and HER2 phenotypes;42 2) no evidence of distant

metastasis at diagnosis.

We also generated a TNBC radiogenomic cohort composed of 202 TNBCpatients based on our previously developed TNBCmulti-

omic dataset.7 In this cohort, transcriptomics sequencing (n = 167), metabolomics (n = 138), hematoxylin-eosin stained sections with

IHC staining (n = 56) for the expression of AR, CD8A, FOXC1 and DCLK1, and clinical follow-up data (including relapse-free survival

and overall survival) were also available. Follow-up within this cohort of patients was completed on 30 June 2017, and the median

length of follow-up was 45.8 months. Relapse-free survival was defined as the time from diagnosis to first recurrence or a diagnosis

of contralateral breast cancer. Overall survival was defined as the time from diagnosis to death from any cause. Patients without

events were censored from the time point of the last follow-up. Additional clinicopathological factors, such as stromal tumor

infiltrating lymphocytes (sTILs) and homologous recombination deficiency (HRD) status, were also available. The studies were con-

ducted in accordance with the Declaration of Helsinki. All analyses were approved by the independent ethics committee/institutional

review board of Fudan University Shanghai Cancer Center, and written informed consent was obtained from each patient.

To evaluate the ability of radiomic signatures to generalize to additional populations, we collected CE-MRI images and ER, PR

and HER2 phenotype information from patients diagnosed with malignant breast cancer from two other independent medical
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centers. IPMCH dataset comprised 54 patients from International Peace Maternal and Children Hospital from 1 January 2013 to 31

June 2019, and RENJI dataset comprised 110 breast cancer patients from Shanghai Jiaotong University Renji Hospital from 1

August 2018 to 30 November 2020. Data collection was approved by both the IPMCH and Renji Hospital institutional review

boards.

METHOD DETAILS

Breast CE-MRI imaging
All the patients had undergone breast MR examination before biopsy, and CE-MRI images were used for radiomics analysis in this

study. The imaging parameters are listed in Table S1.

All other phaseswere co-registered into the first postcontrast phase of CE-MRI through non-linear registration using the symmetric

normalization algorithm,39 which was performed using the ANTs toolbox (version 2.3.5), to eliminate the spatial mismatches caused

by motion artifacts. Nonparametric nonuniformity normalization algorithm was applied for bias field correction.

ROI delineation and inter- and intra-observer reproducibility
ROIs were delineated semiautomatically on the peak enhanced phase of CE-MRI using 3D Slicer software (version 4.8.1).40 The

ROIs were placed on all slices that contained the whole tumor or the largest lesion (in the case of multicentric or multifocal tumors).

Two radiologists (C.Y. and D.D.Z. with 9 and 4 years of experience in breast MRI, respectively) were blinded to the pathological

and biochemical findings of each patient and were primarily responsible for evaluating the ROIs. The inter- and intra-observer

reproducibility of the ROIs and radiomic feature extraction were initially analyzed using the CE-MRI data of 60 randomly selected

patients in a blinded fashion by two radiologists. To ensure consistent ROI delineation, one radiologist repeated the ROI

delineation twice with an interval of at least 1 month, while another radiologist independently drew the ROIs and generated radio-

mic features following the same procedure. The agreements of the ROIs between the radiologists and within the same radiologist

represent inter- and intra-observer reproducibility, respectively. Intraclass correlation coefficients (ICCs) were used to evaluate

the intra- and interobserver agreement in terms of feature extraction. Inter- and intra-observer reproducibility and radiomic

feature extraction achieved substantial agreement with ICC > 0.75 both among the ROIs from the two radiologists and between

the ROIs from the same radiologist.43

Furthermore, the peritumoral area was obtained by expanding the tumor outward with a 5-mm width and subtracting the tumor

area, while the intratumoral area was obtained by shrinking with a 5-mm width. Expanding and shrinking operations were imple-

mented automatically based on dilating and eroding algorithms, with a sphere morphological structuring element (radius = 5 mm).

In addition, tumor and peritumoral regions were integrated as another region. In total, four sets of ROIs, including the tumor, peritu-

mor, intratumor and tumor-peritumor regions, were used in the radiomics feature extraction.

Radiomics feature extraction
This study extracted two categories of radiomic features based on CE-MRI images, namely, spatial domain features and sequential

features. Spatial domain features included shape features, first-order features, textural features and wavelet domain features, while

sequential features comprised enhancement rate features and time-varying curve-based features. These radiomic features were

calculated using the PyRadiomics package (voxel size: 0.7 3 0.7 3 1.5 mm3, ’binWidth’: 25, version 3.0),41 implemented in Python

(version 3.6) and in-house pipelines.

Shape features were common to all phases and included descriptors of the three-dimensional size and shape of the ROIs. First-

order features and textural features were calculated from each phase individually. First-order features described the distribution of

voxel intensities, and textural features were obtained based on five textural matrices to describe the radiological pattern of the ROIs,

including Gray Level Co-occurrenceMatrix (GLCM), Gray Level DependenceMatrix (GLDM), Gray Level Run LengthMatrix (GLRLM),

Gray Level Size Zone Matrix (GLSZM), Neighboring Gray Tone Difference Matrix (NGTDM). Shape, first-order and textural features

were extracted using PyRadiomics package. Additionally, wavelet domain features were extracted for each first-order feature and

textural feature by applying wavelet filtering to the original images, yielding eight decompositions per level (LLL, LLH, LHL, HLL, LHH,

HLH, HHL, HHH).

