

Log Lambda

Supplementary Figure 5

Supplementary Figure 6

1 SUPPLEMENTARY FIGURE LEGENDS

2 Supplementary Figure 1. Flow diagram of the broad-panel NGS cohort.

Supplementary Figure 2. Classification of subsolid nodules. (A) and (B) showed pure ground-glass nodules, which consisted of homogeneous opacities in the lung window. No solid component was observed in the mediastinal window. (C) and (D) illustrated heterogeneous ground-glass nodules, which harbored a solid component (*black arrow*) in only the lung window but not in the mediastinal window. (E) and (F) exhibited part-solid nodules, which possessed a solid component both in the lung window (*black arrow*) and in the mediastinal window (*white arrow*).

9 Supplementary Figure 3. Feature selection with LASSO in the broad-panel NGS cohort. LASSO negative binomial regression model was built incorporating both clinicopathologic characteristics and 10 radiological parameters. (A) Red dots indicated average deviance values for each model with a given 11 λ ; the dotted vertical lines were drawn at the optimal values using the minimum mean square error 12 (MSE) criteria. The optimal λ value of 0.304 was selected. (B) The process of feature selection and 13 resulting features with nonzero coefficients: smoking (0.212), predominant histology (0.124), age 14 (0.008), total size in the lung window (0.005), and solid size in the mediastinal window (0.002). 15 16 LASSO, least absolute shrinkage and selection operator.

Supplementary Figure 4. Association between radiological subtype and genomic features in the WES cohort. (*A*) Oncoprint of the most frequently mutated genes (top 20) by radiological subtype. (*B*) Box plot of TMB versus radiological subtype. (*C*) Comparison of mutation frequency of top 20 genes among radiological subtypes. Genes with significant differences using Fisher's exact test were labeled with *asterisks* (FDR q < 0.100), while those with significant differences in Cochran-Armitage test for trend were highlighted in *red* (P < 0.050). TMB, tumor mutational burden.

Supplementary Figure 5. Figure legend: Association between radiological subtype and genomic 23 features in the IAC cohort. (A) Box plot of tumor mutation count versus radiological subtype. (B) Box 24 plot of genomic alteration count versus radiological subtype. (C) Box plot of the MATH score versus 25 radiological subtype. Significant differences were labeled with asterisks (P < 0.050). (D) Comparison 26 of mutation frequency of driver genes among radiological subtypes. (E) Comparison of alteration 27 frequency of oncogenic pathways among radiological subtypes. Significant differences conducted by 28 Fisher's exact test were labeled with asterisks, while those calculated by Cochran-Armitage test for 29 30 trend were highlighted in *red* (P < 0.050).

31 Supplementary Figure 6. Oncogenic pathway analyses in the WES cohort. (A) Oncoprint of altered

- oncogenic pathways by radiological subtype. Pathway alterations were presented by increasing NPA. (*B*) Comparison of alteration frequency of oncogenic pathways among radiological subtypes. Pathways with significant differences using Fisher's exact test were labeled with *asterisks* (FDR q < 0.100), while those with significant differences in Cochran-Armitage test for trend were highlighted in *red* (P < 0.050). (*C*) Frequency of NPA versus radiological subtype. Darker tones indicate higher alteration frequencies. NPA, number of pathway alteration.
- 38 Supplementary Figure 7. Co-occurrence (red) and mutual exclusivity (blue) analyses of oncogenic
- pathway in the broad-panel NGS cohort. (A), (B), (C), and (D) showed the results in SSN, pGGN,
- 40 HGGN, and PSN cohorts respectively.
- 41 Supplementary Figure 8. Cancer evolution models in (A) the broad-panel NGS and (B) the WES
- 42 cohorts detected by CAPRI algorithm. High-frequent somatic mutations were input in the models. The
- 43 edge label represented relation confidence estimated with 100 non-parametric bootstrap (NPB score)
- 44 iterations. Edges with P < 0.050 were preserved. CAPRI, cancer progression inference.
- Supplementary Figure 9. Gene-based somatic mutation clustering analyses in the broad-panel NGS
 cohort.

	Table S1	Broad-Panel NGS Gene
	Table S2	Clinicopathologic Characteristics by Radiological Subtype (WES
		Cohort)
		Negative Binomial Regression Analysis on Association with TMB (WES
	Table S3	Cohort)
	Table S4	Driver Gene Identification by dNdScv Algorithm
	Table S5	Driver Gene Frequency Comparison between Radiologic Subtypes
		Top 20 Gene Frequency Comparison between Radiologic Subtypes
	Table S6	(WES Cohort)
	Table S7	Driver Gene Frequency Comparison between Radiologic Subtypes (IAC)
	Table CO	Co-occurrence and Mutual Exclusivity of Driver Gene in the Entire
	Table So	Cohort
	Table S9	Co-occurrence and Mutual Exclusivity of Driver Gene in pGGN Cohort
Supplementary	Table S10	Co-occurrence and Mutual Exclusivity of Driver Gene in HGGN Cohort
Tables	Table S11	Co-occurrence and Mutual Exclusivity of Driver Gene in PSN Cohort
	Table S12	Pathway Alteration Comparison between Radiologic Subtypes
	Takla 612	Pathway Alteration Comparison between Radiologic Subtypes (WES
	Table S15	Cohort)
	Table S14	Pathway Alteration Comparison between Radiologic Subtypes (IAC)
	Table S15	Co-occurrence and Mutual Exclusivity of Oncogenic Pathway in the
	Table 515	Entire Cohort
		Co-occurrence and Mutual Exclusivity of Oncogenic Pathway in pGGN
	Table S10	Cohort
	Tabla S17	Co-occurrence and Mutual Exclusivity of Oncogenic Pathway in HGGN
		Cohort
	Table S19	Co-occurrence and Mutual Exclusivity of Oncogenic Pathway in PSN
		Cohort
	Table S19	Mutational Signature (WES Cohort)

48 Table S1. Broad-Panel NGS Gene

HR363	HR456	RS520
ABL1	ABL1	ABL1
ACVR1B	ACVR1B	ABL2
ACVR2A	ACVR2A	ACVR1
AJUBA	AJUBA	ACVR1B
AKT1	AKT1	ADGRA2
AKT2	AKT2	AKT1
AKT3	AKT3	AKT2
ALK	ALK	AKT3
AMER1	ALOX12B	ALK
APC	AMER1	ALOX12B
AR	APC	ANKRD11
ARHGAP35	AR	APC

ARHGEF12	ARAF	AR
ARID1A	ARFRP1	ARAF
ARID2	ARHGAP35	ARID1A
ARID5B	ARHGEF12	ARID1B
ASXL1	ARID1A	ARID2
ATM	ARID2	ARID5B
ATR	ARID5B	ASXL1
ATRX	ASXL1	ASXL2
AURKA	ATM	ATF1
AURKB	ATR	ATM
AXIN2	ATRX	ATR
AXL	AURKA	ATRX
B2M	AURKB	AURKA
B4GALT3	AXIN1	AURKB
BAGE	AXIN2	AXIN1
BAP1	AXL	AXIN2
BARD1	B2M	AXL
BCL2	B4GALT3	B2M
BCL2L1	BAGE	BAP1
BCL6	BAP1	BARD1
BLM	BARD1	BCL2
BMPR1A	BCL2	BCL2L1
BRAF	BCL2L1	BCL6
BRCA1	BCL2L2	BCOR
BRCA2	BCL6	BCORL1
BRIP1	BCOR	BCR
ВТК	BCORL1	BIRC3
BTLA	BLM	BLM
CARD11	BMPR1A	BMPR1A
CBFB	BRAF	BRAF
CBL	BRCA1	BRCA1
CCND1	BRCA2	BRCA2
CCND2	BRD4	BRD4
CCNE1	BRIP1	BRIP1
CD160	BTG1	BTK
CD244	BTG2	CARD11
CD274	ВТК	CASP8
CD276	BTLA	CBFB
CD28	CALR	CBL
CD38	CARD11	CCND1
CD48	CASP8	CCND2
CD69	CBFB	CCND3
CD79B	CBL	CCNE1

CD80	CCND1	CD274
CD86	CCND2	CD79A
CDC73	CCND3	CD79B
CDH1	CCNE1	CDC73
CDK12	CD160	CDH1
CDK4	CD22	CDK12
CDK6	CD244	CDK4
CDK8	CD274	CDK6
CDKN1A	CD276	CDK8
CDKN1B	CD28	CDKN1A
CDKN2A	CD38	CDKN1B
CDKN2B	CD48	CDKN1C
CDKN2C	CD69	CDKN2A
CEBPA	CD70	CDKN2B
CHEK1	CD79A	CDKN2C
CHEK2	CD79B	CEBPA
CIC	CD80	CHD1
CREBBP	CD86	CHD2
CRIPAK	CDC73	CHD4
CRKL	CDH1	CHEK1
CSF1R	CDK12	CHEK2
CTAG2	CDK4	CHUK
CTCF	CDK6	CIC
CTLA4	CDK8	CREBBP
CTNNA1	CDKN1A	CRKL
CTNNB1	CDKN1B	CRLF2
DAXX	CDKN2A	CSF1R
DDR2	CDKN2B	CSF3R
DICER1	CDKN2C	CTCF
DNMT3A	CEBPA	CTNNB1
EGFR	CHEK1	CUL3
EGR3	CHEK2	CUL4A
EIF4A2	CIC	CUL4B
ELF3	CREBBP	CYLD
EOMES	CRIPAK	DAXX
EP300	CRKL	DDR2
EPCAM	CSF1R	DICER1
EPHA1	CSF3R	DNMT1
EPHA2	CTAG2	DNMT3A
EPHA3	CTCF	DNMT3B
EPHB1	CTLA4	DOT1L
EPHB6	CTNNA1	EGFR
EPPK1	CTNNB1	EIF4E

ERBB2	CUL3	ELOC
ERBB3	CUL4A	EMSY
ERBB4	CXCR4	EP300
ERCC2	CYP17A1	EPCAM
ERCC3	DAXX	EPHA2
ERCC4	DDR1	EPHA3
ERCC5	DDR2	EPHA5
ERG	DICER1	EPHA7
ESR1	DIS3	EPHB1
ETV1	DNMT3A	ERBB2
EZH2	DOT1L	ERBB3
FANCA	EED	ERBB4
FANCC	EGFR	ERCC1
FANCM	EGR3	ERCC2
FBXW7	EIF4A2	ERG
FGF19	ELF3	ERRFI1
FGF3	EMSY	ESR1
FGF4	EOMES	EWSR1
FGFR1	EP300	EZH2
FGFR2	EPCAM	FAM175A
FGFR3	EPHA1	FANCA
FGFR4	EPHA2	FANCC
FH	EPHA3	FANCD2
FLCN	EPHB1	FANCE
FLT1	EPHB4	FANCG
FLT3	EPHB6	FANCI
FLT4	EPPK1	FANCL
FOXA1	ERBB2	FAT1
FOXA2	ERBB3	FAT3
FOXL2	ERBB4	FBXW7
FOXO3	ERCC2	FCGR2B
FOXP1	ERCC3	FGF12
FRK	ERCC4	FGF14
GAGE1	ERCC5	FGF19
GALNT12	ERG	FGF3
GATA1	ERRFI1	FGF4
GATA2	ESR1	FGFR1
GATA3	ETV1	FGFR2
GNA11	EZH2	FGFR3
GNAQ	FAM46C	FGFR4
GNAS	FANCA	FH
GREM1	FANCC	FLCN
H3F3C	FANCG	FLT1

HAVCR2	FANCL	FLT3
HDAC1	FANCM	FLT4
HDAC2	FAS	FOXO1
HDAC3	FBXW7	FOXP1
HDAC6	FGF10	FRS2
HGF	FGF12	FUBP1
HIST1H1C	FGF14	FYN
HIST1H2BD	FGF19	GABRA6
HNF1A	FGF23	GALNT12
HRAS	FGF3	GATA1
ICOS	FGF4	GATA2
ICOSLG	FGF6	GATA3
IDH1	FGFR1	GATA6
IDH2	FGFR2	GLI1
IGF1R	FGFR3	GNA11
IGF2	FGFR4	GNAQ
IKBKE	FH	GNAS
IKZF1	FLCN	GRIN2A
IL7R	FLT1	GRM3
INSR	FLT3	GSK3B
IRF4	FLT4	GSTM1
IRS2	FOXA1	GSTT1
ITK	FOXA2	H3F3A
JAK1	FOXL2	HDAC1
JAK2	FOXO3	HDAC2
JAK3	FOXP1	HDAC4
JUN	FRK	HGF
KDM5C	FUBP1	HIST1H3F
KDM6A	GABRA6	HLA-A
KDR	GAGE1	HNF1A
KEAP1	GALNT12	HNF1B
KIT	GATA1	HRAS
KITLG	GATA2	HSP90AA1
KMT2B	GATA3	IDH1
KMT2C	GATA4	IDH2
KMT2D	GATA6	IGF1
KRAS	GID4	IGF1R
LAG3	GNA11	IGF2
LCK	GNA13	IKBKE
LEF1	GNAQ	IKZF1
LIFR	GNAS	IL7R
LIMK1	GREM1	INHBA
LRRK2	GRM3	INPP4A

LYN	GSK3B	INPP4B
MAGEA1	H3F3A	INSR
MAGEA12	H3F3C	IRF2
MAGEA3	HAVCR2	IRF4
MAGEA4	HDAC1	IRS2
MAGEC2	HDAC2	JAK1
MAP2K1	HDAC3	JAK2
MAP2K2	HDAC6	JAK3
MAP2K4	HGF	KAT6A
MAP3K1	HIST1H1C	KDM5A
MAPK1	HIST1H2BD	KDM5C
MAPK11	HNF1A	KDM6A
MAPK8IP1	HRAS	KDR
MCL1	HSD3B1	KEAP1
MDM2	ICOS	KEL
MDM4	ICOSLG	KIT
MECOM	ID3	KMT2A
MEN1	IDH1	KMT2C
MERTK	IDH2	KMT2D
MET	IGF1R	KRAS
MGMT	IGF2	LATS1
MITF	IKBKE	LATS2
MLH1	IKZF1	LMO1
MLH3	IL7R	LRP1B
MPL	INPP4B	MAGI2
MRE11	INSR	MAP2K1
MSH2	IRF2	MAP2K2
MSH3	IRF4	MAP2K4
MSH6	IRS2	MAP3K1
MST1R	ITK	MAP3K13
MTOR	JAK1	MAPK3
MUTYH	JAK2	MAX
MYC	JAK3	MCL1
MYCL	JUN	MDC1
MYCN	KDM5A	MDM2
MYD88	KDM5C	MDM4
NAV3	KDM6A	MED12
NBN	KDR	MEF2B
NCOA4	KEAP1	MEN1
NCOR1	KEL	MET
NEK11	KIT	MITF
NF1	KITLG	MLH1
NF2	KLHL6	MLH3

NFE2L2	KMT2A	MPL
NFE2L3	KMT2B	MRE11A
NKX2-1	KMT2C	MSH2
NOTCH1	KMT2D	MSH3
NOTCH2	KRAS	MSH6
NOTCH4	LAG3	MST1
NPM1	LCK	MST1R
NRAS	LEF1	MTOR
NSD1	LIFR	MUTYH
NT5E	LIMK1	MYC
NTRK1	LRRK2	MYCL
NTRK2	LTK	MYCN
NTRK3	LYN	MYD88
PALB2	MAF	NBN
PARP1	MAGEA1	NCOR1
PARP2	MAGEA12	NEB
PARP3	MAGEA3	NF1
PAX5	MAGEA4	NF2
PBRM1	MAGEC2	NFE2L2
PCBP1	MAP2K1	NFKBIA
PCNA	MAP2K2	NKX2-1
PDCD1	MAP2K4	NOTCH1
PDCD1LG2	MAP3K1	NOTCH2
PDGFRA	MAP3K13	NOTCH3
PDGFRB	MAPK1	NOTCH4
PHF6	MAPK11	NPM1
PHOX2B	MAPK8IP1	NR4A3
PIGF	MCL1	NRAS
PIK3CA	MDM2	NRG1
PIK3CB	MDM4	NSD1
PIK3CD	MECOM	NTHL1
PIK3CG	MED12	NTRK1
PIK3R1	MEF2B	NTRK2
PIK3R2	MEN1	NTRK3
PIM1	MERTK	NUP93
PMS1	MET	PAK1
PMS2	MGMT	PAK3
POLD1	MITF	PAK7
POLE	MKNK1	PALB2
POLQ	MLH1	PARK2
PPM1D	MLH3	PARP2
PPP2R1A	MPL	PARP3
PRDM1	MRE11A	PARP4

PRF1	MSH2	PAX5
PRKAR1A	MSH3	PBRM1
PRX	MSH6	PDGFRA
PTCH1	MST1R	PDGFRB
PTEN	MTAP	PGR
PTK6	MTOR	PIK3C2G
PTPN11	MUTYH	PIK3CA
PTPRD	MYC	PIK3CB
PTPRK	MYCL	PIK3CD
PTPRT	MYCN	PIK3CG
RAD21	MYD88	PIK3R1
RAD50	NAV3	PIK3R2
RAD51C	NBN	PIM1
RAD51D	NCOA4	PLCG2
RAF1	NCOR1	PMS1
RARA	NEK11	PMS2
RB1	NF1	POLD1
RECQL	NF2	POLE
RECQL4	NFE2L2	PPP2R1A
REL	NFE2L3	PPP2R2A
RET	NFKBIA	PPP6C
ROS1	NKX2-1	PRDM1
RPA1	NOTCH1	PREX2
RPA2	NOTCH2	PRKAR1A
RPA3	NOTCH3	PRKDC
RPL22	NOTCH4	PTCH1
RPL5	NPM1	PTEN
RUNX1	NRAS	PTK2
SDHA	NSD1	PTPN11
SDHB	NT5C2	PTPRD
SDHC	NT5E	PTPRS
SDHD	NTRK1	PTPRT
SETBP1	NTRK2	QKI
SETD2	NTRK3	RAC1
SF3B1	P2RY8	RAD50
SH2D1A	PALB2	RAD51
SIK1	PARK2	RAD51B
SIN3A	PARP1	RAD51C
SLAMF7	PARP2	RAD51D
SMAD2	PARP3	RAD52
SMAD4	PAX5	RAD54L
SMARCA4	PBRM1	RAF1
SMARCB1	PCBP1	RARA

