iScience, Volume 25

# Supplemental information

## Multifaceted role of RNA editing in promoting

## loss-of-function of PODXL in cancer

Ting Fu, Tracey W. Chan, Jae Hoon Bahn, Tae-Hyung Kim, Amy C. Rowat, and Xinshu Xiao

Splicing Minigene Reporter



# Figure S1. Co-transfection of ADARs with PODXL splicing reporters in HeLa cells, related to Figure 1.

(A) Illustration of different modifications (+1c, +ag, 3ssTg) made to the PODXL splicing reporters. This reporter contains two GFP split-exons that are upstream and downstream of the tested alternative exon. Two insertion modifications (+1c, +ag) were made to the splicing reporter to generate an in-frame transcript when PODXL alternative exon is included. The amino acid changes were indicated for each insertion modification. A T-to-G mutation was introduced to the 3' splice site of the PODXL alternative exon inclusion rate so that it approximately matches the endogenous exon inclusion level.

(B) Western blot showing the overexpression of ADARs in Hela cells. All ADARs are FLAG tagged. For ADAR1 p150 overexpression, the minor bands between p110 and p150 likely represent truncated proteins due to alternative translation initiation. For ADAR2 overexpression, the upper bands represent the FLAG-ADAR2 fusion proteins (see FLAG Western). The lower bands represent ADAR2 proteins without FLAG tagging, which may result from alternative translation start sites in the overexpression constructs.

(C) Sanger sequencing traces to detect the A714G and A722G editing sites (underlined As) on the reporters after co-transfection with the ADARs and the empty control in Hela cells.



## Figure S2. Cellular localizations of PODXL isoforms, related to Figure 2.

(A) Western blot detecting marker genes for cytoplasmic (HSP90) and membrane (EGFR) fractions of wild type A549 cells. Cell fractionations were performed with or without trypsin digestion (see Methods). Trypsin treated: cells treated with trypsin before cell fractionation. Directly scraped: cells directly lysed and scraped from cell culture plates for cell fractionation. Superfluous lanes were deleted and replaced with a space between the trypsin treated and directly scraped groups.

(B-C) Western blot detecting PODXL expression in the cytoplasmic (B) and membrane (C) fractions of A549 cells overexpressing different PODXL isoforms. Cells are directly scraped for cell fractionation.



Figure S3. Cell proliferation and invasion assay of A549 cells with PODXL overexpression and knockdown, related to Figure 3.

(A-B) Western blot detecting PODXL overexpression (A) and knockdown (B) in A549 cells. Three biological replicates are shown. (C) Normalized mRNA expression levels of all PODXL isoforms (PODXL\_all\_iso.) and the PODXL long isoform (PODXL\_long\_iso.) in A549 cells with PODXL overexpression or KD, and controls (WT, Empty, shctrl). Three biological replicates are included. Data are plotted as mean  $\pm$  SEM. The *p*-values were calculated for each cell line compared to the corresponding controls (Empty or shctrl) using Student's t-test (\**p* < 0.05, \*\**p* < 0.01, \*\*\**p* < 0.001, \*\*\*\**p* < 0.0001). (D) Left: Cell proliferation curve of the A549 cells with PODXL overexpression or KD, and controls (WT, Empty, shctrl). The plot

(D) Left: Cell proliferation curve of the A549 cells with PODXL overexpression or KD, and controls (WT, Empty, shctrl). The plot shows one set of experiment performed with three biological replicates. Right: Quantification of cell proliferation using cell confluence. Data at 50 h post wound creation are shown to examine the possible effect of cell proliferation on cell invasion shown in B. Two independent sets of experiments were performed with three biological replicates included in each experiment. Data are plotted as mean  $\pm$  SEM. The *p*-values were calculated using Student's t-test (\*p < 0.05, \*\*\*p < 0.001, \*\*\*\*p < 0.0001).

(E) Left: Cell invasion curve of the A549 cells with PODXL overexpression or KD, and controls (WT, Empty, shctrl). The plot shows one set of experiment performed with three biological replicates. Right: Quantification of cell invasion with relative wound density. Data at 50 h post wound creation are shown, when most cell lines reached around 50% relative wound density. Two independent sets of experiments were performed with three biological replicates included in each experiment. Data are plotted as mean  $\pm$  SEM. The *p*-values were calculated using Student's t-test (\**p* < 0.05, \*\*\**p* < 0.001, \*\*\*\**p* < 0.0001).