Sequential features, also known as time domain features, were calculated to consider time dimension information. Sequential fea-

tures were extracted based on each spatial domain feature, except for shape features (because they were identical between all im-

aging phases). Enhancement rate features depicted the rate of change of each spatial feature between each two phases during

contrast enhancement, which is defined as: Enhðdyni;dynjÞ =
dynj �dyni

dyni

Here, dyni represents the feature value of the former phase, and dynj represents the feature value of the latter phase. Time-varying

curve-based features included the mean, variance, skewness, kurtosis and energy of value of each spatial domain feature in its time-

varying curve. These features were defined as follows:

1. Mean
e2 Cell Reports Medicine 3, 100694, July 19, 2022
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meanðDYN = ½dyn1.dynN�Þ =
1

N

XN
i = 1

dyni

2. Variance
varianceðDYN = ½dyn1.dynN�Þ =
1

N � 1

XN
i = 1

ðdyni � DYNÞ2

3. Skewness
skewnessðDYN = ½dyn1.dynN�Þ =
1

N

XN
i = 1

�
dyni � DYN

s

�3

4. Kurtosis
kurtosisðDYN = ½dyn1.dynN�Þ =

(
1

N

XN
i = 1

�
dyni � DYN

s

�4)
� 3

5. Energy
energyðDYN = ½dyn1.dynN�Þ =
XN
i = 1

ðdyniÞ2

s =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðdyn1.dynNÞ

p
indicated the standard deviation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Feature selection and radiomics model building
The LASSO method was used to select the most useful predictive features from the training cohort (glmnet R package).44 Tuning

parameter (l) was selected in the LASSO model by 10-fold cross-validation for identifying TNBC and 9-fold cross validation for

distinguishing TNBC molecular subtypes. Radiomics scores were calculated for each patient using two different methods: 1)

multivariate linear regression (glm R package) and 2) support vector machine (SVM; e1071 R package). The abilities to identify

TNBC and distinguish TNBC molecular subtypes were assessed using the area under the curve (AUC) of the receiver operator

characteristic curve (ROC) via the pROC R package.45 Confidence intervals of AUCs were calculated using the Delong method.

The AUC of the precision recall curve (PRC) was assessed via the PRROC R package. Radiomics data from patients with known

transcriptomic TNBC subtype7 and Aurora CE-MRI images were selected to build signatures for distinguishing molecular subtypes

inside TNBC.

Radiomics model validation
The radiomics prediction models were validated internally and externally. First, the trained classifiers were assessed by cross-vali-

dation via the glmnet R package.44 Next, the trained classifiers were further tested in the validation datasets in terms of the AUC and

its confidence intervals of the ROC curve.

Generation and analysis of metabolomics and lipidomics data
Themetabolomic and lipidomics data of our study were generated using four steps: sample preparation, metabolite extraction, polar

metabolite and lipid detection and mass spectrum (MS) data analysis.
Cell Reports Medicine 3, 100694, July 19, 2022 e3
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The samples in our TNBC multi-omic cohort with adequate tissues for polar metabolites and lipids were collected. In total, 138

TNBC samples were selected for further metabolomics and lipidomics analysis. Acetonitrile: methanol: water = 2: 2: 1 solution

and MTBE: MeOH= 5: 1 solution were applied to extract polar metabolites and lipids, respectively. An equal volume (10 mL) of

each sample was mixed for quality control sample preparation. A BEH amide column (2.1 * 100 mm, 1.7 mm, Waters) or Kinetex

C18 column (2.1 * 100 mm, 1.7 mm, Phenomen) coupled with a Triple TOF 6600 mass spectrometer or AB triple TOF 5600 mass

spectrometer was deployed to conduct LC–MS/MS experiments for polar metabolite and lipid detection. MS raw data files were con-

verted to mzXML format by ProteoWizard software (version 3.0.19282) and processed by R package XCMS (v3.2) and LipidAnalyzer

formetabolomics and lipidomics data, respectively.

Detailed information on metabolomics and lipidomics data generation was contained in a metabolomics study published by Xiao

et al.38

Analysis of differentially abundant metabolites and differentially expressed genes
The differential abundance of metabolites was calculated by performing Mann–Whitney U tests for all detected metabolites. Metab-

olites were considered to have significant differences between high and low peritumoral heterogeneity if |log2FC| > 0.3 and p < 0.05.

The differential expression of genes was determined using the edgeR R package. Genes were considered to have significant dif-

ferences between high and low peritumoral heterogeneity if |log2FC| > 0.5 and FDR < 0.05. Gene set enrichment analysis (GSEA) was

performed using the clusterProfiler R package.46 The differential expression analysis outputs of edgeR were used to generate the

ranked list file. One thousand total permutations were used.

Differential abundance (DA) score
The DA score was calculated first by determining which metabolites were significantly increased/decreased in abundance, as

described above. Then, the DA score was defined as follows:

DA = (Number of metabolites increased - Number of metabolites decreased) / Number of measured metabolites in that pathway47

Thus, the DA score ranges from �1 to 1. A score of �1 indicates that all metabolites in a pathway decreased, while a score of 1

indicates that all metabolites increased in abundance. The components of the metabolic pathways used in the integrative analysis

were annotated using the KEGG database.

Calculation of microenvironment cell abundance
A signature containing 364 genes representing 24 microenvironment cell types was obtained from one published immuno-oncology

paper.21 This signature modified the CIBERSORT and MCP-Counter signatures and represented a more comprehensive landscape

of the TNBC microenvironment. Subsequently, we used single-sample gene set enrichment analysis (ssGSEA, ‘‘GSVA’’ function in

GSVA R package)48 to calculate the abundance of each cell subset in each sample with expression data.

Determination of immune checkpoint molecules
To determine which molecules played a critical role in shaping distinct tumor microenvironments, we searched a database of mol-

ecules (https://www.rndsystems.com/cn/research-area/co–stimulatory-and-co–inhibitory-molecules) to compare the expression

levels of these molecules in tumors with different levels of peritumoral heterogeneity.

Statistical analysis
Student’s t test, Wilcoxon’s test and Kruskal–Wallis test were used to compare continuous variables. Prior to the comparisons, the

normality of the distributions was tested with the Shapiro–Wilk test. Pearson’s chi-squared test and Fisher’s exact test were em-

ployed for the comparison of unordered categorical variables. To explore the association between radiomics features and survival,

Kaplan–Meier analysis and a Cox proportional hazards model were employed in the training and validation sets. Comparison of sur-

vival between groups was conducted via the log rank test. All the tests were two-sided, and p < 0.05 was regarded as indicating

significance unless otherwise stated. All statistical analyses were performed using R software (version 3.6.1).
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Figure S1. Patient composition, feature selection and model building based on FUSCC breast 

cancer radiomic cohort. Related to Figure 1, Table S2 and STAR METHODS. 

