
TF NES # targets # motifs
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NFIC 4.837 34 2
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Factorbook-NFKB1
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AUC: 0.112

Targets: 32
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TF name Max. FDR
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IKZF1 1.767*10-5
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Nodes: 98

Edges: 154

Clust. coefficient: 0

Network density: 0.032

PPI enrichment: ˂0.0001

Supplementary Figure 1. iRegulon (Janky et al. 2014) predicts the key regulons for the SASP cells. (a) The motif with the highest

enrichment for the SASP genes, according to iRegulon, was Factorbook-NFKB1. (b) The most important transcription factors with 92,

28 and 34 targets within SenMayo were BCL3, RXRA and NFIC, respectively. The first transcription factor controlled (c) BCL3, NFKB1

and -2, RELA and IKZF1, thus confirming the RNA-Seq predictions in the young and old dataset (Fig. 1B). (d) The three transcription

factors control a majority (95/125) of SenMayo genes. Source data are provided as a Source Data file.



a b

YOE OCY

young...
2

young...
3

young...
4

young...
5

young...
6

young...
7

young...
8

young...
9

young...
10

young...
11

young...
12

young...
13

young...
14

young...
15

young...
16

young...
17

young...
18

young...
19

young...
20

old
...

21

old
...

22

old
...

23

old
...

24

old
...

25

old
...

26

old
...

27

old
...

28

old
...

29

old
...

30

old
...

31

old
...

32

old
...

33

old
...

34

old
...

35

old
...

36

old
...

37

old
...

38

old
...

39

CDKN1A

JUN

FOS

CDKN2A

IGFBP7

CDKN2B

ANAPC2

MAPK3

ANAPC10

UBB

FZR1

IL6

IL1A

CDK4

UBE2S

MAPK7

RELA

RPS27A

CDC27

EHMT2

EHMT1

UBE2E1

UBC

ANAPC11

-1.0

-0.5

0

0.5

1.0

1

-1

e

13 14 15

9.0

9.5

10.0

10.5

11.0

11.5

Normalized counts (CDKN1A)

N
o
rm

a
liz

e
d
 c

o
u
n
ts

 (
S

E
M

A
3
F

)

R²=0.8198
p<0.0001

old

young

8.5 9.0 9.5 10.0 10.5

8.5

9.0

9.5

10.0

N
o
rm

a
liz

e
d
 c

o
u
n
ts

 (
S

E
M

A
3
F

)

