Supplementary Materials

Diversity of Organohalide Respiring Bacteria and Reductive Dehalogenases that Detoxify Polybrominated Diphenyl Ethers in E-waste Recycling Sites

Siyan Zhao¹, Chang Ding², Guofang Xu^{1, 3}, Matthew J. Rogers¹, Rajaganesan Ramaswamy¹,

³, Jianzhong He^{1*}

¹Department of Civil and Environmental Engineering, National University of Singapore,

Singapore 117576

²Helmholtz Centre for Environmental Research – UFZ, Isotope Biogeochemistry,

Permoserstraße 15, 04318 Leipzig, Germany

³NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077

* Corresponding author:
Department of Civil and Environmental Engineering
National University of Singapore
Block E2-02-13
1 Engineering Drive 3, Singapore 117576
Phone: (65) 6516-3385; Fax: (65) 6779-1635
Email: jianzhong.he@nus.edu.sg

Key words:

Polybrominated diphenyl ethers (PBDEs), reductive debromination, PBDE RDases, debromination pathways, *Dehalococcoides*

Supplementary Figures

Figure S1. Concentration of PBDE homolog groups in e-waste soils collected in this study. Concentrations of individual PBDE congeners are available in Supplementary Dataset Table S10.

Figure S2. Abundance of obligate OHRB (*Dehalococcoides*, *Dehalogenimonas* and *Dehalobacter*) in soils and sediments collected from 24 ewaste contaminated sites.

Figure S3. Boxplots of *in situ* Σ PBDEs in microcosms. There was no significant difference in the mean Σ PBDEs in soil samples which showed debromination of either the penta- or octa-BDE mixture (t-test, p < 0.05). The penta-BDE mixture debrominating microcosms comprised EW-2, -3, -4, -5, -6, -7, -8, -11, -12, -13, -14, -15, -17, -19, -20, -21, and the octa-BDE mixture debrominating group comprised EW-4, -6, -17, -19. The concentrations of PBDEs in original soils, water content, and organic content of the original soils are available in Supplementary Dataset Table S10.

Figure S4. Correlations between the abundance of obligate OHRB and debromination of a penta-BDE mixture in microcosms.

Figure S5. Change in abundance of obligate organohalide respiring bacteria genera (i.e., *Dehalococcoides, Dehalogenimonas,* and *Dehalobacter*) in four microcosms that showed debrominating activity of an octa-BDE mixture after 270 days' incubation. The microcosms were established from soil and sediments collected from geographically distinct e-waste contaminated sites. The cell abundance was measured on day0 (D0) and day270 (D270).

Figure S6. Debromination of a tetra- and penta-BDE mixture by enrichment cultures derived from PBDE debrominating microcosms. Kinetics data is available in Supplementary Dataset Table S11.

Figure S7. Debromination of penta- and tetra-BDEs in *in vitro* enzymatic assays using crude cell extracts from cultures of (a) *Dehalococcoides mccartyi* strain CG1 amended with tetrachloroethene (PCE), (b) *D. mccartyi* strain CG4 amended with PCE, and (c) *D. mccartyi* strain 11a5 amended with trichloroethene. DE, diphenyl ether

Figure S8. Dendrogram of putative and characterized reductive dehalogenases (RDases) encoded on the genomes of *Dehalococcoides mccartyi* isolates used in this study (GEO12, 11a, 11G, 11a5, ANAS2, CG1, CG4, and CG5). Blue color font indicates functionally characterized non-PBDE RDases; red color font indicates PBDE RDases. The amino acid sequences and NCBI protein database accession numbers of sequences used to construct this phylogeny are listed in Supplementary Dataset Table S13.

Tables.

Table S1. Mass spectra peak area response factors for PBDE homolog groups. Response factors were determined empirically from a mixture of 39 mono- to hepta-BDEs; response factors for each homolog group were calculated as the mean of the peak area response factor for all congeners in a given homolog group in the congener PBDE mixture. The number of congeners in each homolog group in the congener mixture is indicated (n).