(A) Composition of patients enrolled in FUSCC breast cancer radiomic cohort according to receptor 

status. (B) Radiomic feature selection using LASSO method. (C) AUROC of TNBC-predicting 

radiomic model using linear regression algorithm. (D) AUPRC of TNBC-predicting radiomic model 

using linear regression algorithm. (E) AUROC of the TNBC-predicting radiomic model in IPMCH 

dataset (n = 54). (F) AUROC of the TNBC-predicting radiomic model in RENJI dataset (n = 110).  

Abbreviations: AUPRC, Area under precision-recall curve; AUROC, Area under receiver operating 

characteristic curve; FUSCC, Fudan University Shanghai Cancer Center; IPMCH, Shanghai 

International Peace Maternal and Children Hospital; LASSO, least absolute shrinkage and selection 

operator; RENJI, Shanghai Jiaotong University Renji Hospital; TNBC, triple-negative breast cancer.  

  



 

Figure S2. The density distribution of the eleven features used to predict TNBC between different 

centers and datasets. A to K represent these eleven features. Related to Figure 1 and Table S2. 

Abbreviations: FUSCC, Fudan University Shanghai Cancer Center; IPMCH, Shanghai International 

Peace Maternal and Children Hospital; RENJI, Shanghai Jiaotong University Renji Hospital; TNBC, 

triple-negative breast cancer. 

  



 

Figure S3. The associations between Peri_V_DN feature and clinicopathological factors. Related 

to Figure 3. 

(A) Distribution of the grade of fibrosis and necrosis between high and low Peri_V_DN groups. (B) 

Distribution of the amount of stromal tumor infiltrating lymphocytes (TILs) between high and low 

Peri_V_DN groups. (C) Distribution of the immunohistochemistry (IHC) CD8 staining between high 

and low Peri_V_DN groups. (D) Distribution of the tumor mutation burden between high and low 

Peri_V_DN groups. (E) Distribution of the homologous recombination deficiency (HRD) score 

between high and low Peri_V_DN groups. ns p > 0.05. 

Abbreviations: HRD, homologous recombination deficiency; IHC, immunohistochemistry; TIL, tumor 

infiltrating lymphocytes. 

  



 

Figure S4. Differentially expressed genes and differentially abundant metabolites between high 

and low Peri_V_DN groups. Related to Figure 4, Table S5 and S6. 

(A) Differentially expressed genes between high and low Peri_V_DN groups. (B) Differentially 

abundant polar metabolites between high and low Peri_V_DN groups. (C) Differentially abundant 

lipids between high and low Peri_V_DN groups. 

Abbreviations: Peri_V_DN, peritumoral variance in dependence nonuniformity of peritumoral regions. 

  



Table S1. The imaging parameters of different CE-MRI machines. Related to Figure 1 and STAR 

METHODS. 

 

MRI 

machine 

Magnetic 

intensity (T) 

Dosage of Gd-DTPA 

(mmol/kg) 

Number of 

series 

Time of 

repetition (s) 

Time of 

echo (s) 

Aurora 1.5 0.1 6 5.1 1.7 

GE 1.5 0.2 4 5 29 

Siemens 3 0.1 4 6.5 3.5 

Siemens 1.5 0.1 7 4.2 1.53 

GE 3 0.1 6 4 2.1 

Philips 3 0.1 6 4.2 2.1 

Siemens 3 0.1 5 4.4 1.6 

 

MRI machine Magnetic 

intensity (T) 

Field of view 

(mm*mm) 

Slice thickness 

(mm) 

Gap 

(mm) 

Flip angle 

Aurora 1.5 260*260 3 0 15° 

GE 1.5 360*360 1.1 0 15° 

Siemens 3 300*300 3 0 10° 

Siemens 1.5 360*360 1.5 0 15° 

GE 3 320*320 2.4 0 10° 

Philips 3 358*280 2 0 12° 

Siemens 3 320*320 1.5 0 10° 

 

MRI machine Magnetic intensity (T) Cohort 

Aurora 1.5 FUSCC breast cancer radiomic cohort and 

TNBC radiogenomic cohort 

GE 1.5 FUSCC breast cancer radiomic cohort and 

TNBC radiogenomic cohort 

Siemens 3 FUSCC breast cancer radiomic cohort 

Siemens 1.5 IPMCH cohort 

GE 3 RENJI cohort 

Philips 3 RENJI cohort 

Siemens 3 RENJI cohort 

Abbreviations: CE-MRI, contrast-enhanced magnetic resonance imaging; FUSCC, Fudan University 

Shanghai Cancer Center; IPMCH, Shanghai International Peace Maternal and Children Hospital; 

RENJI, Shanghai Jiaotong University Renji Hospital. 

  



Table S2. Retained radiomic features for identification of TNBC. Related to Figure 1. 

 

Subtype Selected feature ROI 

TNBC mean of Zone Entropy tumor 

mean of HHL Mean peritumor 

mean of HHL Skewness peritumor 

variance of LHL Mean peritumor 

variance of HHL Mean peritumor 

variance of HHH Contrast peritumor 

skewness of Small Area High Gray Level 

Emphasis 

intratumor 

mean of Mean intratumor 

mean of Minimum intratumor 

variance of Large Dependence Low Gray Level 

Emphasis 

tumor-peritumor 

variance of Contrast tumor-peritumor 

Abbreviations: TNBC, triple-negative breast cancer. 

  



Table S3. Demographic characteristics of TNBC radiogenomic cohort. Related to Figure 1 and 

Table 1. 

