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of membership in ability groups, by Bartosz Kondratek, in Applied 

Psychological Measurement.  

 

This supplement provides a detailed description of simulation Study 1 and its results. 

The goal of this Monte Carlo experiment was to investigate relationship between the number 

of ability bins used for computation of χ𝑤
2  and its asymptotic properties under true H0 and its 

power to detect misfit. The Monte Carlo experiment covered items of varying marginal 

difficulty, different IRT models, two sample sizes, 𝑚 ∈ {400, 4000}, and two test lengths, 

𝑛 ∈ {10, 40}.  

Item parameters used in simulations are presented in Table 1. Under each IRT model 

one item of moderate difficulty (𝜋𝑗 = 0.5) and one easy (𝜋𝑗 = 0.9) item were tested for fit. 

For 1PL and 2PL models the case of easy item is equivalent to a hard item (𝜋𝑗 = 0.1) scenario 

because both 𝜃 and 𝑏𝑣≠𝑗  are symmetrically distributed around 0. This equivalence does not 

hold for the 3PLM, so a hard item condition (𝜋𝑗 = 0.3) was added.   

It should be noted that when item 𝑗 was simulated under the 3PLM, the remaining 

items 𝑣 ≠ 𝑗 were simulated according to the same 2PL model that was used when 𝑗 was 

simulated from 2PLM. Also, the fixed 𝑎𝑣≠𝑗 = 1.7 used when 𝑗 was simulated under the 

1PLM was equal to the expected median value of 𝑎𝑣≠𝑗 for remaining items under other 

scenarios. Such a setup was chosen to obtain a comparable precision of measurement of 

ability between different scenarios of IRT models for the item 𝑗. 
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Table 1 

Item parameters used in simulations evaluating performance of χ𝑤
2  

under true H0 in relation to the number of ability bins 

Item tested for fit  Remaining items 

Model 𝜋𝑗 𝑎𝑗 𝑏𝑗 𝑐𝑗  Model 𝑎𝑣≠𝑗 𝑏𝑣≠𝑗 

1PL 0.5 1.7 0   1PL 1.7 𝑁(0,1) 

 0.9 1.7 -1.84   1PL 1.7 𝑁(0,1) 

2PL 0.5 1.7 0   2PL 𝐿𝑁(ln 1.7, 0.4) 𝑁(0,1) 

 0.9 1.7 -1.84   2PL 𝐿𝑁(ln 1.7, 0.4) 𝑁(0,1) 

3PL 0.3 1.7 1.65 0.2  2PL 𝐿𝑁(ln 1.7, 0.4) 𝑁(0,1) 

 0.5 1.7 0.45 0.2  2PL 𝐿𝑁(ln 1.7, 0.4) 𝑁(0,1) 

 0.9 1.7 -1.65 0.2  2PL 𝐿𝑁(ln 1.7, 0.4) 𝑁(0,1) 

Note. 𝐿𝑁 = log-normal distribution. 

 

The following analysis was performed for every replicated dataset: 

1. χ𝑤 𝑗
2  was computed with all item parameters fixed at values used for simulating 

them. Number of bins varied 𝑟 ∈ {2, 3, … ,10}. Assumed degrees of freedom were 𝑑𝑓 = 𝑟. 

These results were used to infer about Type I error and empirical distribution of χ𝑤 𝑗
2  under 

true 𝐻0 in the “known parameters” case. The results are presented in Figures 1-7. 

2. All item parameters were estimated according to an IRT models that were used 

for simulating the data, and then χ𝑤 𝑗
2  was computed with varying number of bins, 𝑟 ∈

{𝑞 + 1, 𝑞 + 2, … ,10}. Assumed degrees of freedom were 𝑑𝑓 = 𝑟 − 𝑞. These results provided 

information on performance of χ𝑤 𝑗
2  under true 𝐻0 in the “estimated parameters” case. The 

results are presented in Figures 8-13. 

