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Supplementary Figure 1. iRegulon (Janky et al. 2014) predicts the key regulons for the SASP cells. (a) The motif with the highest
enrichment for the SASP genes, according to iRegulon, was Factorbook-NFKB1. (b) The most important transcription factors with 92,
28 and 34 targets within SenMayo were BCL3, RXRA and NFIC, respectively. The first transcription factor controlled (c) BCL3, NFKB1
and -2, RELA and IKZF1, thus confirming the RNA-Seq predictions in the young and old dataset (Fig. 1B). (d) The three transcription
factors control a majority (95/125) of SenMayo genes. Source data are provided as a Source Data file.
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Supplementary Figure 2. The SenMayo gene set predicts aging in two mRNA-seq data sets. Out of the 50 available genes in the R-
HSA-2559582 gene set, two were significantly enriched in the aging cohort (a), while 13 out of 125 of the SenMayo genes were
enriched (b). Canonical markers of the SASP such as CCL24, SEMA3F, FGF2, and IGFBP7 were upregulated with aging in the RNA-
seq of human bone/bone marrow samples in (c) cohort A ((CCL24: and IGFBP7 two-sided unpaired t-test, SEMA3F and FGF2:
Kolmogorov-Smirnov test, CCL24: p=0.062, SEMA3F: p=0.001, FGF2: p=0.0034, IGFBP7: p=0.0022), and (d) cohort B (two-sided
unpaired t-test, CCL24: p=0.0060, SEMA3F: p<0.0001, FGF2: p=0.0028, IGFBP7: p=0.0001). Moreover, the senescence markers,
CDKN1A/p21°¢P1 and SEMA3F, correlate with each other in cohort A (spearman-correlation, p<0.0001, e) and cohort B (spearman-
correlation, p=0.0148, f), demonstrating a potential circumvention of high interindividual variability by combining more than one gene.
*p<0.05, *p<0.01, ***p<0.001, ****p<0.0001. Cohort A (blue): n=38 (19 young, 19 old, all female), Cohort B (purple): n=30 (15 young,
15 old, all female). Depicted are mean + SEM. Source data are provided as a Source Data file.
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Supplementary Figure 3. The senescent phenotype of SASP cells in human hematopoietic bone marrow. (a) Dotplot depicting the
canonical marker genes per cluster along with the reference for each marker and cell type. (b) 46% of CD16* monocytic cells had (high)
SASP expression pattern; (spearman-correlation, p<0.0001, c) Bivariate correlation plots with Spearman correlation for genAge
(R=0.43) and (spearman-correlation, p<0.0001, d) CellAge (R=0.35) show reliable correlations with SenMayo; €) The SASP cell cluster
displayed a shift towards the G1 cell cycle phase, suggesting reduced replicative potential (Chi-square test, p<0.0001), f) The enriched
terms of the SASP cluster, depicted in a Manhattan plot, show the high expression of cell cycle arrest (GO: 0007050), apoptosis (WP:
WP254), and negative proliferation patterns (GO: 0008285) (multiple t-test with Benjamini-Hochberg adjustment); (g) SASP cells
emerged in the final phases of cellular differentiation and increased MIF expression (yellow on the left, late phase) at their late
developmental phase as revealed by pseudotime analysis. ****p<0.0001, n= 22 (10 male, 12 female). Source data are provided as a
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Supplementary Figure 4. MIF and PECAM pathways in human hematopoietic bone marrow cell types. (a) The MIF pathway and its key
members show a highly heterogeneous expression pattern among all cell clusters. While CD10* B cells show a high expression of MIF,
CD74 and CXCRA4, the expression of CD44 is low. An overall high expression of all MIF members is evident in CD8* effector T cells and
conventional dendritic cells and SASP cells. (b) The PECAM pathway shows an expression of PECAML1 in CD16* monocytes, plasma
cells and SASP cells. Source data are provided as a Source Data file.
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Supplementary Figure 5. Communication patterns of the SASP cluster in human hematopoietic bone marrow cells. (a) The SASP