 

TNBC radiogenomic cohort 

   Training cohort (n = 101) Validation cohort (n = 101)   

Characteristics No. % No. % P value 

Age (years) 0.69 
 

Median 53   55     

IQR 47-61   47-60     

≤50 38 37.60% 41 40.60%   

>50 63 62.40% 60 59.40%   

T 0.54 
 

1 48 47.50% 43 42.60%   

2 48 47.50% 55 54.50%   

3 5 5.00% 3 3.00%   

N 0.33 
 

0 60 59.40% 62 62.60%   

1 30 29.70% 21 21.20%   

2 8 7.90% 8 8.10%   

3 3 3.00% 6 6.10%   

Unknown 0 0% 2 2.00%   

Subtype <0.001 
 

BLIS 35 34.70% 25 24.80%   

IM 26 25.70% 17 16.80%   

MES 16 15.80% 9 8.90%   

LAR 20 19.80% 19 18.80%   

Unknown 4 4.00% 31 30.70%   

Ki-67 (%) 0.52 

 ≤20 12 11.90% 16 15.80%   

>20 89 88.10% 84 83.20%   

Unknown 0 0% 1 1.00%   

Abbreviations: BLIS, basal-like immune-suppressed; IM, immunomodulatory; IQR, interquartile 

range; MES, mesenchymal-like; LAR, luminal androgen receptor; TNBC, triple-negative breast cancer. 

  



Table S4. Retained radiomic features for distinguishing TNBC molecular subtypes. Related to 

Figure 2. 

 

Subtype Selected feature ROI 

BLIS enh41 MaximumProbability tumor 

enh41 RunLengthNonUniformityNormalized tumor 

enh43 ClusterShade peritumor 

enh41_Autocorrelation peritumor 

IM enh43 SmallAreaEmphasis tumor-peritumor 

enh43 LargeDependenceEmphasis tumor-peritumor 

enh43 Busyness tumor-peritumor 

enh43 Strength tumor-peritumor 

enh32 Contrast tumor-peritumor 

enh32 SmallDependenceLowGrayLevelEmphasis tumor-peritumor 

enh32 LowGrayLevelEmphasis tumor-peritumor 

enh32 LowGrayLevelRunEmphasis tumor-peritumor 

e1 MaximumProbability tumor-peritumor 

e3 Minimum tumor-peritumor 

kurtosis of Correlation tumor-peritumor 

MES Elongation tumor 

enh32 Coarseness peritumor 

LAR kurtosis of Skewness tumor 

variance of MaximumProbability tumor 

enhancement of ClusterShade tumor 

enh32 Idmn tumor 

kurtosis of Kurtosis peritumor 

enh21 90Percentile peritumor 

enh32 Idmn peritumor 

Abbreviations: BLIS, basal-like immune-suppressed; IM, immunomodulatory; MES, mesenchymal-

like; LAR, luminal androgen receptor; ROI, region of interest. 

  



Custom codes 

 

################################################################ 

########## Figure 3A-C Feature Selection and Prognosis ######### 

 

radiomic_data <- read.csv("Data Matrix.csv",header = T,sep = ",",stringsAsFactors = F,row.names = 1) 

 

clinical_data <- read.csv("FUSCCTNBC_ClinicalData.csv",header = T,sep = ",",stringsAsFactors = 

F,row.names = 1) 

 

sample_names <- intersect(rownames(radiomic_data),rownames(clinical_data)) 

 

radiomic_data <- radiomic_data[rownames(radiomic_data)%in%sample_names,] 

clinical_data <- clinical_data[match(rownames(radiomic_data),rownames(clinical_data)),] 

 

radiomic_data <- as.data.frame(scale(radiomic_data)) 

 

feature <- colnames(radiomic_data) 

 

id_list <- read.csv("group.csv",header = T,sep = ",",stringsAsFactors = F) 

 

rownames(id_list) <- id_list[,1] 

 

train_id <- rownames(id_list)[id_list$Cohort=="Training"] 

val_id <- rownames(id_list)[id_list$Cohort=="Validation"] 

 

radiomic_data_train <- radiomic_data[train_id,] 

radiomic_data_val <- radiomic_data[val_id,] 

 

clinical_data_train <- clinical_data[train_id,] 

clinical_data_val <- clinical_data[val_id,] 

 

RFS_HR_matrix <- as.data.frame(rfs_cox_results[,c(1,4)]) 

RFS_HR_matrix$HR <- log2(RFS_HR_matrix$HR) 

colnames(RFS_HR_matrix)[1] <- "log2HR" 

 

RFS_HR_cutoff <- 1.8 

 

RFS_HR_matrix$change <- factor(ifelse(abs(RFS_HR_matrix$log2HR)>RFS_HR_cutoff, 

                               ifelse(RFS_HR_matrix$log2HR>RFS_HR_cutoff,'Incresing 

risk','Decreasing risk'),'NOT'), 

                               levels = c('Decreasing risk','NOT','Incresing risk')) 

 

table(RFS_HR_matrix$change)    



 

rownames(RFS_HR_matrix)[RFS_HR_matrix$change == "Incresing risk"] 

rownames(RFS_HR_matrix)[RFS_HR_matrix$change == "Decreasing risk"] 

 

RFS_HR_matrix$label <- ifelse(RFS_HR_matrix$change == 'Decreasing risk' | 

RFS_HR_matrix$change == 'Incresing risk', 

                              rownames(RFS_HR_matrix),"") 

 

OS_HR_matrix <- as.data.frame(os_cox_results[,c(1,4)]) 

OS_HR_matrix$HR <- log2(OS_HR_matrix$HR) 

colnames(OS_HR_matrix)[1] <- "log2HR" 

 

OS_HR_cutoff <- 10 

 

OS_HR_matrix$change <- factor(ifelse(abs(OS_HR_matrix$log2HR)>OS_HR_cutoff, 

                              ifelse(OS_HR_matrix$log2HR>OS_HR_cutoff,'Incresing 

risk','Decreasing risk'),'NOT'), 

                              levels = c('Decreasing risk','NOT','Incresing risk')) 

 

table(OS_HR_matrix$change)    

 

rownames(OS_HR_matrix)[OS_HR_matrix$change == "Incresing risk"] 

rownames(OS_HR_matrix)[OS_HR_matrix$change == "Decreasing risk"] 

 

OS_HR_matrix$label <- ifelse(OS_HR_matrix$change == 'Decreasing risk' | OS_HR_matrix$change 