SMC1A	PCNA	RASA1
SMC3	PDCD1	RB1
SMO	PDCD1LG2	RBM10
SOCS1	PDGFRA	RECQL4
SOX17	PDGFRB	RET
SOX2	PDK1	RHOA
SOX9	PHF6	RICTOR
SPATA2	PHOX2B	RNF43
SPOP	PIGF	ROS1
SRC	PIK3C2B	RPS6KA4
STAG2	PIK3C2G	RPS6KB2
STK11	PIK3CA	RPTOR
SUFU	PIK3CB	RUNX1
SYK	PIK3CD	RUNX1T1
TAF1	PIK3CG	SDHA
TAS2R38	PIK3R1	SDHB
TBL1XR1	PIK3R2	SDHC
TBX3	PIM1	SDHD
TEK	PMS1	SETD2
TET1	PMS2	SF3B1
TET2	POLD1	SH2B3
TGFB1	POLE	SLIT2
TGFBR2	POLQ	SLX4
TLR4	PPARG	SMAD2
TNF	PPM1D	SMAD3
TNFAIP3	PPP2R1A	SMAD4
TNFRSF14	PPP2R2A	SMARCA4
TNFRSF18	PRDM1	SMARCB1
TNFRSF4	PRF1	SMARCD1
TNFSF11	PRKAR1A	SMO
TNFSF14	PRKCI	SNCAIP
TNFSF18	PRX	SOX9
TNFSF4	PTCH1	SPEN
TOP1	PTEN	SPOP
TP53	PTK6	SPTA1
TSC1	PTPN11	SRC
TSC2	PTPRD	SRSF2
TSHR	PTPRK	STAG2
TSHZ2	PTPRO	STAT3
TSHZ3	PTPRT	STAT5A
TYRO3	QKI	STAT5B
U2AF1	RAC1	STK11
USP9X	RAD21	STK40

VEGFA	RAD50	SUFU
VEGFB	RAD51	SYK
VEZF1	RAD51B	TAF1
VHL	RAD51C	TBX3
VTCN1	RAD51D	TCF3
WT1	RAD52	TCF7L2
XPO1	RAD54L	TERT
XRCC2	RAF1	TET2
NA	RARA	TGFBR2
NA	RB1	TMPRSS2
NA	RBM10	TNFAIP3
NA	RECQL	TNFRSF14
NA	RECQL4	TNFSF11
NA	REL	TOP1
NA	RET	TP53
NA	RICTOR	TP63
NA	RNF43	TRAF2
NA	ROS1	TRAF7
NA	RPA1	TRRAP
NA	RPA2	TSC1
NA	RPA3	TSC2
NA	RPL22	TSHR
NA	RPL5	U2AF1
NA	RPTOR	VEGFA
NA	RUNX1	VHL
NA	SDHA	WRN
NA	SDHB	WT1
NA	SDHC	XPO1
NA	SDHD	XRCC2
NA	SETBP1	YES1
NA	SETD2	ZFHX3
NA	SF3B1	ZNF217
NA	SGK1	ZNF703
NA	SH2D1A	ZNRF3
NA	SIK1	AMER1
NA	SIN3A	APCDD1
NA	SLAMF7	ARFRP1
NA	SMAD2	BACH1
NA	SMAD4	BBC3
NA	SMARCA4	BCL10
NA	SMARCB1	BCL2L11
NA	SMC1A	BCL2L2
NA	SMC3	BTG1

NA	SMO	CALR
NA	SNCAIP	CD276
NA	SOCS1	CENPA
NA	SOX17	CRBN
NA	SOX2	CTLA4
NA	SOX9	CTNNA1
NA	SPATA2	CXCR4
NA	SPEN	CYP17A1
NA	SPOP	DCUN1D1
NA	SRC	DIS3
NA	STAG2	DNAJB1
NA	STAT3	E2F3
NA	STK11	EED
NA	SUFU	EGFL7
NA	SYK	EIF1AX
NA	TAF1	EIF4A2
NA	TAS2R38	ERCC3
NA	TBL1XR1	ERCC4
NA	TBX3	ERCC5
NA	TEK	FAM46C
NA	TET1	FANCF
NA	TET2	FANCM
NA	TGFB1	FAS
NA	TGFBR2	FGF10
NA	TIPARP	FGF23
NA	TLR4	FGF6
NA	TNF	FGF7
NA	TNFAIP3	FOXA1
NA	TNFRSF14	FOXL2
NA	TNFRSF18	GATA4
NA	TNFRSF4	GID4
NA	TNFSF11	GNA13
NA	TNFSF14	GPS2
NA	TNFSF18	GREM1
NA	TNFSF4	H3F3B
NA	TOP1	H3F3C
NA	TP53	HIST1H1C
NA	TSC1	HIST1H2BD
NA	TSC2	HIST1H3A
NA	TSHR	HIST1H3B
NA	TSHZ2	HIST1H3C
NA	TSHZ3	HIST1H3D
NA	TYRO3	HIST1H3E

NA	U2AF1	HIST1H3G
NA	USP9X	HIST1H3H
NA	VEGFA	HIST1H3I
NA	VEGFB	HIST1H3J
NA	VEZF1	HIST2H3C
NA	VHL	HIST2H3D
NA	VTCN1	HIST3H3
NA	WHSC1	HOXB13
NA	WHSC1L1	HSD3B1
NA	WT1	ICOSLG
NA	XPO1	ID3
NA	XRCC2	IFNGR1
NA	ZNF217	IL10
NA	ZNF703	INHA
NA	NA	IRS1
NA	NA	JUN
NA	NA	KLF4
NA	NA	KLHL6
NA	NA	LYN
NA	NA	LZTR1
NA	NA	MALT1
NA	NA	MAP3K14
NA	NA	MAPK1
NA	NA	MGA
NA	NA	MYOD1
NA	NA	NCOA3
NA	NA	NEGR1
NA	NA	NKX3-1
NA	NA	PARP1
NA	NA	PDCD1
NA	NA	PDCD1LG2
NA	NA	PDK1
NA	NA	PDPK1
NA	NA	PHOX2B
NA	NA	PIK3C2B
NA	NA	PIK3C3
NA	NA	PIK3R3
NA	NA	PLK2
NA	NA	PMAIP1
NA	NA	PNRC1
NA	NA	POM121L12
NA	NA	PPM1D
NA	NA	PRKCI

NA	NA	PRSS8
NA	NA	RAB35
NA	NA	RAD21
NA	NA	RANBP2
NA	NA	REL
NA	NA	RFWD2
NA	NA	RHEB
NA	NA	RIT1
NA	NA	RPA1
NA	NA	RYBP
NA	NA	SDHAF2
NA	NA	SH2D1A
NA	NA	SHQ1
NA	NA	SOCS1
NA	NA	SOX10
NA	NA	SOX17
NA	NA	SOX2
NA	NA	STAT4
NA	NA	SUZ12
NA	NA	TACC3
NA	NA	TERC
NA	NA	TET1
NA	NA	TGFBR1
NA	NA	TIPARP
NA	NA	TMEM127
NA	NA	TOP2A
NA	NA	VEGFB
NA	NA	VEGFC
NA	NA	VTCN1
NA	NA	WISP3
NA	NA	XIAP
NA	NA	XRCC3
NA	NA	YAP1
NA	NA	ZBTB2
NA	NA	ZRSR2

1	0	, 0	21	1	
Characteristic	Total (N=125)	pGGN (n=48	HGGN (n=29	PSN (n=48	Р
		[38%])	[24%])	[38%])	value
$\Delta \sigma e$ at resection v	60.0 (54.0-	58.5 (53.5-	60.0 (54.0-	61.0 (56.5-	0 043
Age at resection, y	65.0)	64.0)	66.0)	68.5)	0.045
Sex					
Male	47 (38)	19 (40)	11 (38)	17 (35)	0.914
Female	78 (62)	29 (60)	18 (62)	31 (65)	
Smoking status					
Nonsmoker	93 (74)	38 (80)	20 (69)	35 (73)	0.583
Smoker	32 (26)	10 (20)	9 (31)	13 (27)	
	15.8 (10.9-	10.0 (7.6.12.0)	17.4 (13.4-	24.8 (15.7-	-0.001
I otal size on C1, mm	24.7)	10.8 (7.6-13.9)	21.9)	29.4)	<0.001
Procedure type					
Wedge resection	51 (41)	29 (60)	8 (28)	14 (29)	0.002
Segmentectomy	9 (7)	4 (9)	3 (10)	2 (4)	0.003
Lobectomy	65 (52)	15 (31)	18 (62)	32 (67)	
Pathological subtype					
AIS	19 (15)	17 (35)	1 (4)	1 (2)	.0.001
MIA	25 (20)	21 (45)	3 (10)	1 (2)	<0.001
IAC	81 (65)	10 (20)	25 (86)	46 (96)	
Predominant histology					
LEP	69 (55)	42 (88)	15 (52)	12 (25)	<0.001
ACI/PAP	56 (45)	6 (12)	14 (48)	36 (75)	
Pathological stage					
0	19 (15)	17 (35)	1 (4)	1 (2)	.0.001
IA	98 (78)	31 (65)	28 (96)	39 (81)	<0.001
IB	8 (7)	0 (0)	0 (0)	8 (17)	

Table S2. Clinicopathologic Characteristics by Radiological Subtype (WES Cohort)

ACI, acinar; AIS, adenocarcinoma in situ; CT, computed tomography; IAC, invasive adenocarcinoma; 51

LEP, lepidic; MIA, minimally invasive adenocarcinoma; PAP, papillary; WES, whole exome 52 sequencing. 53

		Uni	varia	ite analy	vsis		Mult	ivari	iate anal	ysis
Variable	IRR	9:	5% (CI	P value	IRR	9:	5% (CI	P value
Age at resection, per 1y increased	1.020	1.003	to	1.039	0.025	1.013	0.994	to	1.033	0.191
Sex										
Male					Reference					Reference
Female	0.747	0.538	to	1.040	0.082	0.842	0.534	to	1.350	0.467
Smoking										
No					Reference					Reference
Yes	1.418	0.994	to	1.997	0.049	1.216	0.756	to	1.970	0.423
Pathological subtype										
AIS					Reference					Reference
MIA	1.528	0.738	to	3.375	0.268	1.435	0.679	to	3.220	0.357
IAC	2.673	1.483	to	5.408	0.003	1.854	0.888	to	4.165	0.114
Predominant histology										
LEP					Reference					Reference
ACI/PAP	1.651	1.193	to	2.296	0.003	1.172	0.764	to	1.834	0.475
Total size on CT (L),	1 027	1.012	to	1.042	<0.001	1.011	0.082	to	1 030	0.461
per 1mm increased	1.027	1.012	10	1.042	-0.001	1.011	0.982	10	1.039	0.401
Solid size on CT (L),	1.020	1 012	to	1.047	~0.001	0.001	0.020	to	1.042	0 722
per 1mm increased	1.030	1.015	10	1.04/	~0.001	0.991	0.939	10	1.043	0.725
Solid size on CT (M),	1.020	1.010	to	1.047	0.001	1.017	0.074	to	1.066	0.478
per 1mm increased	1.029	1.010	10	1.04/	0.001	1.01/	0.9/4	10	1.000	0.4/0

54	Table S3. Negative Binomial	Regression Anal	vsis on Association	with TMB (WES Cohort)
	- 8	8		(

ACI, acinar; AIS, adenocarcinoma in situ; CT, computed tomography; IAC, invasive adenocarcinoma;
IRR, incidence rate ratio; L, Lung window; LEP, lepidic; M, Mediastinal (soft-tissue) window; MIA,
minimally invasive adenocarcinoma; PAP, papillary; TMB, tumor mutation burden; WES, whole
exome sequencing.

	Entire Cohort (q < 0.1 and nonsilent mutations $n \ge 5$)																	
gen e_n ame	n _s y n	n m is	n n o n	n _s pl	n _i n d	w mi s_c v	wn on _cv	ws pl_ cv	wi nd _cv	pm is_ cv	ptr unc _cv	pall subs _cv	pin d_ cv	qm is_ cv	qtr unc _cv	qall subs _cv	pgl oba l_cv	qgl oba l_cv
EG FR	1	97	0	0	3 2	32 9.3 57 5	0	0	29 2.8 48 3	0	0.8 164 05	0	6.4 8E- 18	0	0.9 976 8	0	0	0
KR AS	0	15	0	0	0	10 34 5.7 9	0	0	0	0	0.9 857 75	0	1	0	0.9 976 8	0	0	0
RB M1 0	0	0	17	2	2 1	0	26 72 2.2 1	26 72 2.2 1	24 9.9 80 7	0.9 12 15 9	0	0	3.8 6E- 14	0.9 91 02 8	0	0	0	0
TP5 3	2	22	2	1	6	14. 05 73 7	20. 35 84 1	20. 35 84 1	16 8.7 68 7	5.7 4E- 07	0.0 018 86	1.07 E-06	4.3 1E- 07	8.9 5E- 05	0.1 965 15	0.00 013 4	1.36 E- 11	2.12 E- 09
BR AF	0	13	0	0	1	97 6.6 39 3	0	0	14. 44 91 2	3.7 3E- 08	0.9 544 79	1.62 E-07	0.0 58 56	7.7 4E- 06	0.9 976 8	2.52 E-05	1.84 E- 07	2.30 E- 05
MA P2K 1	0	0	0	1	4	0	20 49. 18 6	20 49. 18 6	11 2.5 12 4	0.9 23 42 4	0.0 046 76	0.01 566 3	3.1 2E- 05	0.9 91 02 8	0.3 160 6	0.42 425 7	7.60 E- 06	0.00 078 9
ME D12	0	5	3	0	4	18 7.0 87 7	10 62. 38 1	10 62. 38 1	20. 32 55	0.0 07 28 5	0.0 001 48	0.00 045 9	0.0 05 66	0.2 54 73 7	0.0 308 34	0.03 577 3	3.60 E- 05	0.00 320 7
ER BB2	3	1	0	0	8	0.4 68 03 4	0	0	70. 58 90 2	0.4 86 58 7	0.5 511 21	0.68 230 4	1.0 2E- 05	0.9 91 02 8	0.9 976 8	0.99 988 8	8.93 E- 05	0.00 695
ME T	0	1	1	0	3	15 1.2 61 3	17 14. 57	17 14. 57	23. 59 64 7	0.0 75 23	0.0 056 76	0.01 293 4	0.0 06 17 9	0.5 74 05 8	0.3 160 6	0.42 425 7	0.00 083 4	0.05 772 9

Table S4. Driver Gene Identification by dNdScv Algorithm

SET D2 NF1	0	1	1	0	6	 55. 85 4 20 7.2 80 	58 6.8 24 7 50 7.7 56	58 6.8 24 7 50 7.7 56	 25. 92 39 2 15. 60 91 	0.1 88 92 0.0 07	0.0 181 64 0.0 212	0.05 705 6 0.01 110	0.0 01 61 5 0.0 10 32	0.8 03 24 3 0.2 54 73	0.4 526 51 0.4 774	0.67 619 0.42 425	0.00 094 8 0.00 115	0.05 908 0.06 544
U2 AF1	0	4	1	0	0	3 69 1.3 43 5	1 15 62. 82 4	1 15 62. 82 4	2	36 0.0 00 16 1	28 0.0 062 77	5 0.00 016 3	9	7 0.0 20 05 9	97 0.3 160 6	7 0.01 687 5	5 0.00 158	3 0.08 205 2
					I	oGGN	Coho	rt (q <	< 0.1 a	nd nor	silent	mutatio	ons n ≥	<u>2</u> 5)				
gen e_n ame	n _s y n	n — m is	n n o n	n _s pl	n _i n d	w mi s_c v	wn on _cv	ws pl_ cv	wi nd _cv	pm is_ cv	ptr unc _cv	pall subs _cv	pin d_ cv	qm is_ cv	qtr unc _cv	qall subs _cv	pgl oba l_cv	qgl oba l_cv
EG FR	0	12	0	0	1 3	37 1.8 76 1	0	0	41 6.3 93 6	0	0.9 327 88	2.22 E-16	2.1 5E- 29	0	0.9 986 97	1.38 E-13	0	0
RB M1 0	0	0	4	0	6	0	53 3.4 68 1	53 3.4 68 1	24 9.9 80 7	0.7 24 85 2	2.5 8E- 09	1.40 E-08	3.6 2E- 13	0.9 51 32 8	1.6 1E- 06	2.18 E-06	0	0
KR AS	0	7	0	0	0	69 0.5 13 2	0	0	0	2.9 9E- 14	0.9 645 9	2.86 E-13	1	9.3 0E- 12	0.9 986 97	8.92 E-11	8.55 E- 12	1.78 E- 09
BR AF	0	12	0	0	1	80. 50 48	0	0	50. 57 19 3	1.7 2E- 10	0.8 476 9	1.07 E-09	0.0 19 57 5	3.5 7E- 08	0.9 986 97	2.23 E-07	5.38 E- 10	8.38 E- 08
ER BB2	1	1	0	0	5	2.1 66 57 3	0	0	15 4.4 13 5	0.5 39 48 5	0.7 584 87	0.78 036 6	3.6 0E- 10	0.9 51 32 8	0.9 986 97	0.99 996 5	6.46 E- 09	8.04 E- 07
MA P2K 1	0	0	0	0	3	0	0	0	29 5.3 45 2	0.7 44 13 9	0.9 134 51	0.94 254 9	1.8 5E- 07	0.9 51 32 8	0.9 986 97	0.99 996 5	2.89 E- 06	0.00 030 1