cluster has an overall high outgoing and moderate incoming interaction strength; (b) The SASP cells exerted various signaling functions
(sender, receiver, mediator, and influencer) in the MIF pathway and (c) the PECAM1 pathway, which was used mostly by CD16*
monocytes, plasma cells, and SASP cells (color-code in D); (d) The outgoing signaling pattern revealed the relevance of the MIF
pathway among all other pathways, while the relative incoming signaling pattern was likewise substantial; (e) A direct MIF-driven
interaction (via CD74/CD44 or CD74/CXCR4) from the SASP cells was detected among the majority of other cell types, especially
plasmacytoid dendritic cells and B cells, while the PECAM1 pathway mostly targeted the abovementioned three cell types. p-values
computed from one-sided permutation test, n= 22 (10 male, 12 female). Source data are provided as a Source Data file.
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Supplementary Figure 6. Key marker genes and correlation plots for genAge and CellAge in the murine dataset. (a) A dotplot indicating

cell cluster marker genes along with the references for each cell type. (b) A bivariate correlation plots with Spearman correlation
indicate the reliable correlation of SenMayo with genAge (Spearman-correlation, p<0.0001, R=0.61) and (c) CellAge (Spearman-

correlation, p<0.0001, R=0.67). Source data are provided as a Source Data file.
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Supplementary Figure 7. Murine SASP cells in mesenchymal cells from bone and bone marrow are mainly of osteolineage origin and
communicate via MIF. (a) SASP cells were mostly recruited from osteolineage cells (OLC), and leptin-positive (Lep*) mesenchymal stem cells
(MSCs), while (b) 24% of OLC 1 and 18% of OLC2 cells were SASP cell members; (c) Mesenchymal SASP cells in murine bone and bone
marrow significantly changed their replicative state from G2M to G1, indicating a replicative stop (Chi-square test, p<0.0001); (d) A Manhattan
plot depicts an enrichment of genes associated with cellular senescence (KEGG 04218), negative regulation of proliferation (GO0008285), and
cytokine-receptor interaction (KEGG 04060) within the SASP cluster (multiple t-test with Benjamini-Hochberg adjustment). (e) SASP cells function
as both senders and influencers within the MIF network, and mostly as influencers in the PECAM1 network; (f) The outgoing interaction
strength of the SASP cells was high, while they simultaneously showed a substantial incoming signaling strength; (g) Direct cell-cell
interactions in the MIF pathway from the SASP cells is predominantly directed to hypertrophic chondrocytes, chondrocytic progenitors, and
mineralizing osteocytes, while the Pecam1 pathway is directed to chondrocytes, endothelial cells, mast cells, and the SASP cells themselves.
p-values computed from one-sided permutation test. ****p<0.0001, n= 8 (4 bone, 4 bone marrow, all male). Source data are provided as a Source
Data file.
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Supplementary Figure 8. SCENIC (Aibar et al. 2017) predicts the key regulons for the SASP cells within the human single cell dataset.
(a) A regulon-based tSNE is constructed, where the SASP cells contribute substantially to the upper-middle continent (purple). (b) The
predicted regulons, BCL3 and RXRA, indeed control the SASP cells containing continent. Source data are provided as a Source Data

file.
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Supplementary Figure 9. Trajectory interference using velocity (La Manno et al. 2018). (a) The
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Supplementary Figure 10. The murine SASP cluster showed an enrichment of senescent pathways and contained distinct expression
modules. (a) Within the SASP cluster, different expression modules were mathematically predicted. In this module, Pappa and Fgf7 are
present, which can be visualized spatially in (b) tSNE, having a similar kernel-weighed density. Other predicted co-expressional
patterns were demonstrated by the pairs Dkk1-Cdkn2a and Bmp2-Cdknla. n= 8 (4 bone, 4 bone marrow, all male). Source data are
provided as a Source Data file.
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