== 'Incresing risk', 

                             rownames(OS_HR_matrix),"") 

 

intersect(rownames(RFS_HR_matrix)[RFS_HR_matrix$change!="NOT"], 

          rownames(OS_HR_matrix)[OS_HR_matrix$change!="NOT"]) 

 

 

 

HR_matrix <- as.data.frame(cbind(RFS_HR_matrix$log2HR,OS_HR_matrix$log2HR)) 

 

colnames(HR_matrix) <- c("RFS_HR","OS_HR") 

rownames(HR_matrix) <- rownames(RFS_HR_matrix) 

HR_matrix$Status <- 

factor(ifelse(abs(HR_matrix$RFS_HR)<=RFS_HR_cutoff|abs(HR_matrix$OS_HR)<=OS_HR_cutoff,

"Insignificant", 

                           

ifelse(HR_matrix$RFS_HR>RFS_HR_cutoff&HR_matrix$OS_HR>OS_HR_cutoff,"Increasing 

Risk","Decreasing Risk")), 

                           levels = c("Increasing Risk","Insignificant","Decreasing Risk")) 



 

ggplot(data=HR_matrix,aes(x=RFS_HR, y=OS_HR,color=Status))+    

  geom_point(size=8)+geom_jitter()+ 

  scale_color_manual(name="",values = c("#BC3C29FF","#767676FF","#0072B5FF"))+ 

  geom_hline(yintercept = OS_HR_cutoff,lty=4,lwd=0.6)+ 

  geom_hline(yintercept = -OS_HR_cutoff,lty=4,lwd=0.6)+ 

  geom_vline(xintercept = RFS_HR_cutoff,lty=4,lwd=0.6)+ 

  geom_vline(xintercept = -RFS_HR_cutoff,lty=4,lwd=0.6)+ 

  scale_x_continuous(limits = c(-3,3),breaks = seq(-3,3,1.5))+ 

  scale_y_continuous(limits = c(-30,30),breaks = seq(-30,30,15))+ 

  labs(x="RFS Hazard Ratio",y="OS Hazrad Ratio")+ 

  theme_classic()+ 

  theme(axis.title = element_text(size = 16),axis.text=element_text(size = 16), 

        legend.title = element_text(size = 16),legend.text = element_text(size = 16)) 

 

 

var(radiomic_data_train[,"p_va42"])     

var(radiomic_data_train[,"t_ske79"])    

var(radiomic_data_train[,"t_enh7"])     

 

prognostic_feature <- c("p_va42","t_ske79","t_enh7")   

 

filtered_radiomic_train <- radiomic_data_train[,prognostic_feature] 

filtered_radiomic_val <- radiomic_data_val[,prognostic_feature] 

 

 

km_result_val <- as.data.frame(matrix(nrow = length(prognostic_feature),ncol = 1)) 

rownames(km_result_val) <- prognostic_feature 

colnames(km_result_val) <- "p.value" 

 

for(i in rownames(km_result_val)){ 

  group <- 

factor(ifelse(filtered_radiomic_val[,i]>=median(filtered_radiomic_train[,i]),"High","Low"),levels = 

c("Low","High")) 

  surv_data <- data.frame(group=group,RFS_time=clinical_data_val$RFS_time_Days, 

                          RFS_status=clinical_data_val$RFS_Status) 

  m <- survdiff(Surv(RFS_time,RFS_status==1)~group,rho = 0,data = surv_data) 

  p <- 1-pchisq(m$chisq,length(m$n)-1) 

  km_result_val[i,1] <- p 

} 

 

km_result_val 

 

 



 

surv_color <- pal_lancet()(2) 

 

group1 <- 

factor(ifelse(filtered_radiomic_train$p_va42>=median(filtered_radiomic_train$p_va42),"High","Low"

), 

                 levels = c("Low","High")) 

 

group2 <- 

factor(ifelse(filtered_radiomic_val$p_va42>=median(filtered_radiomic_train$p_va42),"High","Low"), 

                 levels = c("Low","High")) 

 

surv_data2 <- data.frame(group=group2, 

                         RFS_time=clinical_data_val$RFS_time_Months/30, 

                         RFS_status=clinical_data_val$RFS_Status, 

                         OS_time=clinical_data_val$OS_time_Months/30, 

                         OS_status=clinical_data_val$OS) 

 

survfit2_RFS <- survfit(Surv(RFS_time,RFS_status==1)~group,data = surv_data2) 

survfit2_OS <- survfit(Surv(OS_time,OS_status==1)~group,data = surv_data2) 

 

survdiff(Surv(RFS_time,RFS_status==1)~group,data = surv_data2,rho = 0)   

survdiff(Surv(OS_time,OS_status==1)~group,data = surv_data2,rho = 0)     

 

plot(survfit2_RFS,lwd=4,col = c(surv_color[1],surv_color[2]), 

     mark.time = T,xlab = "Time",ylab = "Survival Probability")  

legend("bottomleft", c("p-va42 low", "p-va42 high"), 

       lwd = 4,col = c(surv_color[1],surv_color[2]))  

text(3,0.4,"p = 0.01",cex = 1.5) 

 

plot(survfit2_OS,lwd=4,col = c(surv_color[1],surv_color[2]), 

     mark.time = T,xlab = "Time",ylab = "Survival Probability")  

legend("bottomleft", c("p-va42 low", "p-va42 high"), 

       lwd = 4,col = c(surv_color[1],surv_color[2]))  

text(3,0.4,"p = 0.004",cex = 1.5) 

 

 

#--- MultiCox 

 

 

filtered_radiomic <- as.data.frame(cbind(clinical_data$RFS_time_Days,clinical_data$RFS_Status, 

                                         clinical_data$OS_time_Days,clinical_data$OS, 

                                         clinical_data$Size_cm,clinical_data$LN_positive, 

                                         radiomic_data$p_va42)) 



colnames(filtered_radiomic)[1:7] <- 

c("RFS_time","RFS_status","OS_time","OS_status","Tumor_size","Lymph_nodes","p_va42") 