3. If item 𝑗 was simulated from 3PLM the parameters were also estimated under 

simpler models: 2PLM and 1PLM. When the 1PLM was fit to data in this step, the remaining 

item responses were drawn with 𝑎𝑣≠𝑗 = 1.7  and 𝑏𝑣≠𝑗~𝑁(0,1). χ𝑤 𝑗
2  was computed with 

varying number of bins, 𝑟 ∈ {𝑞 + 1, 𝑞 + 2, … ,10}, and 𝑑𝑓 = 𝑟 − 𝑞 was assumed. These 

results provided information about power of χ𝑤 𝑗
2  in presence of misfit. The results are 

presented in Figure 14. 
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Item parameters of 1PLM and 2PLM were estimated without imposing prior 

distributions on them. When parameters of item 𝑗 were estimated under 3PLM following 

priors were used to ensure convergence:  𝑁(0,3) for 𝑏𝑗, 𝑁(1.7,3) for 𝑎𝑗, and 𝛽(1.7,3) for 𝑐𝑗. 

These prior distributions were substantially less informative than typically chosen in similar 

research.  The choice was motivated by results of preliminary simulations, which indicated 

that more informative prior distributions adversely affected the assumed distribution of χ𝑤
2 . It 

is also noteworthy, that in studies that used more informative priors for estimating 3PLM, 

some item-fit statistics, that are reported to follow the nominal distribution under other IRT 

models, produced elevated Type I error rates specifically in case of 3PLM (Glas & Suarez-

Falcon, 2003; Sinharay 2006; Chalmers & Ng, 2017). 

Inspection of Type I error rates and power of χ𝑤
2  in relation to the number of ability 

bins under all tested conditions leads to following observations: 

1. Type I error rate was significantly affected by the number of intervals, sample 

size and marginal item difficulty, and not so much by test length. Also, results for the known 

parameters and estimated parameters case followed similar patterns.  

2. In general, at fixed sample size and test length, increase of 𝑟 led to departure 

from the nominal significance level, 𝛼 = 0.05. This effect was most prominent if sample size 

was small, and item was easy. When sample size was 𝑚 = 4000 and marginal difficulty was 

𝜋𝑗 = 0.5, Type I error did not exceed the nominal level at any 𝑟. However, for items with extreme 

𝜋𝑗 under 𝑚 = 400 only the smallest 𝑟 provided Type I errors close to nominal level in the 

known parameters case. In the estimated parameter case this was also true except for items 

generated under 3PLM. For easy and difficult 3PLM item Type I error visibly exceeded 

nominal level even for 𝑟 = 4. 

3. For large sample size it can be observed that increasing 𝑟 does not improve the 

power of  χ𝑤
2 . Conversely, in some cases the power visibly decreased with finer partition of 
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ability. In small sample size the relation is more complex, however larger number of intervals 

should not be considered as a viable solution in small samples because they appear to be 

associated with unacceptably high Type I error rates. Only the case of medium difficulty 

items simulated under 3PLM and then fit with 1PLM provides evidence that using  𝑟 = 3, 

instead of 𝑟 = 2, is beneficial in terms of both power and Type I error rate. 

Q-Q plots that compare empirical distribution of χ𝑤
2  with its theoretical distribution are 

also presented in Figures 1-13, along the Type I error plots. For the known parameters case 

(Figures 1-7) all Q-Q plots are obtained for 𝑟 = 2. For the estimated parameters case (Figures 

8-13) the number of ability bins chosen for Q-Q plots depended on the model under which the 

item was estimated (𝑟 = 3 for 2PLM, and 𝑟 = 4 for 3PLM leading to a single degree of 

freedom), and on the marginal item difficulty if item was estimated in 1PLM (𝑟 = 3 for 