		Response factors,	×10 ⁻⁷ ppm
	n	mean	95% CI
Mono-BDEs	3	2.13	2.12-2.14
Di-BDEs	7	2.08	2.05-2.11
Tri-BDEs	8	2.51	2.48 - 2.54
Tetra-BDEs	6	1.66	1.63-1.68
Penta-BDEs	7	2.38	2.37-2.39
Hexa-BDEs	5	24.16	24.07-24.25
Hepta-BDEs	3	10.45	10.05 - 10.58
Octa-BDEs	3	12.91	12.80-13.02
Nona-BDE	1	155.20	153.12-157.28
Deca-BDE	1	292.80	290.12-295.48

Targets	Primer ID	Sequence 5'-3'	Product size (bp)	Tm	Reference
Dehalococcoides	Dhc-qF2	GGTAATACGTAGGAAGCAAGCG	98	60	[1]
	Dhc-qR	CCGGTTAAGCCGGGAAATT			
Dehalogenimonas	mod-BL-DC-1243f	GGYACAATGGGTTGCCACCGG	127	63	[2]
	BL-DC-1351r	AACGCGCTATGCTGACACGCGT			
Dehalobacter	Dre441F	GTTAGGGAAGAACGGCATCTGT	203	58	[3]
	Dre645R	CCTCTCCTGTCCTCAAGCCATA			
Acetobacterium	Aceto572f	GGCTCAACCGGTGACATGCA	212	63	[4]
	Aceto784r	ACTGAGTCTCCCCAACACCT			
Sulfurospirillum	Sulfuro114f	GCTAACCTGCCCTTTAGTGG	307	59	[5]
	Sulfuro421r	GTTTACACACCGAAATGCGT			
Desulfitobacterium	Dsb1299F	GTGGGGATGACGTCAAATCA	149	58	[6]
	Dsb1448R	CATGTTCTCGAGTTGCAGAGAA			
pbrA1/pcbA1	GY50_1350F	TTTTGGGTAGGACAGGTTGGA	127	60	[7]
	GY50_1350R	AGGAACAGAGTGCCATTGACG			
pbrA2	GY50_1352F	GCGCCTTCATTGATTGCTTC	155	60	[7]
	GY50_1352R	GTTGCCCAACCTGGTCTCG			
pbrA3	GY50_1427F	GTTAAAGATCGGCGTGGTTG	94	60	[7]
	GY50_1427R	TCTGGACGGATGGTGTTGC			
pteA_TZ50	pteA848F	CCATAGGCACCTTGGTAGCA	150	60	[8]
	pteA998R	TCACCAATGCCTGCTAACGT			
tceA_TZ50/tceA_11a5	tceA1279F	ATCCAGATTATGACCCTGGTGAA	58	58	[9]
	tceA1336R	GCGGCATATATTAGGGCATCTT			
bdeA	bdeA628F	CTGCGTCAGGTAGTCCGTTT	131	60	[8]
	bdeA758R	GCCGCTTCGTCTACGTTTTC			
pcbA4/11a5_e001	CG4-F (759F)	TGAAGATGTTGACGCAGCCT	175	60	[10]
	CG4-R (843R)	GCGCATACTCCAGGTGAAGA			

Table S2. Primers used in this study.

Table S3. Sensitivity and amplification metrics for real-time quantitative PCR (qPCR) primers used in this study. LOD, limit of detection; LOQ, limit of quantification; Efficiency, amplification efficiency; r, correlation coefficient of six-point standard curve (range: 5E+02-5E+07 /ml).

	LOD, /ml	LOQ, /ml	Efficiency, %	r
pbrA1/pcbA1	5.77E+01	1.14E+02	102.5	99.8
pbrA2	1.01E+01	3.20E+01	104.3	99.7
pbrA3	2.10E+01	5.20E+01	94.7	99.9
pteA_TZ50	8.40E+01	2.13E+02	105.6	99.7
tceA_TZ50/tceA_11a5	5.69E+01	1.57E+02	99.7	99.9
bdeA	3.40E+01	8.90E+01	104.2	99.8
pcbA4/11a5_e001	2.96E+01	5.80E+01	103.2	99.5

