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A Appendix

A.1 Theory

A.1.1 Derivation of relationship between expected cases and gathering size

Assuming fixed transmission probability τ for contacts between susceptibles and infectious indi-

viduals, the number of secondary cases generated by a single infectious individual with Ks = ks

susceptible contacts is binomially distributed, i.e.

Xit | Ks = ks ∼ Binomial(ks, τ). (A.1)

If susceptibles, infectious, and recovered individuals attend gatherings at rates equivalent to their

population proportions then attendance at a gathering of size K = k can be represented by a

multinomial sampling model of the form

(Ks,Ki,Kr)
′ | K = k ∼ Multinomial(k, (ps, pi, pr)

′) (A.2)

where ps = S(t)
N , pi = I(t)

N , and pr = R(t)
N . Under the model, the expected number of susceptibles

is kps, the expected number of infectious is kpi, and the expected number of recovereds is kpr. To

calculate the expected number of secondary cases, note that, on average, only the Ks susceptibles

are at risk of infection and they are exposed to Ki infectious individuals. Then the probability that

the Ks susceptibles “escape”, i.e. that they are not infected by any of the Ki infectious individuals,

is (1 − τ)Ki and thus, by extension, the probability that they are infected by at least one of the

Ki infectious individuals in attendance is 1− (1− τ)Ki . Therefore, the total number of secondary

cases at a gathering of size K = k is

(Ks,Ki,Kr)
′ | K = k ∼ Multinomial(k, (ps, pi, pr)

′)

X | Ks = ks,Ki = ki ∼ Binomial(ks, 1− (1− τ)ki)

(A.3)

and taking iterated expectations, the expected number of secondary cases given a gathering of size

K = k is simply

E(X | K = k) = kps(1− (1− τ)kpi). (A.4)
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For a more intuitive way to think about this equation, notice that kps is the expected number

of susceptibles and kpi is the expected number of infectious individuals; the expression kps(1− (1−

τ)kpi) is then just the expected number of susceptibles times the probability of being infected by

any of the infectious individuals who attend, where the latter is equivalent to the one minus the

“escape” probability, i.e. the probability that no susceptible is infected by any of the infectious

individuals expected to attend.

A.1.2 Binomial Approximation

More specifically, when |τkpi| � 1 a Binomial approximation gives

(1− τ)kpi ≈ 1− kpiτ

and thus

kps(1− (1− τ)kpi) ≈ kps(1− (1− kpiτ)) ≈ k2pspiτ

A.2 Sensitivity analyses

In the main analysis, for simplicity of presentation and to fix concepts, we consider fixed values of τ

as well as ps, pi, and pr. While we attempted to use values consistent with the literature for COVID-

19, in practice these may vary across settings and for different pathogens. Here we conduct a series

of sensitivity analyses to explore the role that these parameters play in determining impact of

gathering size restrictions. In the main text, we assumed that the distribution of gatherings follows

a discrete power law distribution. Here, we instead consider another heavy-tailed distribution, the

log-normal distribution and show it fits to the various empirical data.

A.2.1 Varying τ

The probability of transmission given contact, τ , can vary either in constant value —for instance,

if a new variant emerges that is more infectious— or more often it may simply be heterogeneous

across settings —for example, a crowded indoor gathering versus an outdoor gathering. In the case

of the former, in Figure A.1 we range τ over a suitable range, for instance 0.01 to 0.25 and find

that our results are not substantially changed. We chose 0.01 as a lower bound, 0.08 as a medium
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value from the secondary attack rate during meals (Bi et al., 2020), and 0.25 as a higher bound

from the secondary attack rate in households during the Omicron wave (Jørgensen et al., 2022). In

the case of the latter, we can consider τ to be drawn from a distribution reflecting the population

of gathering settings at any given time. Given that τ must be between 0 and 1, a natural starting

point for incorporating heterogeneity in τ into our prior model is to draw it from a beta distribution,

i.e.

τ ∼ Beta(µ, φ)

(Ks,Ki,Kr)
′ | K = k ∼ Multinomial(k, (ps, pi, pr)

′)

X | Ks = ks,Ki = ki, τ ∼ Binomial(ks, 1− (1− τ)ki)

(A.5)

where here we’ve parameterized it such that µ is the mean of the beta distribution and φ is a

dispersion parameter representing how concentrated values of τ are around the mean1. For now,

we assume that τ is independent of gathering size. Figure A.2 shows example draws from beta

distributions with same value of τ but different dispersion. As the dispersion parameter increases,

τ is increasingly concentrated around the mean, as it decreases τ is more variable. In practice,

increasing variability in τ would indicate that there are a small number of gatherings with very

high transmission and a larger number with little to no transmission.