					I	IGGN	Coho	rt (q <	< 0.1 a	nd no	nsilent	mutati	ons n 2	≥ 5)				
gen e_n ame	n _s y n	n m is	n n o n	n _s pl	n _i n d	w mi s_c v	wn on _cv	ws pl_ cv	wi nd _cv	pm is_ cv	ptr unc _cv	pall subs _cv	pin d_ cv	qm is_ cv	qtr unc _cv	qall subs _cv	pgl oba l_cv	qgl oba l_cv
EG FR	0	18	0	0	9	19 9.2 34 2	0	0	57 6.5 45	5.6 2E- 14	0.9 071 04	3.95 E-13	1.6 2E- 22	3.5 0E- 11	0.9 813 59	2.46 E-10	0	0
RB M1 0	0	0	5	1	2	0	90 6.9 61 6	90 6.9 61 6	16 6.6 53 8	0.7 05 15 3	2.4 1E- 12	6.70 E-12	7.1 6E- 05	0.9 00 05 1	1.5 0E- 09	2.09 E-09	1.74 E- 14	5.43 E- 12
ER BB2	1	0	0	0	4	0	0	0	24 7.0 61 6	0.6 51 81 9	0.9 031 42	0.89 654	2.8 6E- 09	0.9 00 05 1	0.9 813 59	0.99 168 1	5.33 E- 08	1.11 E- 05
MA P2K 1	0	0	0	0	3	0	0	0	59 0.6 90 4	0.8 13 73 5	0.9 500 72	0.97 072 1	2.1 9E- 08	0.9 00 05 1	0.9 813 59	0.99 168 1	3.97 E- 07	6.18 E- 05
TP5 3	0	2	0	0	2	69. 33 35 8	0	0	39 3.7 93 6	0.0 00 78	0.9 473 24	0.00 350 4	1.2 9E- 05	0.1 61 89 5	0.9 813 59	0.54 570 7	8.08 E- 07	0.00 010 1
						PSN (Cohor	t (a <	0 1 an	d none	silent n	nutation	15 n >	5)				
			n			1511		ı (y >	0.1 all				15 II <u><</u>	3)				
gen e_n ame	n _s y n	n – m is	n o n	n _s pl	n _i n d	w mi s_c v	wn on _cv	ws pl_ cv	wi nd _cv	pm is_ cv	ptr unc _cv	pall subs _cv	pin d_ cv	qm is_ cv	qtr unc _cv	qall subs _cv	pgl oba l_cv	qgl oba l_cv
EG FR	1	67	0	0	2 2	24 8.5 77 8	0	0	35 2.3 33 1	0	0.8 279 62	0	5.4 0E- 16	0	0.9 947 75	0	0	0
RB					1		11	11	27	0.6			2.0	0.8				

M1 0	0	0	8	1	1 3	0	50. 85 7	50. 85 7	0.8 12 4	97 94 1	0	0	0E- 11	94 47 1	0	0	0	0
TP5 3	1	17	1	1	4	30. 57	36. 75	36. 75	19 6.8	2.9 4E- 10	0.0 026 06	5.23 E-10	5.6 1E- 06	6.1 2E- 08	0.4 058 37	8.14 E-08	1.01 E- 13	2.10 E- 11

						67	93	93	96									
						4	2	2	8									
VD						38				2.9	0.9	2 11		9.0	0.9	5.07	5.65	8.79
	0	6	0	0	0	9.0 02	0	0	0	0E-	519	2.44 E_10	1	4E-	947	5.07 E-08	E-	E-
AS						2				11	79	L-10		09	75	L-00	09	07
						13.	12	12	35.	0.0	21		0.0	0.5	0.0	0.00	1.07	0.00
ME	0	2	2	0	1	55	8.2	8.2	56	13	2.1 0E	3.80	01	38	0.0	473	1.07 E	0.00
D12	0	5	5	0	4	80	36	36	96	79	012-	E-05	59	95	5	475	06	2
						8	3	3	2	9	05		3	8	5	5	00	3

62 Table S5. Driver Gene Frequency Comparison between Radiologic Subtypes (Mutation Frequency >

63 0.02 were included)

Fisher's Exact Test (pGGN vs. HGGN)													
Gene	pGGN_	pGGN_n	HGGN_	HGGN_n	total_	pGGN_	HGGN	. 110	p_val	q_v			
Symb ol	mut_nu m	omut_nu m	mut_nu m	omut_nu m	a	mutfreq	_muttr ea	mut_dif	ue	alue			
EGFR	34	43	26	22	0.48	0.44155 8	0.54166	0.10010 8	0.3575 68	0.69 746 2			
RBM1 0	10	67	8	40	0.144	0.12987	0.16666 7	0.03679 7	0.6067 02	0.72 804 2			
TP53	4	73	4	44	0.064	0.05194 8	0.08333	0.03138 5	0.4820 73	0.69 746 2			
ERBB 2	10	67	7	41	0.136	0.12987	0.14583 3	0.01596	0.7948 01	0.86 705 6			
KRAS	7	70	2	46	0.072	0.09090 9	0.04166 7	0.04924	0.4803 72	0.69 746 2			
BRAF	12	65	1	47	0.104	0.15584 4	0.02083 3	0.13501 1	0.0163 13	0.19 575 3			
MAP2 K1	3	74	4	44	0.056	0.03896 1	0.08333	0.04437 2	0.4269 79	0.69 746 2			
MED1 2	0	77	2	46	0.016	0	0.04166 7	0.04166 7	0.1455 48	0.69 746 2			
NF1	3	74	0	48	0.024	0.03896 1	0	0.03896 1	0.2846 45	0.69 746 2			
MET	2	75	1	47	0.024	0.02597 4	0.02083 3	0.00514 1	1	1			
SETD 2	2	75	0	48	0.016	0.02597 4	0	0.02597 4	0.5230 97	0.69 746 2			
U2AF 1	3	74	0	48	0.024	0.03896 1	0	0.03896 1	0.2846 45	0.69 746 2			

Fisher's Exact Test (pGGN vs. PSN)

Gene Symb ol	pGGN_ mut_nu m	pGGN_n omut_nu m	PSN_m ut_num	PSN_no mut_num	total_ mutfre q	pGGN_ mutfreq	PSN_m utfreq	mut_dif	p_val ue	q_v alue
EGFR	34	43	96	26	0.6532 66	0.44155 8	0.78688 5	0.34532 7	8.37E- 07	1.00 E- 05
RBM1 0	10	67	22	100	0.1608 04	0.12987	0.18032 8	0.05045 8	0.4295 18	0.57 269
TP53	4	73	23	99	0.1356 78	0.05194 8	0.18852 5	0.13657 7	0.0056 51	0.01 695 4
ERBB 2	10	67	1	121	0.0552 76	0.12987	0.00819 7	0.12167 3	0.0003 83	0.00 153 4
KRAS	7	70	6	116	0.0653 27	0.09090 9	0.04918	0.04172 9	0.2554 01	0.45 103 1
BRAF	12	65	0	122	0.0603 02	0.15584 4	0	0.15584 4	6.40E- 06	3.84 E- 05
MAP2 K1	3	74	1	121	0.0201 01	0.03896 1	0.00819 7	0.03076 4	0.3006 88	0.45 103 1
MED1 2	0	77	6	116	0.0301 51	0	0.04918	0.04918	0.0836 87	0.20 085
NF1	3	74	5	117	0.0402 01	0.03896 1	0.04098 4	0.00202 3	1	1
MET	2	75	4	118	0.0301 51	0.02597 4	0.03278 7	0.00681	1	1
SETD 2	2	75	5	117	0.0351 76	0.02597 4	0.04098 4	0.01501	0.7084 77	0.83 017 2
U2AF 1	3	74	1	121	0.0201 01	0.03896 1	0.00819 7	0.03076 4	0.3006 88	0.45 103 1

Fisher's Exact Test (HGGN vs. PSN)											
Gene Symb ol	HGGN_ mut_nu m	HGGN_n omut_nu m	PSN_m ut_num	PSN_no mut_num	total_ mutfre q	HGGN_ mutfreq	PSN_m utfreq	mut_dif	p_val ue	q_v alue	
EGFR	26	22	96	26	0.7176	0.54166	0.78688	0.24521	0.0022	0.01	
20110	-			-	47	7	5	9	62	357	
RBM1	8	40	22	100	0.1764	0.16666	0.18032	0.01366	1	1	
0	8	40		100	71	7	8	1	1	1	

TP53	4	44	23	99	0.1588 24	0.08333 3	0.18852 5	0.10519 1	0.1064 51	0.31 935 4
ERBB 2	7	41	1	121	0.0470 59	0.14583 3	0.00819 7	0.13763 7	0.0006 39	0.00 767 4
KRAS	2	46	6	116	0.0470 59	0.04166 7	0.04918	0.00751 4	1	1
BRAF	1	47	0	122	0.0058 82	0.02083 3	0	0.02083 3	0.2823 53	0.55 409 1
MAP2 K1	4	44	1	121	0.0294 12	0.08333 3	0.00819 7	0.07513 7	0.0228 25	0.09 130 1
MED1 2	2	46	6	116	0.0470 59	0.04166 7	0.04918	0.00751 4	1	1
NF1	0	48	5	117	0.0294 12	0	0.04098 4	0.04098 4	0.3232 2	0.55 409 1
MET	1	47	4	118	0.0294 12	0.02083 3	0.03278 7	0.01195 4	1	1
SETD 2	0	48	5	117	0.0294 12	0	0.04098 4	0.04098 4	0.3232 2	0.55 409 1
U2AF 1	0	48	1	121	0.0058 82	0	0.00819 7	0.00819 7	1	1

Cochran-Armitage Trend Test											
Gene	pGGN_	pGGN_n	HGGN_	HGGN_n	PSN_	PSN_no	pGGN_	HGGN	PSN_		
Symb	mut_nu	omut_nu	mut_nu	omut_nu	mut_n	mut_nu	mutfre	_mutfr	mutfr	p_v	
ol	m	m	m	m	um	m	q	eq	eq	alue	
EGFR	34	43	26	22	96	26	0.44155	0.54166 7	0.7868 85	4.67 E-	
							0	,	05	07	
RBM1 0	10	67	8	40	22	100	0.12987	0.16666 7	0.1803 28	0.35 440 6	
TP53	4	73	4	44	23	99	0.05194 8	0.08333 3	0.1885 25	0.00 352 5	
ERBB 2	10	67	7	41	1	121	0.12987	0.14583 3	0.0081 97	0.00 062 6	

KRAS	7	70	2	46	6	116	0.09090 9	0.04166 7	0.0491 8	0.25 784 9
BRAF	12	65	1	47	0	122	0.15584 4	0.02083	0	3.19 E- 06
MAP2 K1	3	74	4	44	1	121	0.03896 1	0.08333	0.0081 97	0.15 738 7
MED1 2	0	77	2	46	6	116	0	0.04166 7	0.0491 8	0.06 322 2
NF1	3	74	0	48	5	117	0.03896 1	0	0.0409 84	0.82 442 7
MET	2	75	1	47	4	118	0.02597 4	0.02083 3	0.0327 87	0.75 188 1
SETD 2	2	75	0	48	5	117	0.02597 4	0	0.0409 84	0.45 179 5
U2AF 1	3	74	0	48	1	121	0.03896 1	0	0.0081 97	0.11 756 5

Fisher's Exact Test (pGGN vs. HGGN)											
G	pGGN_ pGGN_		HGGN	HGGN		pGGN_	HGGN				
Gene	mut_nu	nomut_	_mut_n	_nomut	total_m	mutfre	_mutfr	mut_di	p_value	q_valu	
Symbol	m	num	um	_num	utfreq	q	eq	I		e	
ECED	10	20	1.5	14	0.42857	0 275	0.51724	0.14224	0.24376	0.71599	
EGFK	18	30	15	14	1	0.375	1	1	7	5	
DD (10	2	45	-	22	0.12007	0.0(25	0.24137	0.17887	0.03544	0.49952	
KBM10	3	45	/	22	0.12987	0.0625	9	9	1	2	
TD52	2	45	-	24	0.10389	0.0(25	0.17241	0.10991	0.14477	0.5701	
1P53	3	45	3	24	6	0.0625	4	4	5	0.5791	
	1	47	2	27	0.03896	0.02083	0.06896	0.04813	0.55280	1	
RYRI	1	47	2	27	1	3	6	2	9	1	
0777411			1	20	0.06493	0.08333	0.03448	0.04885	0.64458		
SIKII	4	44	1	28	5	3	3	1	7	1	
DIDG	2			25	0.06493	0.0605	0.06896	0.00646			
BIRC6	3	45	2	27	5	0.0625	6	6	1	1	
19194				•	0.03896	0.04166	0.03448	0.00718			
MUC4	2	46	1	28	1	7	3	4	I	1	
			0	•	0.03896	0 0 C 0 7	0	0 0 (0 7	0.28639	0.71599	
CHD2	3	45	0	29	1	0.0625	0	0.0625	8	5	
					0.05194	0.04166	0.06896	0.02729	0.62935		
KRAS	2	46	2	27	8	7	6	9	5	1	
ARID1	0	10			0.02597	0	0.06896	0.06896	0.13875		
В	0	48	2	27	4	0	6	6	6	0.5791	
CCDC1				•	0.05194	0 0 6 7 7	0.03448	0.02801			
68	3	45	1	28	8	0.0625	3	7	1	1	
				•	0.02597	0.02083	0.03448	0.01364			
CPXM2	1	47	1	28	4	3	3	9	1	1	
TT C			0	•	0.03896	0 0 C 0 7	0	0 0 (0 7	0.28639	0.71599	
FLG	3	45	0	29	1	0.0625	0	0.0625	8	5	
			0	•	0.01298	0.02083		0.02083			
FRG1	1	47	0	29	7	3	0	3	1	1	
HMCN	0	10	0	•	0	0		0			
1	0	48	0	29	0	0	0	0	1	1	
				•	0.02597	0.02083	0.03448	0.01364			
MUC16	1	47	1	28	4	3	3	9	1	1	
PPP2R5	<u>^</u>		-		0.03896	~	0.10344	0.10344	0.04995	0.49952	
А	0	48	3	26	1	0	8	8	2	2	
DD 776	6	10	-	A	0.02597	<u>,</u>	0.06896	0.06896	0.13875	0.5=04	
RIMS2	0	48	2	27	4	0	6	6	6	0.5791	
	-				0.02597	0.02083	0.03448	0.01364	-		
RSPO1	1	47	1	28	4	3	3	9	1	1	

Table S6. Top 20 Gene Frequency Comparison between Radiologic Subtypes (WES Cohort)

TTN	1	17	2	27	0.03896	0.02083	0.06896	0.04813	0.55280	1	
1110	1	ч 7	2	21	1	3	6	2	9	1	
Fisher's Exact Test (pGGN vs. PSN)											
Gene Symbol	pGGN_ mut_nu m	pGGN_ nomut_ num	PSN_m ut_num	PSN_n omut_n um	total_m utfreq	pGGN_ mutfre q	PSN_m utfreq	mut_di f	p_value	q_valu e	
					0.54166	•	0.70833	0.33333	0.00195	0.03917	
EGFR	18	30	34	14	7	0.375	3	3	9	6	
RBM10	3	45	13	35	0.16666	0.0625	0.27083	0.20833	0.01188	0.11885	
					0 14592		3	3	0.04004	0.26606	
TP53	3	45	11	37	0.14385	0.0625	0.22910	0.10000	0.04004	0.20090	
					5	0 02082	/	0 00222	0 20270	9	
RYR1	1	47	5	43	0.0625	0.02085	0.10410	0.08555	0.20579	0.09172	
STK11	4	44	3	45	0.07291 7	0.08333	0.0625	0.02083	1	1	
					0.05208		0.04166	0.02083			
BIRC6	3	45	2	46	3	0.0625	7	3	I	1	
MUC4	2	46	4	44	0.0625	0.04166	0.08333	0.04166	0.67730	0.96758	
						7	3	7	7	2	
CHD2	3	45	3	45	0.0625	0.0625	0.0625	0	1	1	
KRAS	2	46	2	46	0.04166	0.04166	0.04166	0	1	1	
					7	7	7		0.04010	0.00170	
ARIDI B	0	48	3	45	0.03125	0	0.0625	0.0625	0.24210	0.69172	
CCDC1	3	45	1	47	0.04166	0.0625	0.02083	0.04166	0.61697	0.94919	
68	5	15	1	.,	7	0.0025	3	7	8	7	
CPXM2	1	47	3	45	0.04166	0.02083	0.0625	0.04166	0.61697	0.94919	
					7	3		7	8	7	
FLG	3	45	2	46	0.05208	0.0625	0.04166 7	0.02083	1	1	
FRG1	1	47	4	44	0.05208 3	0.02083 3	0.08333 3	0.0625	0.36163	0.90407 5	
HMCN	0	10	5	42	0.05208	0	0.10416	0.10416	0.05602	0.28013	
1	0	40	5	43	3	0	7	7	7	6	
MUC16	1	47	3	45	0.04166	0.02083	0.0625	0.04166	0.61697	0.94919	
					7	3	0.04177	7	8	7	
PPP2R5	0	48	2	46	0.02083	0	0.04166	0.04166	0.49473	0.94919	
А					3				0.24210	0 60172	
RIMS2	0	48	3	45	0.03125	0	0.0625	0.0625	0.24210	0.091/2	
					0.04166	0 02083		0.04166	0 61697	, 94919	
RSPO1	1	47	3	45	7	3	0.0625	7	8	7	
	1	17	r	16	0.02125	0.02083	0.04166	0.02083	1	1	
----------------	----------------------	------------------------	-----------------	-----------------------	-------------------	----------------------	-----------------	--------------	--------------	-------------	
IIN	1	4/	2	40	0.03123	3	7	3	1	1	
			Fis	sher's Exac	et Test (HC	GGN vs. PS	SN)				
Gene Symbol	HGGN _mut_n um	HGGN _nomut _num	PSN_m ut_num	PSN_n omut_n um	total_m utfreq	HGGN _mutfr eq	PSN_m utfreq	mut_di f	p_value	q_valu e	
EGFR	15	14	34	14	0.63636 4	0.51724 1	0.70833 3	0.19109 2	0.14171 5	1	
RBM10	7	22	13	35	0.25974	0.24137 9	0.27083 3	0.02945 4	1	1	
TP53	5	24	11	37	0.20779 2	0.17241 4	0.22916 7	0.05675 3	0.77272 8	1	
RYR1	2	27	5	43	0.09090 9	0.06896 6	0.10416 7	0.03520 1	0.70434 4	1	
STK11	1	28	3	45	0.05194 8	0.03448 3	0.0625	0.02801 7	1	1	
BIRC6	2	27	2	46	0.05194 8	0.06896 6	0.04166 7	0.02729 9	0.62935 5	1	
MUC4	1	28	4	44	0.06493 5	0.03448 3	0.08333 3	0.04885 1	0.64458 7	1	
CHD2	0	29	3	45	0.03896 1	0	0.0625	0.0625	0.28639 8	1	
KRAS	2	27	2	46	0.05194 8	0.06896 6	0.04166 7	0.02729 9	0.62935 5	1	
ARID1 B	2	27	3	45	0.06493 5	0.06896 6	0.0625	0.00646 6	1	1	
CCDC1 68	1	28	1	47	0.02597 4	0.03448 3	0.02083 3	0.01364 9	1	1	
CPXM2	1	28	3	45	0.05194 8	0.03448 3	0.0625	0.02801 7	1	1	
FLG	0	29	2	46	0.02597 4	0	0.04166 7	0.04166 7	0.52426 5	1	
FRG1	0	29	4	44	0.05194 8	0	0.08333 3	0.08333 3	0.29094 1	1	
HMCN 1	0	29	5	43	0.06493 5	0	0.10416 7	0.10416 7	0.15037 6	1	
MUC16	1	28	3	45	0.05194 8	0.03448 3	0.0625	0.02801 7	1	1	
PPP2R5 A	3	26	2	46	0.06493 5	0.10344 8	0.04166 7	0.06178 2	0.35898 8	1	