Strain	Origins	Halogenated	End Products/	Characterized	References
		compounds reduced	Dehalogenation pathway	rdh	
11a	Discharge area of an industrial wastewater	TCE, trans-DCE, cis-	Ethene	vcrA	[11, 12]
	treatment station of a chemical plant, China	DCE, 1,1,-DCE, VC, 1,2-DCA			
11a5	Discharge area of an industrial wastewater	PCE, TCE, trans-	VC (ethene)	pteA	[11, 13]
	treatment station of a chemical plant, China	DCE, <i>cis</i> -DCE, 1,1,- DCE		tceA	
11G	Sungei Mandai mangrove, Singapore;	TCE, trans-DCE, cis-	Ethene	vcrA	[14]
		DCE, 1,1,-DCE, VC, 1,2-DCA			
ANAS2	a contaminated site at Alameda Naval Air	TCE, <i>cis</i> -DCE, 1,1,-	Ethene	vcrA	[15]
	Station in California, USA	DCE, VC, 1,2-DCA			
GEO	A TCE and 1,1,1-TCA dechlorinating anaerobic bioreactor	TCE, trans-DCE, cis- DCE 11-DCE VC	Ethene	tceA vcrA	[16]
		1.2-DCA		Vern	
CG1	E-waste contaminated sites, Guiyu, China	PCBs,	33'-meta removal	pcbA1	[10]
		PCE	DCEs		
		TBBPA	BPA		[17]
CG4	E-waste contaminated sites, Guiyu, China	PCBs,	44'-para > 55'-meta > 33'-	pcbA4	[10]
			meta removal		
		PCE	DCEs		
CG5	E-waste contaminated sites, Guiyu, China	PCBs	33'- and 55'-meta; flanked	pcbA5	[10]
		РСЕ	para removal		
		ICL	DOES		

Table S4. Dehalococcoides mccartyi strains used in this study.

	Dehalococcoides		Dehalogenimonas			Dehalobacter			
	Soil	Microcosms	Enrichments	Soil	Microcosms	Enrichments	Soil	Microcosms	Enrichments
EW-1	0.001%	0.005%	0.000%	0.040%	0.067%	0.000%	0.002%	0.182%	0.000%
EW-2	0.017%	0.160%	1.200%	0.339%	0.207%	0.000%	0.002%	0.010%	2.952%
EW-3	0.000%	0.048%	1.900%	0.024%	0.045%	0.000%	0.000%	0.002%	0.000%
EW-4	0.136%	0.019%	0.000%	0.617%	0.144%	0.594%	0.011%	0.011%	0.000%
EW-5	0.497%	0.015%	0.000%	0.532%	3.373%	2.068%	0.020%	0.026%	0.652%
EW-6	0.022%	0.010%	0.000%	0.669%	0.566%	0.325%	0.006%	0.021%	2.284%
EW-7	0.022%	0.008%	0.000%	0.659%	0.257%	0.774%	0.006%	0.031%	0.217%
EW-8	0.002%	1.734%	6.700%	0.124%	0.234%	0.000%	0.010%	0.009%	0.000%
EW-9	0.001%	0.010%	0.000%	0.197%	0.119%	0.000%	0.001%	0.008%	0.000%
EW-10	0.003%	0.012%	0.000%	0.263%	0.220%	0.000%	0.002%	0.090%	0.000%
EW-11	0.035%	1.289%	5.500%	0.189%	0.106%	0.000%	0.009%	0.042%	0.000%
EW-12	0.005%	0.745%	3.800%	0.292%	0.133%	0.000%	0.008%	0.053%	0.000%
EW-13	0.027%	0.395%	5.400%	0.231%	0.155%	0.000%	0.001%	0.083%	0.000%
EW-14	0.005%	0.014%	0.000%	0.261%	3.279%	2.453%	0.042%	0.023%	0.205%
EW-15	0.010%	0.021%	0.000%	0.052%	0.163%	2.632%	0.009%	0.037%	0.675%
EW-16	0.001%	0.004%	0.000%	0.045%	0.077%	0.000%	0.000%	0.009%	0.000%
EW-17	0.017%	0.004%	0.000%	0.549%	0.123%	0.000%	0.030%	0.039%	0.000%
EW-18	0.002%	0.003%	0.000%	0.025%	0.515%	0.000%	0.000%	0.017%	0.000%
EW-19	0.006%	0.202%	4.700%	0.166%	0.056%	0.000%	0.002%	0.018%	0.000%
EW-20	0.074%	0.488%	2.800%	0.955%	0.091%	0.000%	0.058%	0.041%	0.000%
EW-21	0.008%	0.001%	0.000%	0.719%	0.077%	0.000%	0.032%	0.012%	0.000%
EW-22	0.002%	0.007%	0.000%	0.271%	1.176%	0.000%	0.010%	0.027%	0.000%
EW-23	0.006%	0.001%	0.000%	0.089%	0.001%	0.000%	0.003%	0.000%	0.000%
EW-24	0.002%	0.001%	0.000%	0.240%	0.000%	0.000%	0.004%	0.000%	0.000%