 

filtered_radiomic$p_va42_group <- 

factor(ifelse(filtered_radiomic$p_va42>=median(filtered_radiomic$p_va42),"High","Low"), 

                                         levels = c("High","Low")) 

 

filtered_radiomic$Tumor_size_group <- 

ifelse(filtered_radiomic$Tumor_size<=2,"T1",ifelse(filtered_radiomic$Tumor_size>5,"T3 

above","T2")) 

 

filtered_radiomic$Lymph_nodes_group <- 

ifelse(filtered_radiomic$Lymph_nodes==0,"N0",ifelse(filtered_radiomic$Lymph_nodes<4,"N1",ifelse(

filtered_radiomic$Lymph_nodes>=10,"N3","N2"))) 

 

filtered_radiomic$subtype <- clinical_data$mRNA_Subtype 

 

rfs_cox_model <- 

coxph(Surv(RFS_time,RFS_status==1)~p_va42_group+Tumor_size_group+Lymph_nodes_group+sub

type,data = filtered_radiomic) 

rfs_cox_model 

summary(rfs_cox_model) 

 

os_cox_model <- 

coxph(Surv(OS_time,OS_status==1)~p_va42_group+Tumor_size_group+Lymph_nodes_group+subty

pe,data = filtered_radiomic) 

os_cox_model 

summary(os_cox_model) 

 

rfs_cox_model_summary <- do.call("rbind",regressionTable(rfs_cox_model))[,4:7] 

os_cox_model_summary  <- do.call("rbind",regressionTable(os_cox_model))[,4:7] 

 

 

 

 

 

 

 

 

 

 

 

 

 



############################################################################## 

############# Figure 3D-E Clinicopathological Index Comparison ############### 

 

clinical_data <- read.csv("FUSCCTNBC_ClinicalData.csv",header = T,sep = ",",row.names = 1) 

list <- read.csv("High_Low_peritumorITH.csv",header = T,sep = ",") 

 

rownames(list) <- list$Hospital_ID 

 

clinical_data <- clinical_data[match(list$Hospital_ID,rownames(clinical_data)),] 

 

data_total <- mutate(clinical_data, Cohort = list$Cohort, Group = list$Group) 

 

 

 

ggplot(data = data_total,aes(x=Group,y=LN_positive,fill=Group))+ 

  geom_violin()+geom_boxplot(width=0.03)+ 

  theme_classic()+scale_fill_d3()+ 

  scale_y_continuous(name = "Positive lymph nodes",limits = c(0,10),breaks = c(0,5,10))+ 

  theme(axis.title = element_text(size = 14),axis.text=element_text(size = 14), 

        legend.title = element_text(size = 14),legend.text = element_text(size = 14)) 

 

wilcox.test(LN_positive~Group,data = data_total)  

 

 

 

 

mrna_color <- c("#EE4923","#7CC243","#9180BA","#3EAADF") 

 

data_total1 <- filter(data_total,mRNA_Subtype!="Unknown")%>% 

  group_by(Group,mRNA_Subtype)%>% 

  summarise(n=n())%>% 

  mutate(prop=n/sum(n)) 

 

ggplot(data = data_total1,aes(x=Group,y=prop,fill=mRNA_Subtype))+ 

  geom_bar(stat = "identity",position = "stack")+ 

  theme_classic()+coord_flip()+ 

  scale_fill_manual(name = "FUSCC TNBC Subtype",values = mrna_color,labels = 

c("BLIS","IM","LAR","MES"))+ 

  theme(axis.title = element_text(size = 14),axis.text=element_text(size = 14), 

        legend.title = element_text(size = 14),legend.text = element_text(size = 14)) 

 

chisq.test(matrix(c(data_total1$n),ncol = 2))   

 

 



############################################################### 

############## Figure 4 Biological Characters ################# 

 

FUSCCTNBC_RNAseqShi.Tumor_log2 <- read.csv("RNAseq.csv",header = T,sep = ",",row.names = 

1) 

 

radiomic_data <- read.csv("TNBC 多组学队列影像组学数据.csv",header = T,sep = 

",",stringsAsFactors = F,row.names = 1) 

 

id_list <- read.csv("影像组学 ITH 高低分组.csv",header = T,sep = ",",stringsAsFactors = F) 

 

clinical_data <- read.csv("FUSCCTNBC_ClinicalData.csv",header = T,sep = ",",stringsAsFactors = F) 

clinical_data <- clinical_data[match(rownames(radiomic_data),clinical_data$Hospital_ID),] 

 

rownames(clinical_data) <- clinical_data$Project_ID 

rownames(radiomic_data) <- rownames(clinical_data) 

 

 

sample_names <- rownames(radiomic_data) 

train_id <- id_list$Project_ID[id_list$Cohort=="training"] 

val_id <- id_list$Project_ID[id_list$Cohort=="validation"] 

 

radiomic_data_train <- radiomic_data[train_id,] 

radiomic_data_val <- radiomic_data[val_id,] 

 

clinical_data_train <- clinical_data[train_id,] 

clinical_data_val <- clinical_data[val_id,] 

 

cutoff <- median(radiomic_data_train$p_va42) 

 

 

need_p <- intersect(rownames(radiomic_data),colnames(FUSCCTNBC_RNAseqShi.Tumor_log2)) 

 

radiomic_data <- radiomic_data[need_p,] 

clinical_data <- clinical_data[need_p,] 

 

 

grouplist <- factor(ifelse(radiomic_data$p_va42>=cutoff,"High","Low"), 

                    levels = c("Low","High")) 

 

names(grouplist) <- rownames(radiomic_data) 

 

genes <- rownames(FUSCCTNBC_RNAseqShi.Tumor_log2) 

 



exprset <- 2^FUSCCTNBC_RNAseqShi.Tumor_log2-1 

 

tmp <- apply(exprset,1,function(x){ 

  sum(x==0) < 10 

})                                          

 

exprset <- exprset[tmp,] 

 

exprset <- exprset[,need_p] 

 

 

if(T){ 

  library(edgeR) 