We show the effects of dispersion in τ on our conclusions regarding gathering size restrictions in

Figure A.3. Given that our derivation of equation A.4 relies only on the mean of τ and we assume

that tau is independent of gathering size, we should expect that the expected reduction in incident

cases for a kmax restriction is unchanged by varying φ as

E(X | K = k) = kps(1− (1− E(τ))kpi) = kps(1− (1− µ))kpi). (A.6)

Practically, this implies that as long as τ is independent of gathering size (and the mean value of

τ is defined) our long run conclusions about the effect of gathering size restrictions is unchanged.

However, as highlighted by the shaded regions of the 95% simulation intervals, increasing variability

in τ leads to greater variance in the effect of restrictions. In terms of policy-making, if there’s strong

evidence for heterogeneity in τ decision-makers may want to consider planning with these intervals

1The canonical definition of the beta distribution is in terms of shape parameters α and β where f(x) =
1

B(α,β)
xα−1(1 − x)β−1. Here we use the following transformation µ = α

α+β
and φ = α+ β, where φ is sometimes also

called the sample size.
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Figure A.1: Effect of different values of constant τ on relative rate of incident cases
under kmax gathering size restrictions for different power law distributions. Here we
re-create Figure 2 but vary the values of the constant τ from 0.01 to 0.25.
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Figure A.2: Examples of the beta distribution with µ = 0.08 under different values of
φ. Based on 10,000 draws from the beta distribution with µ fixed to 0.08; dashed line shows the
position of µ.
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Figure A.3: Effect of dispersion in τ on relative rate of incident cases under kmax

gathering size restrictions for different power law distributions. Here we fix transmission
parameters to following values pi = 0.01, ps = 0.99, but allow τ to vary. We draw 10,000 values
of τ from a beta distribution with µ = 0.08 and varying φ. As previously, the figure shows the
relative rate of incident cases calculated using equation 6 and comparing restrictions with kmax-
level thresholds to unrestricted rate (e.g. a value of 0.5 implies a 50% fewer per capita incident
cases relative to unrestricted rate). The lines represent the mean relative rate across all simulations
while the shaded areas show the 95% simulation intervals.

in mind (e.g. using upper bound from an appropriately chosen interval such that there’s an p%

chance that restriction leads to reduction of desired size).

Finally, we consider what happens when τ is allowed to vary with the size of gathering. Given

the paucity of data, it’s unclear what one might expect the relationship to be between τ and

gathering size a priori. On the one hand, τ could increase with gathering size if larger gatherings

tend to be longer or in settings more conducive to spread. On the other hand, one could make

an equally compelling case that smaller gatherings, which may be in more intimate settings may

have higher τ . In their paper describing the Copenhange Network Study data, (Sekara et al.,

2016) find no association between the size and duration of gatherings, suggesting no relationship

on at least one proxy for τ . Absent reliable sources, here we vary the relationship across three

representative scenarios: (1) τ decreases with gathering size K, (2) τ independent of gathering

size K, τ increases with gathering size K. To keep it simple, we group gatherings into three
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Figure A.4: Effect of relationship between τ and gathering size k on relative rate of in-
cident cases under kmax gathering size restrictions for different power law distributions.
Here we consider three scenarios for how the transmission probability τ varies with gathering size
k. For τ decreasing with k, τ = 0.25 for gatherings with less than 10 people, τ = 0.08 for gatherings
with 11 to 50 people, and τ = 0.01 for gatherings with more than 51 people. For τ increasing with
k, τ = 0.01 for gatherings with less than 10 people, τ = 0.08 for gatherings with 11 to 50 people,
and τ = 0.25 for gatherings with more than 51 people. The solid line is the reference case where
τ = 0.08 at all sizes.

mostly arbitrary groupings (less than 10 people, 11 to 50 people, and larger then 51 people) and

choose τ for each from τ ∈ {0.01, 0.08, 0.25}. Figure A.4 shows the results. Relative to our results

presented in the main text, represented by the solid line where τ is independent of k, if τ decreases

with gathering size our estimates are too optimistic and harsher restrictions would be required

to achieve the same reductions. If τ increases with gathering size, then our estimates are too

pessimistic and comparable reductions could be achieved with looser restrictions on size.

A.2.2 Varying pi and pr

The proportion of susceptible, infected and recovered individuals in each gathering are inputs to

our gathering size restriction equation. In the main analysis, we fix values of ps, pi and pr to

0.99, 0.01 and 0 respectively, which seemed reasonably illustrative for our purposes. However, in

sensitivity analyses presented below, we vary the values of pi between 0.001, 0.01 and 0.1; and that
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of pr between 0, 0.25 and 0.75. Across all nine combinations of pi and pr, the value of ps is equal

to 1− (pi + pr) and thus varies from 0.15 to 0.999.