RIMS2	2	27	3	45	0.06493	0.06896	0.0625	0.00646	1	1	
KIIVI52	2	21	5	ч.	5	6	0.0025	6	1		
RSPO1	1	28	3	45	0.05194	0.03448	0.0625	0.02801	1	1	
101 01	1	20	5	15	8	3	0.0025	7	1	1	
TTN	2	27	2	46	0.05194	0.06896	0.04166	0.02729	0.62935	1	
1110	2	21	2	40	8	6	7	9	5	1	

Cochran-Armitage Trend Test										
Cono	pGGN_	pGGN_	HGGN	HGGN	PSN m	PSN_n	pGGN_	HGGN	PSN m	n vəlu
Symbol	mut_nu	nomut_	_mut_n	_nomut	ut num	omut_n	mutfre	_mutfr	1 SIN_III	p_valu
Symbol	m	num	um	_num	ut_num	um	q	eq	utileq	e
EGER	18	30	15	14	34	14	0 375	0.51724	0.70833	0.00105
LOIX	10	50	15	14	54	17	0.575	1	3	9
RBM10	3	45	7	22	13	35	0.0625	0.24137	0.27083	0.00843
RDIII10	5	15	,	22	15	55	0.0025	9	3	9
TP53	3	45	5	24	11	37	0.0625	0.17241	0.22916	0.02295
	-		-					4	7	2
RYR1	1	47	2	27	5	43	0.02083	0.06896	0.10416	0.09531
							3	6	7	5
STK11	4	44	1	28	3	45	0.08333	0.03448	0.0625	0.67667
							3	3	0.041.66	8
BIRC6	3	45	2	27	2	46	0.0625	0.06896	0.04166	0.65711
							0.04166	0.02449	0.09222	C 27464
MUC4	2	46	1	28	4	44	0.04166	0.03448	0.08333	0.3/464
CHD2	3	45	0	20	3	45	0.0625	3	0.0625	9
CHD2	5	45	0	29	5	45	0.0023	0 06896	0.0023	1
KRAS	2	46	2	27	2	46	0.04100	0.00090	0.04100	1
ARID1							,	0.06896	,	
B	0	48	2	27	3	45	0	6.00076	0.0625	0.11817
CCDC1								0.03448	0.02083	0.29756
68	3	45	1	28	1	47	0.0625	3	3	6
							0.02083	0.03448		0.29756
CPXM2	1	47	1	28	3	45	3	3	0.0625	6
PF ~			0	•			0 0 C 0 7		0.04166	0.60248
FLG	3	45	0	29	2	46	0.0625	0	7	3
FD C1	1	47	0	20	4		0.02083	0	0.08333	0 11017
FRGI	1	47	0	29	4	44	3	0	3	0.1181/
HMCN	0	10	0	20	5	12	0	0	0.10416	0.00021
1	0	48	0	29	3	43	0	0	7	0.00921
MUCIA	1	17	1	20	2	15	0.02083	0.03448	0.0625	0.29756
WICCIO	1	4/	1	20	3	43	3	3	0.0023	6
PPP2R5	0	10	2	76	r	16	0	0.10344	0.04166	0.29756
А	0	40	3	20	Z	40	0	8	7	6

RIMS2	0	48	2	27	3	45	0	0.06896 6	0.0625	0.11817
RSPO1	1	47	1	28	3	45	0.02083 3	0.03448 3	0.0625	0.29756 6
TTN	1	47	2	27	2	46	0.02083	0.06896 6	0.04166 7	0.60248

	Fisher's Exact Test (pGGN vs. HGGN)											
Gene	pGGN_	pGGN_n	HGGN_	HGGN_n	total_	»CCN	HGGN	mut di	n val	<i>a v</i> a		
Symb	mut_nu	omut_nu	mut_nu	omut_nu	mutfre	pGGN_	_mutfr	mut_u f	p_vai	q_va		
ol	m	m	m	m	q	mutneq	eq	1	uc	Iuc		
FGED	21	10	21	10	0.6774	0.67741	0.67741	0	1	1		
LOFK	21	10	21	10	1935	935	935	0	1	1		
RBM	6	25	6	25	0.1935	0.19354	0.19354	0	1	1		
10	0	23	0	23	4839	839	839	0	1	1		
ТР53	2	29	4	27	0.0967	0.06451	0.12903	0.06451	0.6713	1		
11 55	2	29	7	27	7419	613	226	613	2683	1		
ERBB	1	30	2	20	0.0483	0.03225	0.06451	0.03225	1	1		
2	1	50	2	29	871	806	613	806	1	1		
VDAS	6	25	r	20	0.1290	0.19354	0.06451	0.12903	0.2554	1		
KKAS	0	23	Z	29	3226	839	613	226	0587	1		
	1	20	1	20	0.0322	0.03225	0.03225	0	1	1		
DIAI	1	30	1	50	5806	806	806	0	1	1		
MAP2	1	30	1	30	0.0322	0.03225	0.03225	0	1	1		
K1	1	50	1	50	5806	806	806	0	1	1		
MED	0	21	1	20	0.0161	0	0.03225	0.03225	1	1		
12	0	51	1	50	2903	0	806	806	1	1		
NE1	1	20	0	21	0.0161	0.03225	0	0.03225	1	1		
INF I	1	50	0	51	2903	806	0	806	1	1		
MET	0	31	0	31	0	0	0	0	1	1		
SETD	1	20	0	21	0.0161	0.03225	0	0.03225	1	1		
2	1	50	0	51	2903	806	0	806	1	1		
U2AF	2	20	0	21	0.0483	0.09677	0	0.09677	0.2377	1		
1	3	28	0	31	871	419	0	419	0492	1		

|--|

Fisher's Exact Test (pGGN vs. PSN)											
Gene Symb ol	pGGN_ mut_nu m	pGGN_n omut_nu m	PSN_m ut_num	PSN_no mut_num	total_ mutfre q	pGGN_ mutfreq	PSN_m utfreq	mut_di f	p_val ue	q_va lue	
EGFR	21	10	94	21	0.7876 7123	0.67741 935	0.81739 13	0.13997 195	0.1351 5397	0.405 4619 1	
RBM 10	6	25	20	95	0.1780 8219	0.19354 839	0.17391 304	0.01963 534	0.7945 9189	1	
TP53	2	29	23	92	0.1712 3288	0.06451 613	0.2	0.13548 387	0.1058 5	0.405 4619 1	
ERBB 2	1	30	1	114	0.0136 9863	0.03225 806	0.00869 565	0.02356 241	0.3807 2744	0.652 6756	

KRAS	6	25	6	109	0.0821 9178	0.19354 839	0.05217 391	0.14137 447	0.0205 9624	0.181 1476 2
BRAF	1	30	0	115	0.0068 4932	0.03225 806	0	0.03225 806	0.2123 2877	0.509 5890 4
MAP2 K1	1	30	1	114	0.0136 9863	0.03225 806	0.00869 565	0.02356 241	0.3807 2744	0.652 6756 2
MED 12	0	31	4	111	0.0273 9726	0	0.03478 261	0.03478 261	0.5786 1077	0.867 9161 5
NF1	1	30	5	110	0.0410 9589	0.03225 806	0.04347 826	0.01122 02	1	1
MET	0	31	3	112	0.0205 4795	0	0.02608 696	0.02608 696	1	1
SETD 2	1	30	5	110	0.0410 9589	0.03225 806	0.04347 826	0.01122 02	1	1
U2AF 1	3	28	1	114	0.0273 9726	0.09677 419	0.00869 565	0.08807 854	0.0301 9127	0.181 1476 2

			Fish	er's Exact T	est (HGGI	N vs. PSN)				
Gene Symb ol	HGGN_ mut_nu m	HGGN_n omut_nu m	PSN_m ut_num	PSN_no mut_num	total_ mutfre q	HGGN_ mutfreq	PSN_m utfreq	mut_di f	p_val ue	q_va lue
EGFR	21	10	94	21	0.7876 7123	0.67741 935	0.81739 13	0.13997 195	0.1351 5397	0.810 9238 1
RBM 10	6	25	20	95	0.1780 8219	0.19354 839	0.17391 304	0.01963 534	0.7945 9189	1
TP53	4	27	23	92	0.1849 3151	0.12903 226	0.2	0.07096 774	0.4441 45	1
ERBB 2	2	29	1	114	0.0205 4795	0.06451 613	0.00869 565	0.05582 048	0.1140 9621	0.810 9238 1
KRAS	2	29	6	109	0.0547 9452	0.06451 613	0.05217 391	0.01234 222	0.6775 79	1
BRAF	1	30	0	115	0.0068 4932	0.03225 806	0	0.03225 806	0.2123 2877	0.849 3150 7
MAP2 K1	1	30	1	114	0.0136 9863	0.03225 806	0.00869 565	0.02356 241	0.3807 2744	1

MED	1	20	4	111	0.0342	0.03225	0.03478	0.00252	1	1
12	1	30	4	111	4658	806	261	454	1	1
NE1	0	21	5	110	0.0342	0	0.04347	0.04347	0.5845	1
INF I	0	51	3	110	4658	0	826	826	4583	1
MET	0	21	2	112	0.0205	0	0.02608	0.02608	1	1
IVIE I	0	51	3	112	4795	0	696	696	1	1
SETD	0	21	5	110	0.0342	0	0.04347	0.04347	0.5845	1
2	0	51	3	110	4658	0	826	826	4583	1
U2AF	0	31	1	114	0.0068	0	0.00869	0.00869	1	1
1	0	51	1	114	4932	0	565	565	1	1

I					4932		565	565		
			0	Cochran-Arm	nitage Tre	nd Test				
Gene	pGGN_	pGGN_n	HGGN_	HGGN_n	PSN_	PSN_no	pGGN_	HGGN	PSN_	n vo
Symb	mut_nu	omut_nu	mut_nu	omut_nu	mut_n	mut_nu	mutfre	_mutfr	mutfr	p_va luo
ol	m	m	m	m	um	m	q	eq	eq	iue
							0 67741	0 67741	0.9172	0.051
EGFR	21	10	21	10	94	21	0.07/41	0.07/41	0.81/5	6617
							955	955	915	1
RBM	6	25	6	25	20	05	0.19354	0.19354	0.1739	0.764
10	0	23	0	23	20	95	839	839	1304	7516
							0.06451	0 12002		0.057
TP53	2	29	4	27	23	92	0.06451	0.12903	0.2	7003
							013	220		8
EDDD							0.02225	0.06451	0.0096	0.215
сквв	1	30	2	29	1	114	0.03223	0.00431	0.0080	0450
Z							800	013	9303	8
							0 10254	0.06451	0.0521	0.016
KRAS	6	25	2	29	6	109	0.19334	0.00431	7201	8683
							839	013	/391	1
							0.02225	0.02225		0.073
BRAF	1	30	1	30	0	115	0.03223	0.03223	0	4529
							800	800		1
MADO							0.02225	0.02225	0.0096	0.284
MAP2	1	30	1	30	1	114	0.03223	0.03223	0.0080	3409
K1							800	800	9303	8
MED								0.02225	0.0247	0.340
	0	31	1	30	4	111	0	0.03223	0.0347 8261	4568
12								800	8201	3
							0.02225		0.0424	0.536
NF1	1	30	0	31	5	110	0.03223	0	0.0434 7896	4463
							800		/820	6
									0.0260	0.235
MET	0	31	0	31	3	112	0	0	0.0260	8879
									8090	1

SETD 2	1	30	0	31	5	110	0.03225 806	0	0.0434 7826	0.536 4463 6
U2AF 1	3	28	0	31	1	114	0.09677 419	0	0.0086 9565	0.010 8952 2

gene1	gene2	pValue	oddsRat io	0	1 1	1	10	Event	pair	event_rat io
KRAS	EGFR	1.42E- 07	0	76	0	15 6	15	Mutually_Exclus ive	EGFR, KRAS	0/171
EGFR	BRAF	1.29E- 06	0	78	0	13	15 6	Mutually_Exclus ive	BRAF, EGFR	0/169
ERBB2	EGFR	3.44E- 06	0.061524	75	2	15 4	16	Mutually_Exclus ive	EGFR, ERBB2	2/170
MET	EGFR	0.00079 2	0	84	0	15 6	7	Mutually_Exclus ive	EGFR, MET	0/163
MAP2K 1	EGFR	0.00439 8	0.078145	84	1	15 5	7	Mutually_Exclus ive	EGFR, MAP2K1	1/162
RBM10	EGFR	0.00668	3.205901	84	3 3	12 3	7	Co_Occurence	EGFR, RBM10	33/130
NF1	KRAS	0.07803 7	5.713022	22 6	2	13	6	Co_Occurence	KRAS, NF1	2/19
EGFR	TP53	0.11005 7	2.17553	84	2 4	7	13 2	Co_Occurence	EGFR, TP53	24/139
NF1	RBM10	0.12283 9	3.253973	20 2	3	37	5	Co_Occurence	NF1, RBM10	3/42
EGFR	MED12	0.14854 3	0.338828	86	3	5	15 3	Mutually_Exclus ive	EGFR, MED12	3/158
EGFR	NF1	0.14854 3	0.338828	86	3	5	15 3	Mutually_Exclus ive	EGFR, NF1	3/158
MET	MED12	0.20814	5.465339	23 3	1	7	6	Co_Occurence	MED12, MET	1/13
MET	NF1	0.20814	5.465339	23 3	1	7	6	Co_Occurence	MET, NF1	1/13
SETD2	NF1	0.20814	5.465339	23 3	1	7	6	Co_Occurence	NF1, SETD2	1/13
SETD2	TP53	0.21457 4	2.892558	21 1	2	29	5	Co_Occurence	SETD2, TP53	2/34
SETD2	EGFR	0.26593	3.585399	90	6	15 0	1	Co_Occurence	EGFR, SETD2	6/151
SETD2	RBM10	0.31673 8	2.118239	20 2	2	38	5	Co_Occurence	RBM10, SETD2	2/43
MED12	ERBB2	0.45905 3	1.859618	22 2	1	17	7	Co_Occurence	ERBB2, MED12	1/24
RBM10	U2AF1	0.50905 4	1.73893	20 4	1	3	39	Co_Occurence	RBM10, U2AF1	1/42
BRAF	KRAS	0.56639 4	1.307931	22 0	1	14	12	Co_Occurence	BRAF, KRAS	1/26