   

  d <- DGEList(counts=exprset,group=factor(grouplist)) 

   

  keep <- rowSums(cpm(d)>1) >= 2      

  table(keep) 

  d <- d[keep, , keep.lib.sizes=FALSE] 

   

  d$samples$lib.size<-colSums(d$counts) 

   

  d <- calcNormFactors(d)          

  d$samples 

   

  plotMDS(d)                          

   

  design <- model.matrix(~0+factor(grouplist)) 

   

  rownames(design)<-colnames(d) 

  colnames(design)<-levels(factor(grouplist)) 

 

  deg <- d 

  deg <- estimateGLMCommonDisp(deg,design) 

  deg <- estimateGLMTrendedDisp(deg, design) 

  deg <- estimateGLMTagwiseDisp(deg, design) 

   

  fit <- glmFit(deg,design) 

   

  lrt <- glmLRT(fit,contrast=c(-1,1))  

   

  edge_DEG <- topTags(lrt, n=nrow(deg)) 

  edge_DEG 

   



  summary(de<-decideTestsDGE(lrt))    

   

  detags<-rownames(d)[as.logical(de)]; 

  plotSmear(lrt,de.tags=detags); 

  abline(h=c(-1,1),col="blue") 

   

  edge_DEG <- as.data.frame(edge_DEG) 

   

  nrDEG_edge <- edge_DEG[,c(1,5)] 

  colnames(nrDEG_edge) <- c('log2FoldChange','FDR')  

   

} 

 

colnames(edge_DEG)[1] <- 'logFC' 

colnames(edge_DEG)[4] <- 'P.Value' 

colnames(edge_DEG)[5] <- 'FDR' 

nrDEG <- edge_DEG             

 

nrDEG$SYMBOL <- rownames(nrDEG) 

 

df <- bitr(rownames(nrDEG),fromType = "SYMBOL",toType = "ENTREZID",OrgDb = org.Hs.eg.db )     

 

nrDEG <- merge(nrDEG,df,by='SYMBOL')     

head(nrDEG) 

 

geneList <- nrDEG$logFC 

names(geneList) <- nrDEG$ENTREZID 

geneList <- sort(geneList,decreasing = T) 

 

KEGG_gseresult <- gseKEGG(geneList,nPerm = 1000,minGSSize = 10,maxGSSize = 

1000,pvalueCutoff = 0.2) 

KEGG_gseresult 

 

KEGG_gseresult_1 <- arrange(KEGG_gseresult,desc(abs(NES)))%>% 

  group_by(sign(NES))%>% 

  as.data.frame() 

 

KEGG_gseresult_1$NES <- as.numeric(KEGG_gseresult_1$NES) 

KEGG_gseresult_1$Group <- factor(KEGG_gseresult_1$`sign(NES)`,levels = c(1,-1)) 

 

KEGG_gseresult_2 <- KEGG_gseresult_1[KEGG_gseresult_1$Description%in%c("Oxidative 

phosphorylation", 

                                                                       "Biosynthesis 

of unsaturated fatty acids","Glycolysis / Gluconeogenesis", 



                                                                       "Fatty acid 

elongation","Biosynthesis of amino acids","Arginine biosynthesis", 

                                                                       "Cysteine and 

methionine metabolism","Alanine, aspartate and glutamate metabolism", 

                                                                       "Carbon 

metabolism","Nitrogen metabolism", 

                                                                       "Th17 cell 

differentiation","Th1 and Th2 cell differentiation","Primary immunodeficiency", 

                                                                       "Antigen 

processing and presentation","Natural killer cell mediated cytotoxicity", 

                                                                       "T cell 

receptor signaling pathway","B cell receptor signaling pathway"),] 

 

KEGG_gseresult_2 <- KEGG_gseresult_2[order(KEGG_gseresult_2$NES,decreasing = F),] 

 

ggplot(KEGG_gseresult_2,aes(x=reorder(Description,order(NES,decreasing=F)),y=NES,fill=Group)) 

+  

  geom_bar(stat = "identity") +  

  scale_fill_npg() +  

  scale_x_discrete(name = "Pathway names") + 

  scale_y_continuous(name = "NES") + 

  coord_flip() + theme_classic()  + 

  theme(axis.title = element_text(size = 14),axis.text=element_text(size = 14), 

        legend.title = element_text(size = 14),legend.text = element_text(size = 14)) 

 

 

ReactomePA_result <- gsePathway(geneList,nPerm = 1000,minGSSize = 10,maxGSSize = 

1000,pvalueCutoff = 0.2) 

ReactomePA_result 

 

reactome_1 <- arrange(ReactomePA_result,desc(abs(NES)))%>% 

  group_by(sign(NES))%>% 

  as.data.frame() 

 

reactome_1$NES <- as.numeric(reactome_1$NES) 

reactome_1$Group <- factor(reactome_1$`sign(NES)`,levels = c(1,-1)) 

 

reactome_2 <- reactome_1[reactome_1$Description%in%c("Cholesterol 

biosynthesis","Gluconeogenesis","Glycolysis", 

                         "Metabolism of polyamines","Glucose metabolism","Nucleobase 

biosynthesis", 

                         "Fatty acyl-CoA biosynthesis","The citric acid (TCA) cycle and 

respiratory electron transport", 

                         "Metabolism of amino acids and derivatives", 



                         "Interferon alpha/beta signaling","PD-1 signaling","Interferon gamma 

signaling", 

                         "Adaptive Immune System","Costimulation by the CD28 family", 

                         "TCR signaling","Innate Immune System"),] 

 

reactome_2 <- reactome_2[order(reactome_2$NES,decreasing = F),] 

 

ggplot(reactome_2,aes(x=reorder(Description,order(NES,decreasing=F)),y=NES,fill=Group)) +  

  geom_bar(stat = "identity") +  

  scale_fill_npg() +  

  scale_x_discrete(name = "Pathway names") + 

  scale_y_continuous(name = "NES") + 

  coord_flip() + theme_classic()  + 

  theme(axis.title = element_text(size = 14),axis.text=element_text(size = 14), 

        legend.title = element_text(size = 14),legend.text = element_text(size = 14)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