Table S5. Relative abundance of *Dehalococcoides*, *Dehalogenimonas*, and *Dehalobacter* in microbial communities of original soil samples, microcosms (day 60), and enrichments.

	Dehalococcoides	Dehalogenimonas	Dehalobacter
EW-2	0.66	N.A.	0.99
EW-3	0.87	N.A.	N.A.
EW-8	0.93	N.A.	N.A.
EW-11	0.98	N.A.	N.A.
EW-12	0.99	N.A.	N.A.
EW-13	0.98	N.A.	N.A.
EW-19	0.96	N.A.	N.A.
EW-20	0.98	N.A.	N.A.
EW-4	N.A.	0.92	N.A.
EW-5	N.A.	0.78	0.85
EW-6	N.A.	0.92	0.99
EW-7	N.A.	0.99	0.97
EW-14	N.A.	0.95	0.97
EW-15	N.A.	0.92	0.91

Table S6. Pearson's correlations (r) between bromine removal and cell abundance of obligateOHRB in enrichment cultures.

Table S7. Metabolites produced by debromination of BDE 183 by *Dehalococcoides mccartyi* strains CG1, CG4, and 11a5 after cultivation for 9 months (*in vivo*), as well in enzymatic assays of crude cell extracts (*in vitro*) of cultures supplied a penta- and tetra-BDE mixture as an electron acceptor and cultivated for 7 d at 30 °C. Abundance of BDE congeners is indicated as the fraction of total BDE composition.

		ir	ı vivo, %		in vi	tro assay, %	
Name	IUPAC	CG1	CG4	11a5	CG1	CG4	11a5
DE						0.6	
mono-1	2					0.2	
di-7	24			3.0			
di-8	2-4					0.6	
tri-30	246			2.4			
tri-17	24-2					2.2	
tri-28	24-4			7.3			
tetra 53	25-26						
tetra-49	24-25					0.7	
tetra-71	26-34					0.7	
tetra-47	24-24					1.4	
tetra-74	245-4			6.2			
tetra-66	24-34					0.5	
penta-95	236-25					19.5	20.9
penta-103	246-25			9.7		0.4	1.8
penta-99	245-24					1.2	
penta-118	245-34			4.9			
penta-85	234-24					2.6	2.4
hexa-154	245-246					3.5	10.4
hexa-144	2346-25					2.4	0.9
hexa-138	234-245					0.5	
hepta-183	2346-245	100	100	66.4	100	63.1	63.5

Accession ID	Locus_tag	Protein annotation	Averaged abundance	Relative abundance, (%)
WP_012882149.1	X792_RS04400	elongation factor Tu	3.66E+07	48.39
WP_012881820.1	X792_RS02605	F0F1 ATP synthase subunit alpha	1.14E+07	15.04
WP_023651701.1	X792_RS00130	TrkA family potassium uptake protein	4.85E+06	6.41
WP_041331460.1	X792_RS06970	reductive dehalogenase	5.66E+06	7.48
WP_041330877.1	X792_RS03735	2-isopropylmalate synthase	4.70E+06	6.21
WP_041330976.1	X792_RS04385	50S ribosomal protein L11	3.36E+06	4.44
WP_012882465.1	X792_RS06430	co-chaperone GroES	2.08E+06	2.75
WP_012881860.1	X792_RS02820	DNA-directed RNA polymerase subunit beta	1.63E+06	2.16
WP_041331321.1	X792_RS06325	hypothetical protein	1.38E+06	1.83
WP_012882718.1	X792_RS07740	recombinase RecA	1.28E+06	1.70
WP_012882466.1	X792_RS06435	chaperonin GroEL	7.59E+05	1.00
WP_041330550.1	X792_RS01275	formate dehydrogenase-N subunit alpha	7.41E+05	0.98
WP_041331598.1	X792_RS07490	DUF3068 domain-containing protein	5.64E+05	0.75
WP_041330621.1	X792_RS01790	ATP-dependent metallopeptidase FtsH/Yme1/Tma family protein	3.53E+05	0.47
WP_041330465.1	X792_RS00960	AbrB/MazE/SpoVT family DNA-binding domain-containing protein	3.11E+05	0.41

Table S8. (a) Proteins detected in strain CG1 during PBDE debromination.