69 Table S8. Co-occurrence and Mutual Exclusivity of Driver Gene in the Entire Cohort

TP53	MAP2K 1	0.60084 9	0	20 8	0	8	31	Mutually_Exclus ive	MAP2K1, TP53	0/39
TP53	MET	0.60084 9	0	20 9	0	7	31	Mutually_Exclus	MET, TP53	0/38
RBM10	MET	0.60225	0	20 0	0	7	40	Mutually_Exclus	MET, RBM10	0/47
BRAF	ERBB2	0.60700 8	0	21 6	0	18	13	Mutually_Exclus	BRAF, ERBB2	0/31
ERBB2	KRAS	0.61017 2	0	21 4	0	15	18	Mutually_Exclus ive	ERBB2, KRAS	0/33
MED12	RBM10	0.61930 5	1.758363	20 1	2	38	6	Co_Occurence	MED12, RBM10	2/44
U2AF1	EGFR	0.62684 4	0.579298	89	2	15 4	2	Mutually_Exclus ive	EGFR, U2AF1	2/156
ERBB2	TP53	0.70877 3	0.391283	19 9	1	30	17	Mutually_Exclus ive	ERBB2, TP53	1/47
ERBB2	RBM10	0.74555 9	0.629327	19 1	2	38	16	Mutually_Exclus ive	ERBB2, RBM10	2/54
TP53	RBM10	0.79534 2	0.741583	18 0	4	36	27	Mutually_Exclus ive	RBM10, TP53	4/63
MET	ERBB2	1	0	22 2	0	18	7	Mutually_Exclus ive	ERBB2, MET	0/25
SETD2	ERBB2	1	0	22 2	0	18	7	Mutually_Exclus ive	ERBB2, SETD2	0/25
U2AF1	ERBB2	1	0	22 5	0	18	4	Mutually_Exclus ive	ERBB2, U2AF1	0/22
MAP2K 1	KRAS	1	0	22 4	0	15	8	Mutually_Exclus ive	KRAS, MAP2K1	0/23
MED12	KRAS	1	0	22 4	0	15	8	Mutually_Exclus ive	KRAS, MED12	0/23
RBM10	BRAF	1	0.938014	19 6	2	11	38	Mutually_Exclus ive	BRAF, RBM10	2/49
MET	BRAF	1	0	22 7	0	13	7	Mutually_Exclus ive	BRAF, MET	0/20
SETD2	BRAF	1	0	22 7	0	13	7	Mutually_Exclus ive	BRAF, SETD2	0/20
MED12	MAP2K 1	1	0	23 1	0	8	8	Mutually_Exclus ive	MAP2K1, MED12	0/16
NF1	MAP2K 1	1	0	23 1	0	8	8	Mutually_Exclus ive	MAP2K1, NF1	0/16
U2AF1	MAP2K 1	1	0	23 5	0	8	4	Mutually_Exclus ive	MAP2K1, U2AF1	0/12
NF1	MED12	1	0	23 1	0	8	8	Mutually_Exclus	MED12, NF1	0/16

U2AF1	MED12	1	0	23 5	0	8	4	Mutually_Exclus ive	MED12, U2AF1	0/12
U2AF1	NF1	1	0	23 5	0	8	4	Mutually_Exclus	NF1, U2AF1	0/12
TP53	U2AF1	1	0	21 2	0	4	31	Mutually_Exclus	TP53, U2AF1	0/35
BRAF	U2AF1	1	0	23 0	0	4	13	Mutually_Exclus ive	BRAF, U2AF1	0/17
KRAS	RBM10	1	0.786141	19 4	2	38	13	Mutually_Exclus ive	KRAS, RBM10	2/51
MAP2K 1	RBM10	1	0.733437	20 0	1	39	7	Mutually_Exclus ive	MAP2K1, RBM10	1/46
KRAS	TP53	1	1.076611	20 3	2	29	13	Co_Occurence	KRAS, TP53	2/42
BRAF	TP53	1	0.567743	20 4	1	30	12	Mutually_Exclus ive	BRAF, TP53	1/42
MED12	TP53	1	0.995257	20 9	1	30	7	Mutually_Exclus ive	MED12, TP53	1/37
NF1	TP53	1	0.995257	20 9	1	30	7	Mutually_Exclus ive	NF1, TP53	1/37
MAP2K 1	ERBB2	1	0	22 1	0	18	8	Mutually_Exclus ive	ERBB2, MAP2K1	0/26
NF1	ERBB2	1	0	22 1	0	18	8	Mutually_Exclus ive	ERBB2, NF1	0/26
MET	KRAS	1	0	22 5	0	15	7	Mutually_Exclus ive	KRAS, MET	0/22
SETD2	KRAS	1	0	22 5	0	15	7	Mutually_Exclus ive	KRAS, SETD2	0/22
U2AF1	KRAS	1	0	22 8	0	15	4	Mutually_Exclus ive	KRAS, U2AF1	0/19
MAP2K 1	BRAF	1	0	22 6	0	13	8	Mutually_Exclus ive	BRAF, MAP2K1	0/21
MED12	BRAF	1	0	22 6	0	13	8	Mutually_Exclus ive	BRAF, MED12	0/21
NF1	BRAF	1	0	22 6	0	13	8	Mutually_Exclus ive	BRAF, NF1	0/21
MET	MAP2K 1	1	0	23 2	0	8	7	Mutually_Exclus ive	MAP2K1, MET	0/15
SETD2	MAP2K 1	1	0	23 2	0	8	7	Mutually_Exclus ive	MAP2K1, SETD2	0/15
SETD2	MED12	1	0	23 2	0	8	7	Mutually_Exclus ive	MED12, SETD2	0/15
SETD2	MET	1	0	23 3	0	7	7	Mutually_Exclus	MET, SETD2	0/14

U2AF1	MET	1	0	23 6	0	7	4	Mutually_Exclus ive	MET, U2AF1	0/11
U2AF1	SETD2	1	0	23 6	0	7	4	Mutually_Exclus ive	SETD2, U2AF1	0/11

gene1	gene2	pValue	oddsRati o	0	1 1	1	1 0	Event	pair	event_rati 0
EGFR	BRAF	0.00076 7	0	3 1	0	1 2	3 4	Mutually_Exclusi ve	BRAF, EGFR	0/46
RBM10	SETD2	0.01537 9	Inf	6 7	2	0	8	Co_Occurence	RBM10, SETD2	2/8
KRAS	EGFR	0.01563 7	0	3 6	0	3 4	7	Mutually_Exclusi ve	EGFR, KRAS	0/41
NF1	SETD2	0.07689 7	30.00147	7 3	1	1	2	Co_Occurence	NF1, SETD2	1/3
RBM10	EGFR	0.09686 7	3.401013	4 0	7	2 7	3	Co_Occurence	EGFR, RBM10	7/30
ERBB2	EGFR	0.17102 4	0.277594	3 5	2	3 2	8	Mutually_Exclusi ve	EGFR, ERBB2	2/40
SETD2	EGFR	0.19172 9	Inf	4 3	2	3 2	0	Co_Occurence	EGFR, SETD2	2/32
MAP2K 1	EGFR	0.25051 3	0	4 0	0	3 4	3	Mutually_Exclusi ve	EGFR, MAP2K1	0/37
KRAS	NF1	0.25167 5	5.438548	6 8	1	2	6	Co_Occurence	KRAS, NF1	1/8
TP53	KRAS	0.32246 2	3.622946	6 7	1	6	3	Co_Occurence	KRAS, TP53	1/9
NF1	RBM10	0.34511 3	3.522404	6 5	1	9	2	Co_Occurence	NF1, RBM10	1/11
U2AF1	RBM10	0.34511 3	3.522404	6 5	1	9	2	Co_Occurence	RBM10, U2AF1	1/11
BRAF	ERBB2	0.34664 3	0	5 5	0	1 0	1 2	Mutually_Exclusi ve	BRAF, ERBB2	0/22
RBM10	TP53	0.43361 1	2.33571	6 4	1	3	9	Co_Occurence	RBM10, TP53	1/12
TP53	BRAF	0.49970 3	1.860275	6 2	1	1 1	3	Co_Occurence	BRAF, TP53	1/14
MET	EGFR	0.50034 2	0	4 1	0	3 4	2	Mutually_Exclusi ve	EGFR, MET	0/36
KRAS	ERBB2	0.58501 6	0	6 0	0	1 0	7	Mutually_Exclusi ve	ERBB2, KRAS	0/17
EGFR	TP53	0.62566 1	0.408402	4 0	1	3	3 3	Mutually_Exclusi ve	EGFR, TP53	1/36
BRAF	RBM10	0.65031 6	1.417855	5 7	2	8	1 0	Co_Occurence	BRAF, RBM10	2/18
NF1	EGFR	1	0.624913	4 1	1	3 3	2	Mutually_Exclusi ve	EGFR, NF1	1/35

71 Table S9. Co-occurrence and Mutual Exclusivity of Driver Gene in pGGN Cohort

U2AF1	EGFR	1	0.624913	4 1	1	3 3	2	Mutually_Exclusi ve	EGFR, U2AF1	1/35
MAP2K 1	TP53	1	0	7 0	0	4	3	Mutually_Exclusi ve	MAP2K1, TP53	0/7
NF1	TP53	1	0	7 0	0	4	3	Mutually_Exclusi ve	NF1, TP53	0/7
U2AF1	TP53	1	0	7 0	0	4	3	Mutually_Exclusi ve	TP53, U2AF1	0/7
RBM10	KRAS	1	1.127811	6 1	1	6	9	Co_Occurence	KRAS, RBM10	1/15
BRAF	KRAS	1	0.895201	5 9	1	6	1 1	Mutually_Exclusi ve	BRAF, KRAS	1/17
KRAS	MAP2K 1	1	0	6 7	0	3	7	Mutually_Exclusi ve	KRAS, MAP2K1	0/10
BRAF	MAP2K 1	1	0	6 2	0	3	1 2	Mutually_Exclusi ve	BRAF, MAP2K1	0/15
BRAF	NF1	1	0	6 2	0	3	1 2	Mutually_Exclusi ve	BRAF, NF1	0/15
KRAS	MET	1	0	6 8	0	2	7	Mutually_Exclusi ve	KRAS, MET	0/9
MAP2K 1	MET	1	0	7 2	0	2	3	Mutually_Exclusi ve	MAP2K1, MET	0/5
NF1	MET	1	0	7 2	0	2	3	Mutually_Exclusi ve	MET, NF1	0/5
U2AF1	MET	1	0	7 2	0	2	3	Mutually_Exclusi ve	MET, U2AF1	0/5
KRAS	SETD2	1	0	6 8	0	2	7	Mutually_Exclusi ve	KRAS, SETD2	0/9
MAP2K 1	SETD2	1	0	7 2	0	2	3	Mutually_Exclusi ve	MAP2K1, SETD2	0/5
U2AF1	SETD2	1	0	7 2	0	2	3	Mutually_Exclusi ve	SETD2, U2AF1	0/5
KRAS	U2AF1	1	0	6 7	0	3	7	Mutually_Exclusi ve	KRAS, U2AF1	0/10
BRAF	U2AF1	1	0	6 2	0	3	1 2	Mutually_Exclusi	BRAF, U2AF1	0/15
ERBB2	RBM10	1	0.718886	5	1	9	9	Mutually_Exclusi	ERBB2, RBM10	1/18
MAP2K 1	RBM10	1	0	6 4	0	1	3	Mutually_Exclusi	MAP2K1, RBM10	0/13
MET	RBM10	1	0	6 5	0	1	2	Mutually_Exclusi	MET, RBM10	0/12
ERBB2	TP53	1	0	5 6 3	0	4	1 0	Mutually_Exclusi	ERBB2, TP53	0/14

MET	TP53	1	0	7 1	0	4	2	Mutually_Exclusi ve	MET, TP53	0/6
SETD2	TP53	1	0	7 1	0	4	2	Mutually_Exclusi ve	SETD2, TP53	0/6
MAP2K 1	ERBB2	1	0	6 4	0	1 0	3	Mutually_Exclusi ve	ERBB2, MAP2K1	0/13
NF1	ERBB2	1	0	6 4	0	1 0	3	Mutually_Exclusi ve	ERBB2, NF1	0/13
MET	ERBB2	1	0	6 5	0	1 0	2	Mutually_Exclusi ve	ERBB2, MET	0/12
SETD2	ERBB2	1	0	6 5	0	1 0	2	Mutually_Exclusi ve	ERBB2, SETD2	0/12
U2AF1	ERBB2	1	0	6 4	0	1 0	3	Mutually_Exclusi ve	ERBB2, U2AF1	0/13
MET	BRAF	1	0	6 3	0	1 2	2	Mutually_Exclusi ve	BRAF, MET	0/14
SETD2	BRAF	1	0	6 3	0	1 2	2	Mutually_Exclusi ve	BRAF, SETD2	0/14
NF1	MAP2K 1	1	0	7 1	0	3	3	Mutually_Exclusi ve	MAP2K1, NF1	0/6
U2AF1	MAP2K 1	1	0	7 1	0	3	3	Mutually_Exclusi ve	MAP2K1, U2AF1	0/6
U2AF1	NF1	1	0	7 1	0	3	3	Mutually_Exclusi ve	NF1, U2AF1	0/6
SETD2	MET	1	0	7 3	0	2	2	Mutually_Exclusi ve	MET, SETD2	0/4

1	2	X 7 I	oddsRati	0	1	1	1		•	event_rati
genel	gene2	pValue	0	0	1	I	0	Event	pair	0
ERBB2	EGFR	0.00231	0	1 5	0	2 6	7	Mutually_Exclusi ve	EGFR, ERBB2	0/33
EGFR	MAP2K 1	0.03759 4	0	1 8	0	4	2 6	Mutually_Exclusi ve	EGFR, MAP2K1	0/30
EGFR	KRAS	0.20478 7	0	2 0	0	2	2 6	Mutually_Exclusi ve	EGFR, KRAS	0/28
RBM10	EGFR	0.26029	2.935722	2 0	6	2 0	2	Co_Occurence	EGFR, RBM10	6/22
MED12	ERBB2	0.27305	6.248816	4 0	1	6	1	Co_Occurence	ERBB2, MED12	1/7
MED12	RBM10	0.30851 1	5.278088	3 9	1	7	1	Co_Occurence	MED12, RBM10	1/8
EGFR	BRAF	0.45833 3	0	2 1	0	1	2 6	Mutually_Exclusi ve	BRAF, EGFR	0/27
EGFR	MET	0.45833 3	0	2 1	0	1	2 6	Mutually_Exclusi ve	EGFR, MET	0/27
TP53	ERBB2	0.47954 6	2.070908	3 8	1	6	3	Co_Occurence	ERBB2, TP53	1/9
RBM10	TP53	0.53032 2	1.737862	3 7	1	3	7	Co_Occurence	RBM10, TP53	1/10
TP53	EGFR	0.61416 9	2.686965	2 1	3	2 3	1	Co_Occurence	EGFR, TP53	3/24
MED12	KRAS	1	0	4 4	0	2	2	Mutually_Exclusi ve	KRAS, MED12	0/4
ERBB2	BRAF	1	0	4 0	0	1	7	Mutually_Exclusi ve	BRAF, ERBB2	0/8
RBM10	MAP2K 1	1	0	3 6	0	4	8	Mutually_Exclusi ve	MAP2K1, RBM10	0/12
ERBB2	MET	1	0	4 0	0	1	7	Mutually_Exclusi ve	ERBB2, MET	0/8
MED12	EGFR	1	0.843073	2 1	1	2 5	1	Mutually_Exclusi ve	EGFR, MED12	1/26
ERBB2	RBM10	1	0.812919	3 4	1	7	6	Mutually_Exclusi ve	ERBB2, RBM10	1/13
KRAS	RBM10	1	0	3 8	0	8	2	Mutually_Exclusi ve	KRAS, RBM10	0/10
BRAF	RBM10	1	0	3 9	0	8	1	Mutually_Exclusi ve	BRAF, RBM10	0/9
MET	RBM10	1	0	3 9	0	8	1	Mutually_Exclusi ve	MET, RBM10	0/9

73 Table S10. Co-occurrence and Mutual Exclusivity of Driver Gene in HGGN Cohort.

KRAS	TP53	1	0	4 2	0	4	2	Mutually_Exclusive	KRAS, TP53	0/6
BRAF	TP53	1	0	4 3	0	4	1	Mutually_Exclusi ve	BRAF, TP53	0/5
MAP2K 1	TP53	1	0	4 0	0	4	4	Mutually_Exclusi ve	MAP2K1, TP53	0/8
MED12	TP53	1	0	4 2	0	4	2	Mutually_Exclusi ve	MED12, TP53	0/6
MET	TP53	1	0	4 3	0	4	1	Mutually_Exclusi ve	MET, TP53	0/5
KRAS	ERBB2	1	0	3 9	0	7	2	Mutually_Exclusi ve	ERBB2, KRAS	0/9
MAP2K 1	ERBB2	1	0	3 7	0	7	4	Mutually_Exclusi ve	ERBB2, MAP2K1	0/11
BRAF	KRAS	1	0	4 5	0	2	1	Mutually_Exclusi ve	BRAF, KRAS	0/3
MAP2K 1	KRAS	1	0	4 2	0	2	4	Mutually_Exclusi ve	KRAS, MAP2K1	0/6
MET	KRAS	1	0	4 5	0	2	1	Mutually_Exclusi ve	KRAS, MET	0/3
MAP2K 1	BRAF	1	0	4 3	0	1	4	Mutually_Exclusi ve	BRAF, MAP2K1	0/5
MED12	BRAF	1	0	4 5	0	1	2	Mutually_Exclusi ve	BRAF, MED12	0/3
MET	BRAF	1	0	4 6	0	1	1	Mutually_Exclusi ve	BRAF, MET	0/2
MED12	MAP2K 1	1	0	4 2	0	4	2	Mutually_Exclusi ve	MAP2K1, MED12	0/6
MET	MAP2K 1	1	0	4 3	0	4	1	Mutually_Exclusi ve	MAP2K1, MET	0/5
MET	MED12	1	0	4 5	0	2	1	Mutually_Exclusi ve	MED12, MET	0/3

gene1	gene2	pValue	oddsRati	0	1	1	1	Event	pair	event_rati
WD 4 G	EGER	5.70E-	0	•	1	9	0	Mutually_Exclusi		0
KRAS	EGFR	05	0	20	0	6	6	ve	EGFR, KRAS	0/102
MET	EGFR	0.00170 2	0	22	0	9 6	4	Mutually_Exclusi ve	EGFR, MET	0/100
EGFR	MED12	0.01848 5	0.119935	22	2	4	9 4	Mutually_Exclusi ve	EGFR, MED12	2/98
EGFR	NF1	0.06443 7	0.166494	23	2	3	9 4	Mutually_Exclusi ve	EGFR, NF1	2/97
MET	NF1	0.15594	9.061337	11 4	1	4	3	Co_Occurence	MET, NF1	1/7
RBM10	EGFR	0.15656 4	3.134555	24	2 0	7 6	2	Co_Occurence	EGFR, RBM10	20/78
MAP2K 1	RBM10	0.18032 8	Inf	10 0	1	2 1	0	Co_Occurence	MAP2K1, RBM10	1/21
MED12	MET	0.18479 7	7.255076	11 3	1	3	5	Co_Occurence	MED12, MET	1/8
EGFR	ERBB2	0.21311 5	0	25	0	1	9 6	Mutually_Exclusi ve	EGFR, ERBB2	0/97
NF1	RBM10	0.22062 8	3.191895	97	2	2 0	3	Co_Occurence	NF1, RBM10	2/23
NF1	KRAS	0.22624 8	5.4435	11 2	1	5	4	Co_Occurence	KRAS, NF1	1/9
SETD2	TP53	0.23727 5	3.011054	96	2	2 1	3	Co_Occurence	SETD2, TP53	2/24
TP53	RBM10	0.24329 2	0.378628	79	2	2 0	2 1	Mutually_Exclusi ve	RBM10, TP53	2/41
EGFR	TP53	0.39977 9	2.007438	23	2 0	3	7 6	Co_Occurence	EGFR, TP53	20/79
RBM10	SETD2	0.58383	0	95	0	5	2 2	Mutually_Exclusi ve	RBM10, SETD2	0/27
MAP2K 1	EGFR	1	Inf	26	1	9 5	0	Co_Occurence	EGFR, MAP2K1	1/95
SETD2	EGFR	1	1.08623	25	4	9 2	1	Co_Occurence	EGFR, SETD2	4/93
U2AF1	EGFR	1	Inf	26	1	9 5	0	Co_Occurence	EGFR, U2AF1	1/95
NF1	TP53	1	1.078867	95	1	2 2	4	Co_Occurence	NF1, TP53	1/26
TP53	KRAS	1	0.855599	94	1	5	2 2	Mutually_Exclusi ve	KRAS, TP53	1/27