## Figure S4. PODXL overexpression and knockdown in U2OS cells, related to Figure 4.

(A) Western blot detecting PODXL overexpression (A) and knockdown (B) in U2OS cells. (B) Normalized mRNA expression levels of all PODXL isoforms (PODXL\_all\_iso.) and the PODXL long isoforms (PODXL\_long\_iso.) in U2OS cells with PODXL overexpression or KD, and controls (WT, Empty, shctrl). Three biological replicates are included. Data are plotted as mean  $\pm$  SEM. The *p*-values were calculated using Student's t-test (\**p* < 0.05, \*\**p* < 0.01, \*\*\**p* < 0.001, \*\*\*\**p* < 0.0001, n.s., not significant).



# Figure S5. Gene ontology terms enriched in the genes with alternative exons containing RNA editing sites, related to Figure 6.

(A) Exon harboring recoding sites from REDIportal.

(B) Exons harboring any editing sites from REDIportal.



## Figure S6. Clinical relevance of PODXL editing and splicing in LUAD, related to Figure 5.

(A) Editing level of the A722G site over stage progression of LUAD. The *p*-values were calculated using Wilcoxon rank sum test and annotated on the plot between each comparasion.

(B) PODXL alternative exon inclusion (measured by PSI) over stage progression of LUAD. The *p*-values were calculated using Wilcoxon rank sum testand annotated on the plot between each comparasion.

(C) Overall survival of LUAD patients separated by editing levels of the A722G site. Patients were grouped into high (red) and low (blue) groups by editing level tertiles. The *p*-value was calculated by the log-rank test.

(D) Overall survival of LUAD patients seperated by PODXL alternative exon inclusion. Patients were grouped into high (red) and low (blue) groups by PSI tertiles. The *p*-value was calculated by the log-rank test.

(E) PODXL expression level in primary tumors of KIRC and LUAD in TCGA. The *p*-values were calculated using Wilcoxon rank sum test (\*\*\*\*p <= 0.0001).