Accession ID	Locus_tag	Protein annotation	Averaged abundance	Relative abundance, (%)
WP_041340852.1	X793_RS00330	reductive dehalogenase	2.03E+07	50.77
WP_041343058.1	X793_RS06320	chaperonin GroEL	3.39E+06	8.47
WP_052470928.1	X793_RS01255	response regulator transcription factor	4.18E+06	10.44
WP_080768397.1	X793_RS06730	PAS domain S-box protein	4.60E+06	11.50
WP_041341847.1	X793_RS03180	sodium-translocating pyrophosphatase	1.99E+06	4.97
WP_041343158.1	X793_RS06590	winged helix-turn-helix transcriptional regulator	1.18E+06	2.94
WP_041341828.1	X793_RS03125	hypothetical protein	9.55E+05	2.39
WP_041342412.1	X793_RS04675	leucyl aminopeptidase	6.95E+05	1.74
WP_010937112.1	X793_RS06315	co-chaperone GroES	5.61E+05	1.40
WP 041340780.1	X793 RS00140	Trk system potassium transporter TrkA	3.69E+05	0.92
WP_010936996.1	X793_RS05745	DUF1508 domain-containing protein	4.16E+05	1.04
WP_041342363.1	X793_RS04470	inositol-3-phosphate synthase	2.92E+05	0.73
WP_010936699.1	X793_RS04550	elongation factor Tu	1.65E+05	0.41
WP_041341240.1	X793_RS01385	hypothetical protein	1.21E+05	0.30
WP_010936411.1	X793_RS02720	cell division protein FtsZ	7.98E+05	1.99

(b) Proteins detected in strain CG4 during PBDE debromination.

(c) Proteins detected in strain 11a5 during PBDE debromination.

Accession ID	Locus_tag	Protein annotation	Averaged abundance	Relative abundance, (%)
WP_011309438.1	Dm11a5_RS04460	elongation factor Tu	4.53E+07	35.90
WP_011309787.1	Dm11a5_RS06170	chaperonin GroEL	1.60E+07	12.66
WP_034375880.1	Dm11a5_RS07840	reductive dehalogenase	1.52E+07	12.05
WP_062900263.1	Dm11a5_RS06655	reductive dehalogenase	1.12E+07	8.85
WP_034376728.1	Dm11a5_RS01605	hypothetical protein	1.01E+07	8.02
WP_034376260.1	Dm11a5_RS06060	hypothetical protein	7.80E+06	6.18
WP_011309441.1	Dm11a5_RS04490	GNAT family N-acetyltransferase	5.87E+06	4.65
WP_011309786.1	Dm11a5_RS06165	co-chaperone GroES	3.23E+06	2.56
WP_011308770.1	Dm11a5_RS00480	HAMP domain-containing protein	2.81E+06	2.22
WP_011929022.1	Dm11a5_RS03230	sodium-translocating pyrophosphatase	2.05E+06	1.62
WP_011309118.1	Dm11a5_RS02630	DNA-directed RNA polymerase subunit beta	1.45E+06	1.15
WP_011309989.1	Dm11a5_RS07410	DUF3068 domain-containing protein	1.42E+06	1.12
WP_015407039.1	Dm11a5_RS03180	hypothetical protein	8.73E+05	0.69
WP_034376825.1	Dm11a5_RS00840	DUF4186 family protein	1.28E+06	1.01
WP 011309757.1	Dm11a5 RS06025	molecular chaperone DnaJ	9.06E+05	0.72
WP_011929073.1	Dm11a5_RS03575	glutamine-hydrolyzing GMP synthase	8.83E+05	0.70

1. Freeborn RA, West KA, Bhupathiraju VK, Chauhan S, Rahm BG, Richardson RE *et al* (2005). Phylogenetic analysis of TCE-dechlorinating consortia enriched on a variety of electron donors. *Environ Sci Technol* **39**: 8358-8368.