75 Table S11. Co-occurrence and Mutual Exclusivity of Driver Gene in PSN Cohort.

TP53	MED12	1	0.855599	94	1	5	2 2	Mutually_Exclusi ve	MED12, TP53	1/27
KRAS	MET	1	0	11 2	0	4	6	Mutually_Exclusi ve	KRAS, MET	0/10
MET	SETD2	1	0	11 3	0	5	4	Mutually_Exclusi ve	MET, SETD2	0/9
ERBB2	RBM10	1	0	99	0	2 2	1	Mutually_Exclusi ve	ERBB2, RBM10	0/23
KRAS	RBM10	1	0.905483	95	1	2 1	5	Mutually_Exclusi ve	KRAS, RBM10	1/26
MED12	RBM10	1	0.905483	95	1	2 1	5	Mutually_Exclusi ve	MED12, RBM10	1/26
MET	RBM10	1	0	96	0	2 2	4	Mutually_Exclusi ve	MET, RBM10	0/26
U2AF1	RBM10	1	0	99	0	2 2	1	Mutually_Exclusi ve	RBM10, U2AF1	0/23
ERBB2	TP53	1	0	98	0	2 3	1	Mutually_Exclusi ve	ERBB2, TP53	0/24
MAP2K 1	TP53	1	0	98	0	2 3	1	Mutually_Exclusi ve	MAP2K1, TP53	0/24
MET	TP53	1	0	95	0	2 3	4	Mutually_Exclusi ve	MET, TP53	0/27
U2AF1	TP53	1	0	98	0	2 3	1	Mutually_Exclusi ve	TP53, U2AF1	0/24
KRAS	ERBB2	1	0	11 5	0	1	6	Mutually_Exclusi ve	ERBB2, KRAS	0/7
MAP2K 1	ERBB2	1	0	12 0	0	1	1	Mutually_Exclusi ve	ERBB2, MAP2K1	0/2
MED12	ERBB2	1	0	11 5	0	1	6	Mutually_Exclusi ve	ERBB2, MED12	0/7
NF1	ERBB2	1	0	11 6	0	1	5	Mutually_Exclusi ve	ERBB2, NF1	0/6
MET	ERBB2	1	0	11 7	0	1	4	Mutually_Exclusi ve	ERBB2, MET	0/5
SETD2	ERBB2	1	0	11 6	0	1	5	Mutually_Exclusi ve	ERBB2, SETD2	0/6
U2AF1	ERBB2	1	0	12 0	0	1	1	Mutually_Exclusi ve	ERBB2, U2AF1	0/2
MAP2K 1	KRAS	1	0	11 5	0	6	1	Mutually_Exclusi ve	KRAS, MAP2K1	0/7
MED12	KRAS	1	0	11 0	0	6	6	Mutually_Exclusi ve	KRAS, MED12	0/12
SETD2	KRAS	1	0	11 1	0	6	5	Mutually_Exclusi	KRAS, SETD2	0/11

U2AF1	KRAS	1	0	11 5	0	6	1	Mutually_Exclusi ve	KRAS, U2AF1	0/7
MED12	MAP2K 1	1	0	11 5	0	1	6	Mutually_Exclusi ve	MAP2K1, MED12	0/7
NF1	MAP2K 1	1	0	11 6	0	1	5	Mutually_Exclusi ve	MAP2K1, NF1	0/6
MET	MAP2K 1	1	0	11 7	0	1	4	Mutually_Exclusi ve	MAP2K1, MET	0/5
SETD2	MAP2K 1	1	0	11 6	0	1	5	Mutually_Exclusi ve	MAP2K1, SETD2	0/6
U2AF1	MAP2K 1	1	0	12 0	0	1	1	Mutually_Exclusi ve	MAP2K1, U2AF1	0/2
NF1	MED12	1	0	11 1	0	6	5	Mutually_Exclusi ve	MED12, NF1	0/11
SETD2	MED12	1	0	11 1	0	6	5	Mutually_Exclusi ve	MED12, SETD2	0/11
U2AF1	MED12	1	0	11 5	0	6	1	Mutually_Exclusi ve	MED12, U2AF1	0/7
SETD2	NF1	1	0	11 2	0	5	5	Mutually_Exclusi ve	NF1, SETD2	0/10
U2AF1	NF1	1	0	11 6	0	5	1	Mutually_Exclusi ve	NF1, U2AF1	0/6
U2AF1	MET	1	0	11 7	0	4	1	Mutually_Exclusi ve	MET, U2AF1	0/5
U2AF1	SETD2	1	0	11 6	0	5	1	Mutually_Exclusi ve	SETD2, U2AF1	0/6

77	Table S12. Pathway Alteration Comparison between Radiologic Subtypes (Alteration Frequency >
78	0.01 were included).

			Fisher	's Exact Test	(pGGN v	s. HGGN)				
Pathw ay	pGGN_ mut_nu m	pGGN_n omut_nu m	HGGN_ mut_nu m	HGGN_n omut_nu m	total_ mutfre	pGGN_ mutfreq	HGGN _mutfre	mut_di f	p_val ue	q_v alue
RTK_	50	27	37	11	<u>ч</u> 0.696	0.64935	4 0.77083	0.1214	0.167	1
RAS p53	6	71	3	45	0.072	1 0.07792 2	3 0.0625	83 0.0154 22	217 1	1
RNA_ splicin	9	68	4	44	0.104	0.11688	0.08333	0.0335	0.764 694	1
PI3K	5	72	3	45	0.064	0.06493 5	0.0625	0.0024 35	1	1
Cell_c ycle	2	75	1	47	0.024	0.02597 4	0.02083 3	0.0051 41	1	1
Мус	3	74	2	46	0.04	0.03896 1	0.04166 7	0.0027 06	1	1
Wnt	0	77	1	47	0.008	0	0.02083 3	0.0208 33	0.384	1
Hippo	0	77	0	48	0	0	0	0	1	1
Notch	2	75	0	48	0.016	0.02597 4	0	0.0259 74	0.523 097	1
TGFB	0	77	0	48	0	0	0	0	1	1

			Fishe	r's Exact Tes	t (pGGN	vs. PSN)				
Pathw ay	pGGN_ mut_nu m	pGGN_n omut_nu m	PSN_mu t_num	PSN_nom ut_num	total_ mutfre q	pGGN_ mutfreq	PSN_m utfreq	mut_di f	p_val ue	q_v alue
RTK_ RAS	50	27	93	29	0.7185 93	0.64935 1	0.76229 5	0.1129 44	0.105 526	0.31 981 3
p53	6	71	31	91	0.1859 3	0.07792 2	0.25409 8	0.1761 76	0.002 397	0.02 397 1
RNA_ splicin g	9	68	18	104	0.1356 78	0.11688	0.14754 1	0.0306 58	0.671 835	0.67 849 2
PI3K	5	72	11	111	0.0804 02	0.06493 5	0.09016 4	0.0252 29	0.601 549	0.67 849 2

Cell_c ycle	2	75	12	110	0.0703 52	0.02597 4	0.09836 1	0.0723 87	0.084 428	0.31 981 3
Мус	3	74	3	119	0.0301 51	0.03896 1	0.02459	0.0143 71	0.678 492	0.67 849 2
Wnt	0	77	4	118	0.0201 01	0	0.03278 7	0.0327 87	0.159 906	0.31 981 3
Нірро	0	77	3	119	0.0150 75	0	0.02459	0.0245 9	0.284 757	0.47 459 5
Notch	2	75	0	122	0.0100 5	0.02597 4	0	0.0259 74	0.148 52	0.31 981 3
TGFB	0	77	2	120	0.0100 5	0	0.01639 3	0.0163 93	0.523 171	0.67 849 2

			Fishe	r's Exact Tes	t (HGGN	vs. PSN)				
Pathw ay	HGGN_ mut_nu m	HGGN_n omut_nu m	PSN_mu t_num	PSN_nom ut_num	total_ mutfre q	HGGN _mutfre q	PSN_m utfreq	mut_di f	p_val ue	q_v alue
RTK_ RAS	37	11	93	29	0.7647 06	0.77083 3	0.76229 5	0.0085 38	1	1
p53	3	45	31	91	0.2	0.0625	0.25409 8	0.1915 98	0.004 964	0.04 964 2
RNA_ splicin g	4	44	18	104	0.1294 12	0.08333 3	0.14754 1	0.0642 08	0.318 674	1
PI3K	3	45	11	111	0.0823 53	0.0625	0.09016 4	0.0276 64	0.759 329	1
Cell_c ycle	1	47	12	110	0.0764 71	0.02083 3	0.09836 1	0.0775 27	0.113 279	0.56 639 5
Мус	2	46	3	119	0.0294 12	0.04166 7	0.02459	0.0170 77	0.621 893	1
Wnt	1	47	4	118	0.0294 12	0.02083 3	0.03278 7	0.0119 54	1	1
Hippo	0	48	3	119	0.0176 47	0	0.02459	0.0245 9	0.559 584	1
Notch	0	48	0	122	0	0	0	0	1	1

TGFB	0	48	2	120	0.0117 65	0	0.01639 3	0.0163 93	1	1
			<u> </u>			1 T 4				
Pathw ay	pGGN_ mut_nu m	pGGN_no mut_num	HGGN_ mut_nu m	HGGN_n omut_nu m	PSN_ mut_n um	PSN_no mut_nu m	pGGN_ mutfreq	HGGN _mutfre q	PSN_ mutfre	p_v alue
RTK_ RAS	50	27	37	11	93	29	0.64935	0.7708	0.762	0.09 653
p53	6	71	3	45	31	91	0.07792 2	0.0625	0.254 098	0.00 05
RNA_ splicin g	9	68	4	44	18	104	0.11688 3	0.0833 33	0.147 541	0.46 383 9
PI3K	5	72	3	45	11	111	0.06493 5	0.0625	0.090 164	0.49 041 1
Cell_c ycle	2	75	1	47	12	110	0.02597 4	0.0208 33	0.098 361	0.02 760 6
Мус	3	74	2	46	3	119	0.03896 1	0.0416 67	0.024 59	0.55 115 6
Wnt	0	77	1	47	4	118	0	0.0208 33	0.032 787	0.11 229 4
Hippo	0	77	0	48	3	119	0	0	0.024 59	0.10 490 3
Notch	2	75	0	48	0	122	0.02597 4	0	0	0.05 613 9
TGFB	0	77	0	48	2	120	0	0	0.016 393	0.18 641 1

			Fisher	's Exact Tes	t (pGGN v	vs. HGGN)				
Pathw	pGGN_	pGGN_n omut_nu	HGGN_	HGGN_n	total_ mutfre	pGGN_	HGGN mutfr	mut dif	p_val	q_v
ay	m	m	mut_nu	m	a	mutfreq	ea	mut_un	ue	alue
RTK_ RAS	25	23	16	13	0.5324 68	0.52083	0.55172	0.03089	0.8179 45	0.81 794 5
RNA_ splicin g	3	45	7	22	0.1298 7	0.0625	0.24137 9	0.17887 9	0.0354 41	0.14 176 3
p53	3	45	5	24	0.1038 96	0.0625	0.17241 4	0.10991 4	0.1447 75	0.28 955
PI3K	5	43	1	28	0.0779 22	0.10416 7	0.03448	0.06968 4	0.4002 41	0.53 365 5

0 Table S13. Pathway Alteration Comparison between Radiologic Subtypes (WES Cohort).

			Fish	er's Exact Te	est (pGGN	vs. PSN)				
Pathw ay	pGGN_ mut_nu m	pGGN_n omut_nu m	PSN_m ut_num	PSN_no mut_num	total_ mutfre q	pGGN_ mutfreq	PSN_m utfreq	mut_dif	p_val ue	q_v alue
RTK_ RAS	25	23	37	11	0.6458 33	0.52083 3	0.77083 3	0.25	0.0182 61	0.02 434 8
RNA_ splicin g	3	45	13	35	0.1666 67	0.0625	0.27083 3	0.20833 3	0.0118 86	0.02 377 1
p53	3	45	13	35	0.1666 67	0.0625	0.27083 3	0.20833 3	0.0118 86	0.02 377 1
PI3K	5	43	3	45	0.0833 33	0.10416 7	0.0625	0.04166 7	0.7144 71	0.71 447 1

			Fishe	er's Exact Te	st (HGGN	vs. PSN)				
Pathw ay	HGGN_ mut_nu m	HGGN_n omut_nu m	PSN_m ut_num	PSN_no mut_num	total_ mutfre q	HGGN_ mutfreq	PSN_m utfreq	mut_dif	p_val ue	q_v alue
RTK_ RAS	16	13	37	11	0.6883 12	0.55172 4	0.77083 3	0.21910 9	0.0742 15	0.29 686 2
RNA_ splicin g	7	22	13	35	0.2597 4	0.24137 9	0.27083 3	0.02945 4	1	1

p53	5	24	13	35	0.2337 66	0.17241 4	0.27083 3	0.09842	0.4102 37	0.82 047 3
PI3K	1	28	3	45	0.0519 48	0.03448	0.0625	0.02801 7	1	1

			C	ochran-Arm	itage Tren	d Test				
Dathar	pGGN_	pGGN_n	HGGN_	HGGN_n	PSN_	PSN_no	pGGN_	HGGN	PSN_	
ratiiw	mut_nu	omut_nu	mut_nu	omut_nu	mut_n	mut_nu	mutfre	_mutfr	mutfr	p_v
ay	m	m	m	m	um	m	q	eq	eq	alue
DTV							0 52082	0 55172	0 7709	0.01
RIK_	25	23	16	13	37	11	0.52085	0.55172	0.7708	145
KAS							5	4	55	6
RNA_								0 24137	0 2708	0.00
splicin	3	45	7	22	13	35	0.0625	0.24137	0.2700	843
g)	55	9
								0 17241	0 2708	0.00
p53	3	45	5	24	13	35	0.0625	0.17241	0.2708	633
								-	55	5
							0 10416	0 03448		0.42
PI3K	5	43	1	28	3	45	0.10410	3	0.0625	971
							/	5		1

			Fisher	's Exact Test	t (pGGN v	vs. HGGN)				
Dathw	pGGN_	pGGN_n	HGGN_	HGGN_n	total_	pGGN_	HGGN	mut di	n vol	<i>a va</i>
ratiiw	mut_nu	omut_nu	mut_nu	omut_nu	mutfre	mutfre	_mutfr	mut_u f	p_vai	q_va
ау	m	m	m	m	q	q	eq	I	ue	Iue
RTK_	22	0	25	6	0.7580	0.70967	0.80645	0.0967	0.554	1
RAS	22	9	23	0	6452	742	161	7419	14549	1
252	1	27	2	20	0.1129	0.12903	0.09677	0.0322	1	1
p55	4	27	3	28	0323	226	419	5806	1	1
RNA_					0 1451	0 10354	0.00677	0.0067	0 472	
splicin	6	25	3	28	6120	0.19554 920	410	7410	0.472	1
g					0129	839	419	/419	92113	
DI2V	r	20	2	20	0.0645	0.06451	0.06451	0	1	1
FISK	2	29	2	29	1613	613	613	0	1	1
Cell_c	1	20	1	20	0.0322	0.03225	0.03225	0	1	1
ycle	1	30	1	50	5806	806	806	0	1	1
Muo	2	20	1	20	0.0483	0.06451	0.03225	0.0322	1	1
wryc	Z	29	1	50	871	613	806	5806	1	1
Wat	0	21	1	20	0.0161	0	0.03225	0.0322	1	1
wni	0	51	1	30	2903	0	806	5806	1	1
Hippo	0	31	0	31	0	0	0	0	1	1