R²=0.1540
p=0.0148

old

young

f

R²=0.8198

p-val<0.0001

R²=0.1540

p-val=0.0148

CDKN1A
JUN
FOS

CDKN2A
IGFBP7

CDKN2B
ANAPC2

MAPK3
ANAPC10

UBB
FZR1

IL6
IL1A

CDK4
UBE2S
MAPK7

RELA
RPS27A

CDC27
EHMT2
EHMT1

UBE2E1
UBC

ANAPC11
CDC16

ANAPC5
ANAPC7

ANAPC16
UBA52
UBE2C

RPS6KA2
CDC26

CDKN2C
RPS6KA1

CDC23
CDKN2D

VENTX
CDKN1B

CCNA2
ANAPC1

CDK2
CEBPB

ANAPC4
STAT3
MAPK1

RPS6KA3
NFKB1

UBE2D1
CDK6

CCNA1

R-HSA-2559582

Young Old
CTSB

HGF
MMP1

MMP10
MMP12
MMP13
MMP14

MMP2
MMP3
MMP9

PAPPA
PLAT
PLAU
CCL1

CCL13
CCL16

CCL2
CCL20
CCL24
CCL26

CCL3
CCL3L1

CCL4
CCL5
CCL7
CCL8
CSF1
CSF2

CXCL1
CXCL10
CXCL12
CXCL16

CXCL2
CXCL3
CXCR2

IL10
IL13
IL15
IL18
IL1A
IL1B

IL2
IL32

IL6
IL7

SPP1
TNF

AREG
BMP2
BMP6
EREG
FGF1
FGF2
FGF7

GDF15
IGF1
INHA

KITLG
NRG1

PGF
VEGFA
VEGFC

ANGPT1
ANGPTL4

DKK1
EDN1
ESM1
GMFG

SEMA3F
VGF

WNT16
WNT2

ANG
CD55
GEM

ICAM1
ICAM3

IGFBP7
IQGAP2

LCP1
NAP1L4

PECAM1
PTBP1

SCAMP4
TUBGCP2

C3
CST4

IGFBP1
IGFBP2
IGFBP3
IGFBP4
IGFBP5
IGFBP6

SERPINB4
SERPINE1
SERPINE2

TIMP2
ITPKA

MIF
PIGF

PTGES
RPS6KA5
CTNNB1

ETS2
HMGB1

JUN
ACVR1B

AXL
CD9

CSF2RB
EGF

EGFR
FAS

IL6ST
ITGA2

PLAUR
PTGER2
SELPLG

TNFRSF10C
TNFRSF11B

TNFRSF1A
TNFRSF1B

SenMayo

Y
ou

ng O
ld

6

7

8

9

N
o

rm
a

li
z
e

d
 c

o
u

n
ts

✱✱

CCL24

Y
ou

ng O
ld

8.5

9.0

9.5

10.0

✱✱

Y
ou

ng O
ld

7.5

8.0

8.5

9.0

✱✱

SEMA3F FGF2

Y
ou

ng O
ld

12.0

12.5

13.0

13.5

14.0

✱

IGFBP7

You
ng O

ld

5.0

5.5

6.0

6.5

7.0

7.5

8.0

N
o

rm
a

li
z
e

d
 c

o
u

n
ts

✱✱

CCL24

You
ng O

ld

9.0

9.5

10.0

10.5

11.0

11.5

✱✱✱✱

SEMA3F

Y
ou

ng O
ld

7.5

8.0

8.5

9.0

9.5

✱✱

FGF2

Y
ou

ng O
ld

12.0

12.5

13.0

13.5

14.0

14.5

✱✱✱

IGFBP7

yo
ung...

2

yo
ung...

3

yo
ung...

4

yo
ung...

5

yo
ung...

6

yo
ung...

7

yo
ung...

8

yo
ung...

9

yo
ung...

10

yo
ung...

11

yo
ung...

12

yo
ung...

13

yo
ung...

14

yo
ung...

15

yo
ung...

16

yo
ung...

17

yo
ung...

18

yo
ung...

19

yo
ung...

20

old
...

21

old
...

22

old
...

23

old
...

24

old
...

25

old
...

26

old
...

27

old
...

28

old
...

29

old
...

30

old
...

31

old
...

32

old
...

33

old
...

34

old
...

35

old
...

36

old
...

37

old
...

38

old
...

39

CDKN1A

JUN

FOS

CDKN2A

IGFBP7

CDKN2B

ANAPC2

MAPK3

ANAPC10

UBB

FZR1

IL6

IL1A

CDK4

UBE2S

MAPK7

RELA

RPS27A

CDC27

EHMT2

EHMT1

UBE2E1

UBC

ANAPC11

-1.0

-0.5

0

0.5

1.0

1

-1

Young Old
*

*

*

*

*
*

*

*

*

*
*
*

*

*

*

*

*

*

c d

Supplementary Figure 2. The SenMayo gene set predicts aging in two mRNA-seq data sets. Out of the 50 available genes in the R-

HSA-2559582 gene set, two were significantly enriched in the aging cohort (a), while 13 out of 125 of the SenMayo genes were

enriched (b). Canonical markers of the SASP such as CCL24, SEMA3F, FGF2, and IGFBP7 were upregulated with aging in the RNA-

seq of human bone/bone marrow samples in (c) cohort A ((CCL24: and IGFBP7 two-sided unpaired t-test, SEMA3F and FGF2:

Kolmogorov-Smirnov test, CCL24: p=0.062, SEMA3F: p=0.001, FGF2: p=0.0034, IGFBP7: p=0.0022), and (d) cohort B (two-sided

unpaired t-test, CCL24: p=0.0060, SEMA3F: p<0.0001, FGF2: p=0.0028, IGFBP7: p=0.0001). Moreover, the senescence markers,

CDKN1A/p21CIP1 and SEMA3F, correlate with each other in cohort A (spearman-correlation, p<0.0001, e) and cohort B (spearman-

correlation, p=0.0148, f), demonstrating a potential circumvention of high interindividual variability by combining more than one gene.

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Cohort A (blue): n=38 (19 young, 19 old, all female), Cohort B (purple): n=30 (15 young,

15 old, all female). Depicted are mean ± SEM. Source data are provided as a Source Data file.
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Supplementary Figure 3. The senescent phenotype of SASP cells in human hematopoietic bone marrow. (a) Dotplot depicting the

canonical marker genes per cluster along with the reference for each marker and cell type. (b) 46% of CD16+ monocytic cells had (high)

SASP expression pattern; (spearman-correlation, p<0.0001, c) Bivariate correlation plots with Spearman correlation for genAge

(R=0.43) and (spearman-correlation, p<0.0001, d) CellAge (R=0.35) show reliable correlations with SenMayo; e) The SASP cell cluster

displayed a shift towards the G1 cell cycle phase, suggesting reduced replicative potential (Chi-square test, p<0.0001), f) The enriched

terms of the SASP cluster, depicted in a Manhattan plot, show the high expression of cell cycle arrest (GO: 0007050), apoptosis (WP:

WP254), and negative proliferation patterns (GO: 0008285) (multiple t-test with Benjamini-Hochberg adjustment); (g) SASP cells

emerged in the final phases of cellular differentiation and increased MIF expression (yellow on the left, late phase) at their late

developmental phase as revealed by pseudotime analysis. ****p<0.0001, n= 22 (10 male, 12 female). Source data are provided as a