𝜋𝑗 = 0.5, and 𝑟 = 2 for 𝜋𝑗 = 0.9). These plots provide a more detailed verification of the 

postulated asymptotic distribution of χ𝑤
2  than Type I error rates. For 𝑚 = 4000 the empirical 

distribution of χ𝑤
2  is well aligned with theoretical χ2 both in the known and estimated 

parameters case. Approximation is also well-behaved for 𝑚 = 400 and moderate item 

difficulty. However, combined conditions of small sample size and extreme item difficulties 

result in deviation of χ𝑤
2  from its theoretical asymptotic distribution.  
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Figure 1 

Type I error rates of χw j
2  in relation to the number of ability bins and Q-Q plots for 2 ability 

bins; 1PLM, π𝑗 = 0.5, known parameters case 
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Figure 2 

Type I error rates of χw j
2  in relation to the number of ability bins and Q-Q plots for 2 ability 

bins; 1PLM, π𝑗 = 0.9, known parameters case 
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Figure 3 

Type I error rates of χw j
2  in relation to the number of ability bins and Q-Q plots for 2 ability 

bins; 2PLM, π𝑗 = 0.5, known parameters case 
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Figure 4 

Type I error rates of χw j
2  in relation to the number of ability bins and Q-Q plots for 2 ability 

bins; 2PLM, π𝑗 = 0.9, known parameters case 
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Figure 5 

Type I error rates of χw j
2  in relation to the number of ability bins and Q-Q plots for 2 ability 

bins; 3PLM, π𝑗 = 0.3, known parameters case 
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Figure 6 

Type I error rates of χw j
2  in relation to the number of ability bins and Q-Q plots for 2 ability 

bins; 3PLM, π𝑗 = 0.5, known parameters case 
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Figure 7 

Type I error rates of χw j
2  in relation to the number of ability bins and Q-Q plots for 2 ability 

bins; 3PLM, π𝑗 = 0.9, known parameters case 
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Figure 8 

Type I error rates of χw j
2  in relation to the number of ability bins and Q-Q plots for 3 ability 

bins; 1PLM, π𝑗 = 0.5, estimated parameters case 
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Figure 9 

Type I error rates of χw j
2  in relation to the number of ability bins and Q-Q plots for 2 ability 

bins; 1PLM, π𝑗 = 0.9, estimated parameters case 
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Figure 10 

Type I error rates of χw j
2  in relation to the number of ability bins and Q-Q plots for 3 ability 

bins; 2PLM, π𝑗 = 0.5, estimated parameters case 
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Figure 11 

Type I error rates of χw j
2  in relation to the number of ability bins and Q-Q plots for 3 ability 

bins; 2PLM, π𝑗 = 0.9, estimated parameters case 
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Figure 12 

Type I error rates of χw j
2  in relation to the number of ability bins and Q-Q plots for 4 ability 

bins; 3PLM, π𝑗 = 0.3, estimated parameters case 
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Figure 12 

Type I error rates of χw j
2  in relation to the number of ability bins and Q-Q plots for 4 ability 

bins; 3PLM, π𝑗 = 0.5, estimated parameters case 
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Figure 13 

Type I error rates of χw j
2  in relation to the number of ability bins and Q-Q plots for 4 ability 

bins; 3PLM, π𝑗 = 0.9, estimated parameters case 
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Figure 14 

Power of χw j
2  in relation to the number of ability bins  

  

  

  
 

  



20 
 

References 

Chalmers, R. P., & Ng, V. (2017). Plausible-Value imputation statistics for detecting item 

misfit. Applied Psychological Measurement, 41(5), 372–387. 

Glas, C. A. W., & Suarez-Falcon, J.C. (2003). A comparison of item-fit statistics for the 

three-parameter logistic model. Applied Psychological Measurement, 27(2), 87–106. 

Sinharay, S. (2006). Bayesian item fit analysis for unidimensional item response theory 

models. British Journal of Mathematical and Statistical Psychology, 59, 429–449. 

 