### Table S1. Oligonucleotides used in this study, related to STAR Methods

| Primers used for PODXL overexpress          | sion constructs                                |                                       |
|---------------------------------------------|------------------------------------------------|---------------------------------------|
| name                                        | sequences                                      | notes                                 |
| PODXL kozac Agel F                          | ctaccggtcgccaccATGCGCTGCGCGCTGGCGC             | adds kozac sequence                   |
|                                             |                                                | 4                                     |
|                                             |                                                | introduces the recoding site mutation |
|                                             |                                                | introduces the recound site indiation |
|                                             |                                                |                                       |
| pLJM1-seq-R                                 | giggateteigeigteeeig                           | plasmid sequencing                    |
|                                             |                                                |                                       |
| Primers used for PODXL shRNA cons           | structs                                        |                                       |
| name                                        | sequences                                      |                                       |
| PODXL_sh1_F (TRCN0000296029)                | CCGGAGCCACGTAAGGGACTTTATACTCGAGT               | ATAAAGTCCCTTACGTGGCTTTTTTG            |
| PODXL_sh1_R (TRCN0000296029)                | AATTCAAAAAAGCCACGTAAGGGACTTTATACT              | CGAGTATAAAGTCCCTTACGTGGCT             |
| PODXL sh2 F (TRCN0000310117)                | CCGGACGAGCGGCTGAAGGACAAATCTCGAGA               | ATTTGTCCTTCAGCCGCTCGTTTTTTG           |
| PODXL sh2 R (TRCN0000310117)                | AATTCAAAAAACGAGCGGCTGAAGGACAAATC               | CGAGATTTGTCCTTCAGCCGCTCGT             |
| /                                           |                                                |                                       |
| Primers for endogenous PODXL isofo          | orm detection                                  |                                       |
| name                                        | sequences                                      |                                       |
| PODYL exerb E                               |                                                |                                       |
|                                             |                                                |                                       |
| PODAL exona R                               | GTAGAGETGGETGGEATE                             |                                       |
|                                             |                                                |                                       |
| Primers for PODXL splicing minigene         | constructs                                     |                                       |
| name                                        | sequences                                      |                                       |
| pzw_Agel_F                                  | tccgctagcgctaccggtc                            |                                       |
| pzw_HindIII_R                               | CGCCTGGCaagctttTAAGAC                          |                                       |
| pzw 5ss1 +1c F                              | cgaaggctacgtcccaggtaagtctcgaCGAAACaag          |                                       |
| pzw 5ss1 +1c R                              | cttGTTTCGtcgagacttacctgggacgtagccttcg          |                                       |
| PODXI HindIII F                             | gagaagettGCCAGGCGTGATGGCTCTG                   |                                       |
| PODXL SacIL R                               |                                                |                                       |
|                                             |                                                |                                       |
| PODAL_doubleA_I                             |                                                |                                       |
| pzw_podxi_sss1_g9_65_DoubleA_R              |                                                |                                       |
| pzw_podxi_3ss1_g9_65_A/14G_F                |                                                |                                       |
| pzw_podxl_3ss1_g9_65_A714G_R                | CTGACATGGTGAAACACCGTCTCTcCTTGA                 |                                       |
| PODXL-A722G-F                               | ACAGTGTTTCGCCATGTCAGCC                         |                                       |
| pzw_podxl_3ss1_g9_65_A722G_R                | CTGACATGGCGAAACACTGTCTCTcCTTGA                 |                                       |
| PODXL doubleG F                             | AGAGACGGTGTTTCGCCATGTCAGCC                     |                                       |
| pzw podxl 3ss1 a9 65 DoubleG R              | CTGACATGGCGAAACACCGTCTCTcCTTGA                 |                                       |
| PODXI Alu segF                              | TAGCTGGGACTACAGGTGTG                           |                                       |
|                                             | ACTTTGGGAGGCCAAGGTG                            |                                       |
| nzw 3ss2 +ag Sacll F                        | TGGccacaatetettettecaaaaaaaaaaacacaacatettette |                                       |
|                                             |                                                |                                       |
| pzw_BamHI_R                                 |                                                |                                       |
| Drive and for DODYL is a former data a firm | in a diala a minimum                           |                                       |
| Primers for PODAL isoform detection         |                                                |                                       |
|                                             | ACTOCTTOACCOCCTACCC                            |                                       |
| Geven Dy (afp)                              |                                                |                                       |
| Gexon RV (gtp)                              | GIIGIACICCAGCIIGIGCC                           |                                       |
| Drimono for data ating DODVL is f           |                                                |                                       |
| Finiters for detecting PODXL isoform        |                                                |                                       |
|                                             | sequences                                      |                                       |
|                                             |                                                |                                       |
| PODXL_longiso_qPCR_R                        | ACTITGGGAGGCCAAGGTG                            |                                       |
| PODXL_qPCR_both_F                           | TGCAGACACCACTACAGTTGC                          |                                       |
| PODXL_qPCR_both_R                           | ATGGTCATGTCCCGAGCTTG                           |                                       |
| 18S qPCR F                                  | CTCTTAGCTGAGTGTCCCGC                           |                                       |
| 18S gPCR R                                  | CTGATCGTCTTCGAACCTCC                           |                                       |
|                                             | CAGCAACTTCCTCAATTCCTTG                         |                                       |
| TBP gPCR R                                  | GCTGTTTAACTTCGCTTCCG                           |                                       |
|                                             |                                                |                                       |
| Primers for ADAR overexpression of          | onstructs                                      |                                       |
| name                                        |                                                |                                       |
|                                             |                                                |                                       |
| FIAY_FW                                     |                                                |                                       |
|                                             | AAGGAAAAAGUGGUUGUAAGUUGAGAICAAG                | GAGAAAAICIG                           |
| ADAR1_BStBI_stop_R                          | atactgttcgaaCIAIACIGGGCAGAGAIAAAAGTTC          |                                       |
| ADAR2_Xbal_R                                | CCCTCTAGACCGGGCG                               |                                       |

| ADAR2_EAA1_F  | GGCTCTGGTCCCACAGAGGCAAAGGCAGCACTCCATGCTGCTGAGAAGG |
|---------------|---------------------------------------------------|
| ADAR2_EAA1_R  | CCTTCTCAGCAGCATGGAGTGCTGCCTTTGCCTCTGTGGGACCAGAGCC |
| ADAR2_EAA2_F  | GGCTCGGGGAGAAACGAGGCGCTTGCCGCGGCCCGGGCTGCGC       |
| ADAR2_EAA2_R  | GCGCAGCCCGGGCCGCGGCAAGCGCCTCGTTTCTCCCCGAGCC       |
| ADAR2_E396A_F | CATTAAATGACTGCCATGCAGCAATAATATCTCGGAGATCCTT       |
| ADAR2_E396A_R | AAGGATCTCCGAGATATTATTGCTGCATGGCAGTCATTTAATG       |
| ADAR2_E488Q_F | GACCAAAATAGAGTCTGGTCAGGGGACGATTCCAGTGCG           |
| ADAR2_E488Q_R | CGCACTGGAATCGTCCCCTGACCAGACTCTATTTTGGTC           |

### Primers for PODXL minigene editing detection

| name         | sequences              |
|--------------|------------------------|
| EGFP_Sacl_F  | GCGAGGAGCTCTTCACCGGGG  |
| PODXL_EGFP_R | tggtgcgctcCTGTAATCCCAG |