Source Data file.
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Supplementary Figure 4. MIF and PECAM pathways in human hematopoietic bone marrow cell types. (a) The MIF pathway and its key

members show a highly heterogeneous expression pattern among all cell clusters. While CD10+ B cells show a high expression of MIF,

CD74 and CXCR4, the expression of CD44 is low. An overall high expression of all MIF members is evident in CD8+ effector T cells and

conventional dendritic cells and SASP cells. (b) The PECAM pathway shows an expression of PECAM1 in CD16+ monocytes, plasma

cells and SASP cells. Source data are provided as a Source Data file.
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Supplementary Figure 5. Communication patterns of the SASP cluster in human hematopoietic bone marrow cells. (a) The SASP

cluster has an overall high outgoing and moderate incoming interaction strength; (b) The SASP cells exerted various signaling functions

(sender, receiver, mediator, and influencer) in the MIF pathway and (c) the PECAM1 pathway, which was used mostly by CD16+

monocytes, plasma cells, and SASP cells (color-code in D); (d) The outgoing signaling pattern revealed the relevance of the MIF

pathway among all other pathways, while the relative incoming signaling pattern was likewise substantial; (e) A direct MIF-driven

interaction (via CD74/CD44 or CD74/CXCR4) from the SASP cells was detected among the majority of other cell types, especially

plasmacytoid dendritic cells and B cells, while the PECAM1 pathway mostly targeted the abovementioned three cell types. p-values

computed from one-sided permutation test, n= 22 (10 male, 12 female). Source data are provided as a Source Data file.
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Supplementary Figure 6. Key marker genes and correlation plots for genAge and CellAge in the murine dataset. (a) A dotplot indicating

cell cluster marker genes along with the references for each cell type. (b) A bivariate correlation plots with Spearman correlation

indicate the reliable correlation of SenMayo with genAge (Spearman-correlation, p<0.0001, R=0.61) and (c) CellAge (Spearman-

correlation, p<0.0001, R=0.67). Source data are provided as a Source Data file.
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Supplementary Figure 7. Murine SASP cells in mesenchymal cells from bone and bone marrow are mainly of osteolineage origin and

communicate via MIF. (a) SASP cells were mostly recruited from osteolineage cells (OLC), and leptin-positive (Lep+) mesenchymal stem cells

(MSCs), while (b) 24% of OLC 1 and 18% of OLC2 cells were SASP cell members; (c) Mesenchymal SASP cells in murine bone and bone

marrow significantly changed their replicative state from G2M to G1, indicating a replicative stop (Chi-square test, p<0.0001); (d) A Manhattan

plot depicts an enrichment of genes associated with cellular senescence (KEGG 04218), negative regulation of proliferation (GO0008285), and

cytokine-receptor interaction (KEGG 04060) within the SASP cluster (multiple t-test with Benjamini-Hochberg adjustment). (e) SASP cells function

as both senders and influencers within the MIF network, and mostly as influencers in the PECAM1 network; (f) The outgoing interaction

strength of the SASP cells was high, while they simultaneously showed a substantial incoming signaling strength; (g) Direct cell-cell

interactions in the MIF pathway from the SASP cells is predominantly directed to hypertrophic chondrocytes, chondrocytic progenitors, and

mineralizing osteocytes, while the Pecam1 pathway is directed to chondrocytes, endothelial cells, mast cells, and the SASP cells themselves.

p-values computed from one-sided permutation test. ****p<0.0001, n= 8 (4 bone, 4 bone marrow, all male). Source data are provided as a Source

Data file.
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Supplementary Figure 8. SCENIC (Aibar et al. 2017) predicts the key regulons for the SASP cells within the human single cell dataset.

(a) A regulon-based tSNE is constructed, where the SASP cells contribute substantially to the upper-middle continent (purple). (b) The

predicted regulons, BCL3 and RXRA, indeed control the SASP cells containing continent. Source data are provided as a Source Data

file.
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Supplementary Figure 9. Trajectory interference using velocity (La Manno et al. 2018). (a) The

overall trajectory interference shows that SASP cells are mostly developing from OLC1, OLC2 and

Lepr+ MSCs. (b) A focus on these four cell types reveals the OLC1 and Lepr+ MSCs as main origin

of the upper-left continent, and the OLC2 and Lepr+ MSCs as the origin of a different SASP cell

population in the bottom-right continent. Source data are provided as a Source Data file.
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Supplementary Figure 10. The murine SASP cluster showed an enrichment of senescent pathways and contained distinct expression

modules. (a) Within the SASP cluster, different expression modules were mathematically predicted. In this module, Pappa and Fgf7 are

present, which can be visualized spatially in (b) tSNE, having a similar kernel-weighed density. Other predicted co-expressional

patterns were demonstrated by the pairs Dkk1-Cdkn2a and Bmp2-Cdkn1a. n= 8 (4 bone, 4 bone marrow, all male). Source data are

provided as a Source Data file.
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