82 Table S14. Pathway Alteration Comparison between Radiologic Subtypes (IAC).

			Fishe	er's Exact Te	st (pGGN	vs. PSN)				
Pathw ay	pGGN_ mut_nu m	pGGN_n omut_nu m	PSN_m ut_num	PSN_no mut_num	total_ mutfre q	pGGN_ mutfre q	PSN_m utfreq	mut_di f	p_val ue	q_va lue
RTK_ RAS	22	9	90	25	0.7671 2329	0.70967 742	0.78260 87	0.0729 3128	0.472 834	0.771 4810 3
p53	4	27	31	84	0.2397 2603	0.12903 226	0.26956 522	0.1405 3296	0.153 70098	0.771 4810 3
RNA_ splicin g	6	25	16	99	0.1506 8493	0.19354 839	0.13913 043	0.0544 1795	0.571 12231	0.771 4810 3
PI3K	2	29	10	105	0.0821 9178	0.06451 613	0.08695 652	0.0224 4039	1	1
Cell_c ycle	1	30	11	104	0.0821 9178	0.03225 806	0.09565 217	0.0633 9411	0.461 58636	0.771 4810 3
Мус	2	29	2	113	0.0273 9726	0.06451 613	0.01739 13	0.0471 2482	0.198 00114	0.771 4810 3

Wnt	0	31	4	111	0.0273 9726	0	0.03478 261	0.0347 8261	0.578 61077	0.771 4810 3
Нірро	0	31	3	112	0.0205 4795	0	0.02608 696	0.0260 8696	1	1

			Fishe	r's Exact Te	st (HGGN	vs. PSN)				
Pathw ay	HGGN_ mut_nu m	HGGN_n omut_nu m	PSN_m ut_num	PSN_no mut_num	total_ mutfre q	HGGN _mutfre q	PSN_m utfreq	mut_di f	p_val ue	q_va lue
RTK_	25	6	90	25	0.7876	0.80645	0.78260 87	0.0238	1	1
p53	3	28	31	84	0.2328 7671	0.09677 419	0.26956 522	0.1727 9102	0.054 72575	0.437 8060 2
RNA_ splicin g	3	28	16	99	0.1301 3699	0.09677 419	0.13913 043	0.0423 5624	0.764 78113	1
PI3K	2	29	10	105	0.0821 9178	0.06451 613	0.08695 652	0.0224 4039	1	1
Cell_c ycle	1	30	11	104	0.0821 9178	0.03225 806	0.09565 217	0.0633 9411	0.461 58636	1
Мус	1	30	2	113	0.0205 4795	0.03225 806	0.01739 13	0.0148 6676	0.514 04306	1
Wnt	1	30	4	111	0.0342 4658	0.03225 806	0.03478 261	0.0025 2454	1	1
Hippo	0	31	3	112	0.0205 4795	0	0.02608 696	0.0260 8696	1	1

			Co	ochran-Armi	tage Tren	d Test				
Dathw	pGGN_	nGGN no	HGGN_	HGGN_n	PSN_	PSN_no	nGGN	HGGN	PSN_	n vo
i atiiw av	mut_nu	mut num	mut_nu	omut_nu	mut_n	mut_nu	putfreq	_mutfre	mutfr	p_va lue
ау	m	IIIut_IIuIII	m	m	um	m	mutileq	q	eq	Iuc
RTK							0 70967	0.8064	0 782	0.488
	22	9	25	6	90	25	0.70907	5161	6087	7301
KAS							/42	5101	0087	5
							0 12002	0.0067	0.260	0.034
p53	4	27	3	28	31	84	0.12905	0.0907	0.209	0425
							220	/419	36322	6
RNA_							0 10254	0.00(7	0.120	0.603
splicin	6	25	3	28	16	99	0.19354	0.0967	0.139	3236
g							839	/419	13043	5

РІЗК	2	29	2	29	10	105	0.06451 613	0.0645 1613	0.086 95652	0.625 7861 1
Cell_c ycle	1	30	1	30	11	104	0.03225 806	0.0322 5806	0.095 65217	0.154 0711 8
Мус	2	29	1	30	2	113	0.06451 613	0.0322 5806	0.017 3913	0.164 4756 8
Wnt	0	31	1	30	4	111	0	0.0322 5806	0.034 78261	0.340 4568 3
Нірро	0	31	0	31	3	112	0	0	0.026 08696	0.235 8879 1

		pValu	oddsRa	0/	1/	0/	1/	E4		event_r
	patnway2	e	tio	0	1	1	0	Event	pair	atio
PI3K	Мус	7.63E- 05	25.7955 8	22 5	5	3	14	Co_Occurence	Myc, PI3K	5/17
Cell_cycle	PI3K	0.0002 98	10.9895 1	21 9	6	13	9	Co_Occurence	Cell_cycle, PI3K	6/22
Мус	Cell_cycle	0.0085 08	11.0748 1	22 7	3	12	5	Co_Occurence	Cell_cycle, Myc	3/17
RNA_spli cing	RTK_RA S	0.0178 01	3.91345	64	2 8	15 2	3	Co_Occurence	RNA_splicing, RTK_RAS	28/155
Cell_cycle	p53	0.0202 57	3.85235 8	19 8	6	34	9	Co_Occurence	Cell_cycle, p53	6/43
RTK_RA S	TGFB	0.0727 76	0	65	0	2	18 0	Mutually_Excl usive	RTK_RAS, TGFB	0/182
Мус	RTK_RA S	0.1120 83	Inf	67	8	17 2	0	Co_Occurence	Myc, RTK_RAS	8/172
PI3K	Notch	0.1482 18	12.3018 9	22 7	1	1	18	Co_Occurence	Notch, PI3K	1/19
Мус	RNA_spli cing	0.2644 68	2.40228 6	21 0	2	29	6	Co_Occurence	Myc, RNA_splicing	2/35
RTK_RA S	PI3K	0.2959 41	2.07604 7	64	1 6	3	16 4	Co_Occurence	PI3K, RTK_RAS	16/167
RNA_spli cing	p53	0.3018 13	1.61388 5	18 3	7	33	24	Co_Occurence	p53, RNA_splicing	7/57
PI3K	Wnt	0.3321 09	3.08875 9	22 4	1	4	18	Co_Occurence	PI3K, Wnt	1/22
RNA_spli cing	Hippo	0.3324 13	3.53859 6	21 4	1	2	30	Co_Occurence	Hippo, RNA_splicing	1/32
Мус	p53	0.3607 73	0	19 9	0	40	8	Mutually_Excl usive	Myc, p53	0/48
RTK_RA S	Cell_cycle	0.3675 73	2.5223	65	1 3	2	16 7	Co_Occurence	Cell_cycle, RTK_RAS	13/169
p53	Hippo	0.4127 9	2.61457 4	20 5	1	2	39	Co_Occurence	Hippo, p53	1/41
RTK_RA S	Notch	0.4697 34	0.37046 4	66	1	1	17 9	Mutually_Excl usive	Notch, RTK_RAS	1/180
Hippo	RTK_RA S	0.5649 66	Inf	67	3	17 7	0	Co_Occurence	Hippo, RTK_RAS	3/177
Wnt	p53	0.5898 68	1.29977 3	20 3	1	39	4	Co_Occurence	p53, Wnt	1/43
Cell_cycle	RNA_spli cing	0.7011 08	0.48207	20 2	1	30	14	Mutually_Excl usive	Cell_cycle, RNA_splicing	1/44

84 Table S15. Co-occurrence and Mutual Exclusivity of Oncogenic Pathway in the Entire Cohort.

RTK_RA	p53	1	0.97779	56	2	11	15	Mutually_Excl	p53, RTK_RAS	29/162
Notch	p53	1	4	20	9	40	2	usive Mutually_Excl	Notch, p53	0/42
TGFB	p53	1	0	5 20 5	0	40	2	usive Mutually_Excl usive	p53, TGFB	0/42
Hippo	PI3K	1	0	22 5	0	19	3	Mutually_Excl usive	Hippo, PI3K	0/22
TGFB	PI3K	1	0	22 6	0	19	2	Mutually_Excl usive	PI3K, TGFB	0/21
Wnt	Мус	1	0	23 4	0	8	5	Mutually_Excl usive	Myc, Wnt	0/13
Cell_cycle	Wnt	1	0	22 7	0	5	15	Mutually_Excl usive	Cell_cycle, Wnt	0/20
Hippo	Wnt	1	0	23 9	0	5	3	Mutually_Excl usive	Hippo, Wnt	0/8
Notch	Нірро	1	0	24 2	0	3	2	Mutually_Excl usive	Hippo, Notch	0/5
TGFB	Нірро	1	0	24 2	0	3	2	Mutually_Excl usive	Hippo, TGFB	0/5
Wnt	RTK_RA S	1	1.49783 4	66	4	17 6	1	Co_Occurence	RTK_RAS, Wnt	4/177
PI3K	p53	1	0.96802 4	19 1	3	37	16	Mutually_Excl usive	p53, PI3K	3/53
PI3K	RNA_spli cing	1	0.80795 6	19 9	2	29	17	Mutually_Excl usive	PI3K, RNA_splicing	2/46
Wnt	RNA_spli cing	1	0	21 1	0	31	5	Mutually_Excl usive	RNA_splicing, Wnt	0/36
Notch	RNA_spli cing	1	0	21 4	0	31	2	Mutually_Excl usive	Notch, RNA_splicing	0/33
TGFB	RNA_spli cing	1	0	21 4	0	31	2	Mutually_Excl usive	RNA_splicing, TGFB	0/33
Hippo	Cell_cycle	1	0	22 9	0	15	3	Mutually_Excl usive	Cell_cycle, Hippo	0/18
Notch	Cell_cycle	1	0	23 0	0	15	2	Mutually_Excl usive	Cell_cycle, Notch	0/17
TGFB	Cell_cycle	1	0	23 0	0	15	2	Mutually_Excl usive	Cell_cycle, TGFB	0/17
Hippo	Мус	1	0	23 6	0	8	3	Mutually_Excl usive	Нірро, Мус	0/11
Notch	Мус	1	0	23 7	0	8	2	Mutually_Excl usive	Myc, Notch	0/10
TGFB	Мус	1	0	23 7	0	8	2	Mutually_Excl usive	Myc, TGFB	0/10

Notch	Wnt	1	0	24 0	0	5	2	Mutually_Excl usive	Notch, Wnt	0/7
TGFB	Wnt	1	0	24 0	0	5	2	Mutually_Excl usive	TGFB, Wnt	0/7
TGFB	Notch	1	0	24 3	0	2	2	Mutually_Excl usive	Notch, TGFB	0/4

		pValu	oddsRa	0/	1/	0/	1/	F (•	event_r
pathwayl	pathway2	e	tio	0	1	1	0	Event	pair	atio
Cell_cycle	PI3K	0.0034 18	Inf	7 2	2	3	0	Co_Occurence	Cell_cycle, PI3K	2/3
Мус	Cell_cycle	0.0768 97	30.0014 7	7 3	1	1	2	Co_Occurence	Cell_cycle, Myc	1/3
Notch	PI3K	0.1264 52	15.9926 5	7 1	1	4	1	Co_Occurence	Notch, PI3K	1/5
RNA_spli cing	p53	0.1426 58	4.43267 6	6 4	2	4	7	Co_Occurence	p53, RNA_splicing	2/11
RNA_spli cing	RTK_RA S	0.1488 1	4.87412 9	2 6	8	4 2	1	Co_Occurence	RNA_splicing, RTK_RAS	8/43
PI3K	Мус	0.1846 89	8.21345 5	7 0	1	2	4	Co_Occurence	Myc, PI3K	1/6
Мус	RNA_spli cing	0.3148 87	4.00748 9	6 6	1	8	2	Co_Occurence	Myc, RNA_splicing	1/10
Cell_cycle	RTK_RA S	0.5386 19	Inf	2 7	2	4 8	0	Co_Occurence	Cell_cycle, RTK_RAS	2/48
Мус	RTK_RA S	0.5478 47	Inf	2 7	3	4 7	0	Co_Occurence	Myc, RTK_RAS	3/47
PI3K	RNA_spli cing	1	0	6 3	0	9	5	Mutually_Excl usive	PI3K, RNA_splicing	0/14
Мус	Notch	1	0	7 2	0	2	3	Mutually_Excl usive	Myc, Notch	0/5
p53	RTK_RA S	1	1.08580 4	2 5	4	4 6	2	Co_Occurence	p53, RTK_RAS	4/48
PI3K	RTK_RA S	1	0.80029 6	2 5	3	4 7	2	Mutually_Excl usive	PI3K, RTK_RAS	3/49
Wnt	RTK_RA S	1	0	2 7	0	5 0	0	Mutually_Excl usive	RTK_RAS, Wnt	0/50
Hippo	RTK_RA S	1	0	2 7	0	5 0	0	Mutually_Excl usive	Hippo, RTK_RAS	0/50
Notch	RTK_RA S	1	0.53526 6	2 6	1	4 9	1	Mutually_Excl usive	Notch, RTK_RAS	1/50
TGFB	RTK_RA S	1	0	2 7	0	5 0	0	Mutually_Excl usive	RTK_RAS, TGFB	0/50
PI3K	p53	1	0	6 6	0	6	5	Mutually_Excl usive	p53, PI3K	0/11
Cell_cycle	p53	1	0	6 9	0	6	2	Mutually_Excl usive	Cell_cycle, p53	0/8
Мус	p53	1	0	6 8	0	6	3	Mutually_Excl usive	Мус, р53	0/9

86 Table S16. Co-occurrence and Mutual Exclusivity of Oncogenic Pathway in pGGN Cohort.

Wnt	p53	1	0	7 1	0	6	0	Mutually_Excl usive	p53, Wnt	0/6
Hippo	p53	1	0	7 1	0	6	0	Mutually_Excl usive	Hippo, p53	0/6
Notch	p53	1	0	6 9	0	6	2	Mutually_Excl usive	Notch, p53	0/8
TGFB	p53	1	0	7 1	0	6	0	Mutually_Excl usive	p53, TGFB	0/6
Cell_cycle	RNA_spli cing	1	0	6 6	0	9	2	Mutually_Excl usive	Cell_cycle, RNA_splicing	0/11
Wnt	RNA_spli cing	1	0	6 8	0	9	0	Mutually_Excl usive	RNA_splicing, Wnt	0/9
Hippo	RNA_spli cing	1	0	6 8	0	9	0	Mutually_Excl usive	Hippo, RNA_splicing	0/9
Notch	RNA_spli cing	1	0	6 6	0	9	2	Mutually_Excl usive	Notch, RNA_splicing	0/11
TGFB	RNA_spli cing	1	0	6 8	0	9	0	Mutually_Excl usive	RNA_splicing, TGFB	0/9
Wnt	PI3K	1	0	7 2	0	5	0	Mutually_Excl usive	PI3K, Wnt	0/5
Hippo	PI3K	1	0	7 2	0	5	0	Mutually_Excl usive	Hippo, PI3K	0/5
TGFB	PI3K	1	0	7 2	0	5	0	Mutually_Excl usive	PI3K, TGFB	0/5
Wnt	Cell_cycle	1	0	7 5	0	2	0	Mutually_Excl usive	Cell_cycle, Wnt	0/2
Нірро	Cell_cycle	1	0	7 5	0	2	0	Mutually_Excl usive	Cell_cycle, Hippo	0/2
Notch	Cell_cycle	1	0	7 3	0	2	2	Mutually_Excl usive	Cell_cycle, Notch	0/4
TGFB	Cell_cycle	1	0	7 5	0	2	0	Mutually_Excl usive	Cell_cycle, TGFB	0/2
Wnt	Мус	1	0	7 4	0	3	0	Mutually_Excl usive	Myc, Wnt	0/3
Hippo	Мус	1	0	7 4	0	3	0	Mutually_Excl usive	Нірро, Мус	0/3
TGFB	Мус	1	0	7 4	0	3	0	Mutually_Excl usive	Myc, TGFB	0/3
Hippo	Wnt	1	0	7 7	0	0	0	Mutually_Excl usive	Hippo, Wnt	0/0
Notch	Wnt	1	0	7 5	0	0	2	Mutually_Excl usive	Notch, Wnt	0/2
TGFB	Wnt	1	0	7 7	0	0	0	Mutually_Excl usive	TGFB, Wnt	0/0

Notch	Нірро	1	0	7 5	0	0	2	Mutually_Excl usive	Hippo, Notch	0/2
TGFB	Нірро	1	0	7 7	0	0	0	Mutually_Excl usive	Hippo, TGFB	0/0
TGFB	Notch	1	0	7 5	0	2	0	Mutually_Excl usive	Notch, TGFB	0/2

		pValu	oddsRa	0/	1/	0/	1/			event r
pathwayl	pathway2	e	tio	0	1	1	0	Event	pair	atio
PI3K	Мус	0.0026 6	Inf	4 5	2	0	1	Co_Occurence	Myc, PI3K	2/1
p53	RTK_RA S	0.5507 63	0.57901 3	1 0	2	3 5	1	Mutually_Excl usive	p53, RTK_RAS	2/36
RNA_spli cing	RTK_RA S	0.5607 46	Inf	1 1	4	3 3	0	Co_Occurence	RNA_splicing, RTK RAS	4/33
p53	Мус	1	0	4 3	0	2	3	Mutually_Excl usive	 Myc, p53	0/5
PI3K	RTK_RA S	1	Inf	1 1	3	3 4	0	Co_Occurence	PI3K, RTK_RAS	3/34
Cell_cycle	RTK_RA S	1	Inf	1 1	1	3 6	0	Co_Occurence	Cell_cycle, RTK_RAS	1/36
Мус	RTK_RA S	1	Inf	1 1	2	3 5	0	Co_Occurence	Myc, RTK_RAS	2/35
Wnt	RTK_RA S	1	Inf	1 1	1	3 6	0	Co_Occurence	RTK_RAS, Wnt	1/36
Hippo	RTK_RA S	1	0	1 1	0	3 7	0	Mutually_Excl usive	Hippo, RTK_RAS	0/37
Notch	RTK_RA S	1	0	1 1	0	3 7	0	Mutually_Excl usive	Notch, RTK_RAS	0/37
TGFB	RTK_RA S	1	0	1 1	0	3 7	0	Mutually_Excl usive	RTK_RAS, TGFB	0/37
RNA_spli cing	p53	1	0	4 1	0	3	4	Mutually_Excl usive	p53, RNA_splicing	0/7
PI3K	p53	1	0	4 2	0	3	3	Mutually_Excl usive	p53, PI3K	0/6
Cell_cycle	p53	1	0	4 4	0	3	1	Mutually_Excl usive	Cell_cycle, p53	0/4
Wnt	p53	1	0	4 4	0	3	1	Mutually_Excl usive	p53, Wnt	0/4
Нірро	p53	1	0	4 5	0	3	0	Mutually_Excl usive	Hippo, p53	0/3
Notch	p53	1	0	4 5	0	3	0	Mutually_Excl usive	Notch, p53	0/3
TGFB	p53	1	0	4 5	0	3	0	Mutually_Excl usive	p53, TGFB	0/3
PI3K	RNA_spli cing	1	0	4 1	0	4	3	Mutually_Excl usive	PI3K, RNA_splicing	0/7
Cell_cycle	RNA_spli cing	1	0	4 3	0	4	1	Mutually_Excl usive	Cell_cycle, RNA_splicing	0/5

Table S17. Co-occurrence and Mutual Exclusivity of Oncogenic Pathway in HGGN Cohort.