2. Chen J, Bowman KS, Rainey FA, Moe WM (2014). Reassessment of PCR primers targeting 16S rRNA genes of the organohalide-respiring genus *Dehalogenimonas*. *Biodegradation* **25:** 747-756.

3. Smits TH, Devenoges C, Szynalski K, Maillard J, Holliger C (2004). Development of a real-time PCR method for quantification of the three genera *Dehalobacter*, *Dehalococcoides*, and *Desulfitobacterium* in microbial communities. *J Microbiol Methods* **57**: 369-378.

4. Duhamel M, Edwards EA (2006). Microbial composition of chlorinated ethene-degrading cultures dominated by *Dehalococcoides*. *FEMS Microbiol Ecol* **58**: 538-549.

5. Löffler FE, Sun Q, Li JR, Tiedje JM (2000). 16S rRNA gene-based detection of tetrachloroethene-dechlorinating *Desulfuromonas* and *Dehalococcoides* species. *Appl Environ Microbiol* **66**: 1369-1374.

6. Ding C, Zhao S, He J (2014). A *Desulfitobacterium* sp. strain PR reductively dechlorinates both 1,1,1-trichloroethane and chloroform. *Environmental microbiology* **16**: 3387-3397.

7. Ding C, Rogers MJ, Yang KL, He J (2017). Loss of the *ssrA* genome island led to partial debromination in the PBDE respiring *Dehalococcoides mccartyi* strain GY50. *Environ Microbiol* **19:** 2906-2915.

8. Zhao S, Rogers MJ, Cao L, Ding C, He J (2021). Identification of reductive dehalogenases that mediate complete debromination of penta- and tetrabrominated diphenyl ethers in Dehalococcoides spp. *Appl Environ Microbiol* **87:** e0060221.

9. Johnson DR, Lee PKH, Holmes VF, Alvarez-Cohen L (2005). An internal reference technique for accurately quantifying specific mRNAs by real-time PCR with application to the *tceA* reductive dehalogenase gene. *Appl Environ Microbiol* **71**: 3866-3871.

10. Wang S, Chng KR, Wilm A, Zhao S, Yang K-L, Nagarajan N *et al* (2014). Genomic characterization of three unique *Dehalococcoides* that respire on persistent polychlorinated biphenyls. *Proc Natl Acad Sci USA* **111**: 12103-12108.

11. Lee PK, Cheng D, West KA, Alvarez-Cohen L, He J (2013). Isolation of two new *Dehalococcoides mccartyi* strains with dissimilar dechlorination functions and their characterization by comparative genomics via microarray analysis. *Environ Microbiol* **15**: 2293-2305.

12. Low A, Shen Z, Cheng D, Rogers MJ, Lee PKH, He J (2015). A comparative genomics and reductive dehalogenase gene transcription study of two chloroethene-respiring bacteria, *Dehalococcoides mccartyi strains* MB and 11a. *Scientific Reports* **5**: 15204.

13. Zhao S, Ding C, He J (2017). Genomic characterization of *Dehalococcoides mccartyi* strain 11a5 reveals a circular extrachromosomal genetic element and a new tetrachloroethene reductive dehalogenase gene. *FEMS Microbiol Ecol* **93**.

14. Zhao S, He J (2019). Reductive dechlorination of high concentrations of chloroethenes by a *Dehalococcoides mccartyi* strain 11G. *FEMS Microbiol Ecol* **95**.

15. Lee PK, Cheng D, Hu P, West KA, Dick GJ, Brodie EL *et al* (2011). Comparative genomics of two newly isolated *Dehalococcoides* strains and an enrichment using a genus microarray. *Isme j* **5**: 1014-1024.

16. Ding C, Rogers MJ, He J (2020). *Dehalococcoides mccartyi* strain GEO12 has a natural tolerance to chloroform inhibition. *Environ Sci Technol* **54:** 8750-8759.

17. Ramaswamy R, Zhao S, Bae S, He J (2021). Debromination of TetraBromoBisphenol-A (TBBPA) depicting the metabolic versatility of *Dehalococcoides*. *J Hazard Mater* **419**: 126408.