################################################################################### 

############## Figure 5 Immune Cells and Immune-Related Molecules ################# 

 

exprset <- as.matrix(FUSCCTNBC_RNAseqShi.Tumor_log2) 

 

signature_file <- read.csv("Cibersort+MCPCounter_signature.csv",header = T,sep = 

",",stringsAsFactors = F) 

 

signature_file <- signature_file[order(signature_file$CellClass),] 

signature <- split(as.matrix(signature_file)[,1], signature_file[,3]) 

 

list <- read.csv("group.csv",header = T,sep = ",",stringsAsFactors = F,row.names = 1) 

 

list <- list[order(list$Cohort,list$Group),] 

 

need_p <- intersect(list$Project_ID,colnames(exprset)) 

 

exprset <- exprset[,need_p] 

list <- list[list$Project_ID%in%need_p,] 

 

list_train <- list[list$Cohort=="training",] 

list_val <- list[list$Cohort=="validation",] 

 

exprset_train <- exprset[,list_train$Project_ID] 

dim(exprset_train) 

exprset_val <- exprset[,list_val$Project_ID] 

dim(exprset_val) 

 

 

 

a <- gsva(exprset,signature,method='ssgsea',kcdf='Gaussian',abs.ranking=T)          

 

cellorder <- unique(signature_file$CellType) 

 

a1 <- t(scale(t(a))) 

a1 <- a1[cellorder,] 

 

whole_df <- as.data.frame(cbind(list$Group,t(a1))) 

colnames(whole_df)[1] <- "Group" 

 

for (i in 2:ncol(whole_df)) { 

  whole_df[,i] <- as.numeric(as.character(whole_df[,i])) 

} 

 



compare <- as.data.frame(matrix(nrow = ncol(whole_df)-1,ncol = 5)) 

colnames(compare) <- c("Cell Type","High ITH","Low ITH","pvalue","Status") 

rownames(compare) <- colnames(whole_df)[2:ncol(whole_df)] 

 

compare[,1] <- cellorder 

 

whole_compare <- compare 

 

for (i in rownames(whole_compare)) { 

  whole_compare[i,2] <- mean(whole_df[whole_df$Group=="High",i]) 

  whole_compare[i,3] <- mean(whole_df[whole_df$Group=="Low",i]) 

  t <- wilcox.test(whole_df[whole_df$Group=="High",i],whole_df[whole_df$Group=="Low",i]) 

  whole_compare[i,4] <- t$p.value 

} 

 

whole_compare$FDR <- p.adjust(whole_compare$pvalue,method = "fdr") 

 

whole_compare$Status <- ifelse(whole_compare$FDR>=0.1,"NOT", 

                               ifelse(whole_compare$`High ITH`>whole_compare$`Low 

ITH`,"UP","DOWN")) 

 

whole_df_long <- gather(whole_df,key = CellType,value = Score,"B.cells.naive":"Fibroblasts") 

whole_df_long$Score <- as.numeric(whole_df_long$Score) 

whole_df_long$CellType <- factor(whole_df_long$CellType,levels = cellorder) 

 

ggplot(whole_df_long,aes(x=CellType,y=Score,fill=Group))+ 

  geom_boxplot()+scale_fill_nejm()+coord_flip()+ 

  scale_y_continuous(limits = c(-5,5),breaks = seq(-5,5,2.5))+ 

  theme_classic()+labs(x="Cell Type",y="ssGSEA Score")+ 

  theme(axis.title = element_text(size = 14),axis.text=element_text(size = 14), 

        legend.title = element_text(size = 14),legend.text = element_text(size = 14), 

        axis.text.x = element_text(angle = 90, hjust = 1)) 

 

 

co_mol <- 

as.data.frame(t(exprset[c("CTLA4","TIGIT","BTLA","CD48","PDCD1","LAG3","CD274","HAVCR2

", 

                                    

"BTN2A2","LAIR1","BTN3A1","PDCD1LG2","BTN1A1","VTCN1","BTNL2", 

                                    

"ICOS","TNFRSF9","CD70","CD80","TNFRSF13C","TMIGD2","TNFRSF13B", 

                                    

"CD27","SLAMF1","TNFSF13B","CD86","TNFSF4","TNFRSF18","CD28","CD226", 

                                    



"TNFSF9","TNFSF8","TNFSF18","HAVCR1","TNFRSF4","TNFSF15","TNFSF13", 

                                    

"CD58","ICOSLG","TNFRSF8","TNFRSF14","BTNL8"),])) 

 

co_mol_scale <- as.data.frame(scale(co_mol)) 

 

co_mol_scale$Group <- list$Group 

 

 

 

compare2 <- as.data.frame(matrix(nrow = ncol(co_mol_scale)-1,ncol = 4)) 

colnames(compare2) <- c("Co-molecules","High ITH","Low ITH","pvalue") 

rownames(compare2) <- colnames(co_mol_scale)[1:42] 

 

compare2[,1] <- rownames(compare2) 

 

 

for (i in rownames(compare2)) { 

  compare2[i,2] <- mean(co_mol_scale[co_mol_scale$Group=="High",i]) 

  compare2[i,3] <- mean(co_mol_scale[co_mol_scale$Group=="Low",i]) 

  t <- 

wilcox.test(co_mol_scale[co_mol_scale$Group=="High",i],co_mol_scale[co_mol_scale$Group=="Lo

w",i]) 

  compare2[i,4] <- t$p.value 

} 

 

compare2$FDR <- p.adjust(compare2$pvalue,method = "fdr") 

 

order2 <- unique(compare2$`Co-molecules`) 

 

colorcount <- 10 

getpalette <- colorRampPalette(c("blue","white","red")) 

 

pheatmap(compare2[,c("High ITH","Low ITH")],cluster_cols = F,cluster_rows = F, 

         border_color = "grey",gaps_row = c(15), 

         cellwidth = 10,cellheight = 10,fontsize = 10, 

         color = getpalette(colorcount),breaks = seq(-0.5,0.5,by=0.1)) 
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