Мус	RNA_spli cing	1	0	4 2	0	4	2	Mutually_Excl usive	Myc, RNA_splicing	0/6
Wnt	RNA_spli cing	1	0	4 3	0	4	1	Mutually_Excl usive	RNA_splicing, Wnt	0/5
Hippo	RNA_spli	1	0	4 4	0	4	0	Mutually_Excl usive	Hippo, RNA splicing	0/4
Notch	RNA_spli	1	0	4 4	0	4	0	Mutually_Excl usive	Notch, RNA splicing	0/4
TGFB	RNA_spli	1	0	4 4	0	4	0	Mutually_Excl usive	RNA_splicing, TGFB	0/4
Cell_cycle	PI3K	1	0	4 4	0	3	1	Mutually_Excl usive	Cell_cycle, PI3K	0/4
Wnt	PI3K	1	0	4 4	0	3	1	Mutually_Excl usive	PI3K, Wnt	0/4
Нірро	PI3K	1	0	4 5	0	3	0	Mutually_Excl usive	Hippo, PI3K	0/3
Notch	PI3K	1	0	4 5	0	3	0	Mutually_Excl usive	Notch, PI3K	0/3
TGFB	PI3K	1	0	4 5	0	3	0	Mutually_Excl usive	PI3K, TGFB	0/3
Мус	Cell_cycle	1	0	4 5	0	1	2	Mutually_Excl usive	Cell_cycle, Myc	0/3
Wnt	Cell_cycle	1	0	4 6	0	1	1	Mutually_Excl usive	Cell_cycle, Wnt	0/2
Нірро	Cell_cycle	1	0	4 7	0	1	0	Mutually_Excl usive	Cell_cycle, Hippo	0/1
Notch	Cell_cycle	1	0	4 7	0	1	0	Mutually_Excl usive	Cell_cycle, Notch	0/1
TGFB	Cell_cycle	1	0	4 7	0	1	0	Mutually_Excl usive	Cell_cycle, TGFB	0/1
Wnt	Мус	1	0	4 5	0	2	1	Mutually_Excl usive	Myc, Wnt	0/3
Нірро	Мус	1	0	4 6	0	2	0	Mutually_Excl usive	Нірро, Мус	0/2
Notch	Мус	1	0	4 6	0	2	0	Mutually_Excl usive	Myc, Notch	0/2
TGFB	Мус	1	0	4 6	0	2	0	Mutually_Excl usive	Myc, TGFB	0/2
Нірро	Wnt	1	0	4 7	0	1	0	Mutually_Excl usive	Hippo, Wnt	0/1
Notch	Wnt	1	0	4 7	0	1	0	Mutually_Excl usive	Notch, Wnt	0/1
TGFB	Wnt	1	0	4 7	0	1	0	Mutually_Excl usive	TGFB, Wnt	0/1

Notch	Hippo	1	0	4 8	0	0	0	Mutually_Excl usive	Hippo, Notch	0/0
TGFB	Hippo	1	0	4 8	0	0	0	Mutually_Excl usive	Hippo, TGFB	0/0
TGFB	Notch	1	0	4 8	0	0	0	Mutually_Excl usive	Notch, TGFB	0/0
		pValu	Valu oddsRa 0		0/ 1/ 0/		1/	-	·	event r
------------	------------	--------	---------------	------	----------	--------	--------	---------------	---	---------
pathway1	pathway2	e	tio	0	1	1	0	Event	pair	atio –
Cell cycle	PI3K	0.0125	7.14442	10	4	7	8	Co. Occurence	Cell cycle PI3K	4/15
cen_eyele		18	6	3	т	/	0	eo_occurence	cen_eyele, 115K	-11J
PI3K	Mvc	0.0212	22.8925	11	2	1	9	Co Occurence	Mvc, PI3K	2/10
		37	8	0	_	-	-		5	
Myc	Cell cycle	0.0253	20.5586	10	2	1	1	Co Occurence	Cell cycle, Myc	2/11
	_ •	35	4	9		0	0	-	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
RTK_RA	TGFB	0.0550	0	27	0	2	9	Mutually_Excl	RTK_RAS, TGFB	0/95
8		06	2 25954			2	3	usive		
Cell_cycle	p53	0.0/33	3.35854	85	6	2	6	Co_Occurence	Cell_cycle, p53	6/31
	DNA anli	0 2262	79615		1	3	7		DNA anliaina	
KIK_KA	cing	0.2502	2.78015	27	1	2	7 7	Co_Occurence	DTV DAS	16/79
5	Cillg	03181	3 54018	10	0	1	/		KIK_KAS	
Wnt	PI3K	0.5181	J.J4018	8	1	0	3	Co_Occurence	PI3K, Wnt	1/13
RNA spli			2,96265	10		0	1			
cing	Myc	0.3832	8	2	1	2	7	Co_Occurence	Myc, RNA_splicing	1/19
RNA spli			2.96265	10			1		Hippo.	
cing	Hippo	0.3832	8	2	1	2	7	Co_Occurence	RNA splicing	1/19
8	RTK RA	0.4565	3.34844		1	8			_1 0	
PI3K	S –	33	9	28	0	3	1	Co_Occurence	PI3K, RTK_RAS	10/84
	50	0.5700	0	0.0	0	3	2	Mutually_Excl		0/24
Мус	p53	28	0	88	0	1	3	usive	Мус, р53	0/34
RNA_spli	RNA_spli		1.31620	05	C	0	1		PI3K,	2/25
cing	PISK	99	3	3 95		9	6	Co_Occurence	RNA_splicing	2/23
RTK_RA	Cell cycle	0.7292	1 62072	27	1	2	8	Co. Occurence	Cell_cycle,	10/85
S	cen_eyele	4	1.02072	21	0	2	3	co_occurence	RTK_RAS	10/05
n53	RNA_spli	0.7755	1.15244	78	5	1	2	Co Occurence	p53, RNA splicing	5/39
poo	cing	71	1	10	2	3	6		pee, id it_sphenig	0,00
p53	RTK_RA	0.8085	0.86357	21	2	7	8	Mutually_Excl	p53, RTK RAS	23/78
1	S	58	8		3	0	Ū	usive	1 / _	
TGFB	p53	1	0	89	0	3	2	Mutually_Excl	p53, TGFB	0/33
				10		1		usive		
Hippo	PI3K	1	0	10	0	1	3	Mutually_Excl	Hippo, PI3K	0/14
				8		1		usive		
Wnt	TGFB	1	0	11	0	2	4	Mutually_Excl	TGFB, Wnt	0/6
	DTV DA			U	0)	usive			
Myc	KIK_KA	1	Inf	29	3	9 0	0	Co_Occurence	Myc, RTK_RAS	3/90
	RTK RA		0.93386			9		Mutually Excl		
Wnt	S	1	4	28	3	0	1	usive	RTK_RAS, Wnt	3/91
	~		· ·			0				

90 Table S18. Co-occurrence and Mutual Exclusivity of Oncogenic Pathway in PSN Cohort.

Нірро	RTK_RA S	1	Inf	29	3	9 0	0	Co_Occurence	Hippo, RTK_RAS	3/90
Notch	RTK_RA S	1	0	29	0	9 3	0	Mutually_Excl usive	Notch, RTK_RAS	0/93
PI3K	p53	1	1.11061 4	83	3	2 8	8	Co_Occurence	p53, PI3K	3/36
Wnt	p53	1	0.97794 8	88	1	3 0	3	Mutually_Excl usive	p53, Wnt	1/33
Hippo	p53	1	1.47812 4	89	1	3 0	2	Co_Occurence	Hippo, p53	1/32
Notch	p53	1	0	91	0	3 1	0	Mutually_Excl usive	Notch, p53	0/31
Cell_cycle	RNA_spli cing	1	0.49965 8	93	1	1 7	1 1	Mutually_Excl usive	Cell_cycle, RNA_splicing	1/28
Wnt	RNA_spli cing	1	0	10 0	0	1 8	4	Mutually_Excl usive	RNA_splicing, Wnt	0/22
Notch	RNA_spli cing	1	0	10 4	0	1 8	0	Mutually_Excl usive	Notch, RNA_splicing	0/18
TGFB	RNA_spli cing	1	0	10 2	0	1 8	2	Mutually_Excl usive	RNA_splicing, TGFB	0/20
Notch	PI3K	1	0	11 1	0	1 1	0	Mutually_Excl usive	Notch, PI3K	0/11
TGFB	PI3K	1	0	10 9	0	1 1	2	Mutually_Excl usive	PI3K, TGFB	0/13
Wnt	Cell_cycle	1	0	10 6	0	1 2	4	Mutually_Excl usive	Cell_cycle, Wnt	0/16
Hippo	Cell_cycle	1	0	10 7	0	1 2	3	Mutually_Excl usive	Cell_cycle, Hippo	0/15
Notch	Cell_cycle	1	0	11 0	0	1 2	0	Mutually_Excl usive	Cell_cycle, Notch	0/12
TGFB	Cell_cycle	1	0	10 8	0	1 2	2	Mutually_Excl usive	Cell_cycle, TGFB	0/14
Wnt	Мус	1	0	11 5	0	3	4	Mutually_Excl usive	Myc, Wnt	0/7
Hippo	Мус	1	0	11 6	0	3	3	Mutually_Excl usive	Нірро, Мус	0/6
Notch	Мус	1	0	11 9	0	3	0	Mutually_Excl usive	Myc, Notch	0/3
TGFB	Мус	1	0	11 7	0	3	2	Mutually_Excl usive	Myc, TGFB	0/5
Hippo	Wnt	1	0	11 5	0	4	3	Mutually_Excl usive	Hippo, Wnt	0/7
Notch	Wnt	1	0	11 8	0	4	0	Mutually_Excl usive	Notch, Wnt	0/4

Notch	Нірро	1	0	11 9	0	3	0	Mutually_Excl usive	Hippo, Notch	0/3
TGFB	Нірро	1	0	11 7	0	3	2	Mutually_Excl usive	Hippo, TGFB	0/5
TGFB	Notch	1	0	12 0	0	0	2	Mutually_Excl usive	Notch, TGFB	0/2

Mutation Type	Denovo S1	Denovo S2	Denovo S3
A[C>A]A	0.00844882	0.01946685	0.00929192
A[C>A]C	0.01058873	0.02122696	0.00821073
A[C>A]G	0.00184669	0.0215169	1.0589E-11
A[C>A]T	2.716E-19	0.01842074	0.00414456
C[C>A]A	3.449E-11	0.05122111	0.02365877
C[C>A]C	0.01045541	0.06708672	3.37E-19
C[C>A]G	2.716E-19	0.04869143	1.1935E-10
C[C>A]T	1.5885E-10	0.05732029	3.37E-19
G[C>A]A	0.0190271	0.02630604	0.00080165
G[C>A]C	0.00407225	0.0457637	0.00592003
G[C>A]G	0.00537509	0.01982475	0.00741142
G[C>A]T	0.017336	0.01516709	3.3332E-14
T[C>A]A	0.01891275	0.02226011	3.37E-19
T[C>A]C	0.01631495	0.04174828	0.00958281
T[C>A]G	0.00627723	0.01445268	0.00518635
T[C>A]T	0.02507557	0.02177685	0.00890603
A[C>G]A	2.716E-19	0.00545611	0.01501579
A[C>G]C	0.01163693	0.00014119	3.37E-19
A[C>G]G	2.716E-19	0.00173828	0.00961364
A[C>G]T	0.00856425	0.00140933	0.00186256
C[C>G]A	0.00523586	0.00906073	0.00657922
C[C>G]C	0.01169264	0.00277129	0.0038031
C[C>G]G	0.00850836	0.00687692	1.3772E-18
C[C>G]T	0.01323547	0.00616104	0.01131757
G[C>G]A	2.716E-19	0.00724006	0.00152769
G[C>G]C	4.1579E-13	0.00909036	0.00966213
G[C>G]G	0.00408743	0.00755287	0.00114838
G[C>G]T	0.00719203	0.00888754	0.00790054
T[C>G]A	0.01776683	0.00486097	0.00797798
T[C>G]C	0.00972665	0.00898891	0.01686515
T[C>G]G	0.00159686	0.00420948	0.00585366
T[C>G]T	0.01459438	0.00859953	0.02693444
A[C>T]A	0.0141157	0.00431551	0.01134806
A[C>T]C	0.01771037	0.00547925	0.01212854
A[C>T]G	0.07405467	3.8591E-16	2.3578E-10
A[C>T]T	0.00801849	0.00372638	0.00962502
C[C>T]A	0.00656859	0.01398342	0.05069011
C[C>T]C	0.01686089	0.01491764	0.03759897
C[C>T]G	0.06407284	0.01414436	0.02044592
C[C>T]T	0.03025947	0.01903944	0.0143036
G[C>T]A	0.03960585	0.0088074	2.4409E-13
G[C>T]C	0.02899051	0.01515088	0.02726619

92 Table S19. Mutational Signature (WES Cohort).

G[C>T]G	0.05511271	0.01476673	0.04541827
G[C>T]T	0.02137418	0.00318731	0.03084419
T[C>T]A	0.0470116	0.00421427	0.02918832
T[C>T]C	0.02293701	0.01091017	0.042376
T[C>T]G	0.0566332	4.6588E-11	0.01869968
T[C>T]T	0.02618992	0.00676552	0.02849134
A[T>A]A	0.00299552	0.00392378	3.6104E-13
A[T>A]C	0.01341123	0.00388284	3.37E-19
A[T>A]G	0.0056275	0.01337879	0.00802115
A[T>A]T	0.00693047	0.00153862	0.00417338
C[T>A]A	0.007606	0.01735382	3.37E-19
C[T>A]C	2.716E-19	0.01270837	0.00975021
C[T>A]G	2.716E-19	0.0412509	0.01496448
C[T>A]T	0.00386995	0.01262914	0.00606077
G[T>A]A	0.00342073	0.00767632	0.00472554
G[T>A]C	0.00209547	0.01254846	3.37E-19
G[T>A]G	0.00396911	0.02108529	3.37E-19
G[T>A]T	0.00587019	5.8359E-10	4.5774E-12
T[T>A]A	0.00235987	0.00628285	0.00107134
T[T>A]C	0.0036265	0.00356112	0.00419744
T[T>A]G	5.0702E-17	0.01205714	0.00368671
T[T>A]T	2.716E-19	0.00223629	0.00635388
A[T>C]A	2.716E-19	0.00815518	0.03713226
A[T>C]C	0.00231934	0.00245345	0.01890427
A[T>C]G	8.7292E-07	0.00390926	0.04044552
A[T>C]T	0.00973085	0.00209677	0.03122011
C[T>C]A	2.716E-19	0.00573766	0.0099602
C[T>C]C	0.00456378	0.00379401	0.01134779
C[T>C]G	0.01721226	0.0137966	0.01457506
C[T>C]T	0.00904369	6.2698E-18	0.01828664
G[T>C]A	0.00870107	0.00048884	0.00809356
G[T>C]C	0.01806212	3.3476E-12	3.0852E-11
G[T>C]G	0.00838167	0.00928707	0.00838681
G[T>C]T	0.0099438	0.00647772	0.00845367
T[T>C]A	0.00495884	0.00238956	0.00416371
T[T>C]C	0.00543239	9.5927E-18	0.0209969
T[T>C]G	2.716E-19	0.00437761	0.00874432
T[T>C]T	0.00939367	2.936E-19	0.00487944
A[T>G]A	0.0076764	3.7598E-12	4.862E-11
A[T>G]C	9.6817E-12	2.936E-19	0.00745784
A[T>G]G	0.00149979	0.00138124	0.00707653
A[T>G]T	0.00451553	1.2218E-12	2.4834E-10
C[T>G]A	2.716E-19	0.00126421	0.0013213
C[T>G]C	0.0071664	0.00272902	0.00183172

C[T>G]G	0.0032099	0.0025394	0.03849015
C[T>G]T	0.00238831	0.00517183	0.00835264
G[T>G]A	9.4346E-12	2.936E-19	0.0047459
G[T>G]C	0.00136618	0.00121697	1.2777E-10
G[T>G]G	0.00472902	0.00094129	3.37E-19
G[T>G]T	2.4499E-11	2.936E-19	0.00813583
T[T>G]A	4.5747E-10	0.00108086	0.00694687
T[T>G]C	2.268E-11	2.936E-19	0.01084777
T[T>G]G	1.6891E-13	0.00389431	0.00859796
T[T>G]T	0.01083727	3.7835E-12	2.5454E-11