As shown in Figure A.5, for different power law distributions, the value of pr seems to have only

a small impact on the relative rate of incident infections comparing a scenario with restrictions

to scenarios without. However, values of pi seem to have a larger effect, especially for power law

distributions with smaller α values. For very high proportions in infected individuals (i.e. pi = 0.1),

a given gathering size restriction leads to a lower relative reduction in the number of incident cases,

when compared to lower proportion on infected individuals (i.e. pi = 0.01 or 0.001). This makes

sense as with such high proportion of infected attendees, and under distributions of gathering sizes

where larger gatherings are frequent, most large gatherings will lead to a substantial number of

infections. It is only when considering distribution of gatherings where larger gatherings are rare

(i.e. α = 3.5 or 4) that the proportion of infected individual attending pi matters less, as in smaller

gatherings less individuals can be newly infected.

As shown in Figure A.6, across all five empirical distribution of gathering sizes, the values

of pi and pr have very limited impact on the the relative rate of incident cases under restriction

to gatherings of size kmax compared to that in absence of restrictions. Indeed, the dashed lines

representing the varying values of pi overlap in most plots, only showing a slight shift when using

the distribution derived from CNS data source. Similarly, ranging values of pr also appears to have

minor impact.

Overall, these results suggest that the proportion of susceptible, infected and recovered individ-

uals attending gatherings has limited to no effect on our relative reduction in incident cases when

implementing restrictions. This suggests that our results may be robust to those parameters that

our conclusion may hold for various stages of epidemics.

A.2.3 Alternative gathering size distributions

In the main text we illustrate our theoretical points using the discrete power law distribution and

then follow them up with results using empirical distributions. In practice we find that, while

informative from a theoretical standpoint, a power law may not provide the best fit empirically.

Therefore, when informing policy, rather than intuition, we encourage the use of realistic and

preferably empirically-derived distributions. However, such data may not always be available and
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Figure A.5: Relative rate of incident cases under restriction which prohibits gatherings
above size kmax for different power law distributions and varying the values of pi and
pr. The value of pi varies between 0.001, 0.01 and 0.1. That of pr varies between 0, 0.25 and 0.75
and ps is equal to 1 − (pi + pr). τ is equal to 0.08. Similarly to Figure 2, we assume that power
law behavior starts at kmin = 1 and truncate the power law above gatherings of size 500 both to
make the sum tractable and given that gathering sizes must at minimum be less than population
size. The figure shows the relative rate of incident cases calculated using equation 6 and comparing
restrictions with kmax-level thresholds to unrestricted rate (e.g. a value of 0.5 implies a 50% fewer
per capita incident cases at time t relative to unrestricted rate).
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Figure A.6: Relative rate of incident cases under restriction which prohibits gatherings
above size kmax using different data sources for the distributions of gathering sizes and
varying the values of pi and pr. The value of pi varies between 0.001, 0.01 and 0.1. That of
pr varies between 0, 0.25 and 0.75 and ps is equal to 1 − (pi + pr). τ is equal to 0.08. Similarly
to Figure 5, we use draws from empirical distributions. The figure shows the relative rate of
incident cases calculated using equation 6 and comparing restrictions with kmax-level thresholds to
unrestricted rate (e.g. a value of 0.5 implies a 50% fewer per capita incident cases at time t relative
to unrestricted rate).

9



σ = 0.5 σ = 1 σ = 2

2 4 6 0 20 40 60 0 1000 2000 3000
0.000

0.005

0.010

0.015

0.0

0.1

0.2

0.3

0.00

0.25

0.50

0.75

Figure A.7: Examples of the log-normal distribution with µ = 0 under different values
of σ. Based on 10,000 draws from the beta distribution with µ fixed to 0.

thus for completeness here we also consider other heavy-tailed distributions. A relatively common

heavy-tailed alternative is the log-normal distribution, i.e.

f(k) =
1

k
√

2πσ2
exp

{
−(log k − µ)2

σ2

}
,

where the parameters µ and σ2 describe the mean and the variance of a log-transformed normal

random variable. Figure A.7 provides some examples of parameter values with increasing tail mass.

As in the main text, we fit the log-normal distribution to the empirical distributions from the

BBC Pandemic and Copenhagen Networks Study using maximum likelihood. We again consider the

possibility that the empirical data may only follow a log-normal distribution above a certain lower

threshold (kmin). Figure A.8 shows the best fitting log-normal distributions and their parameter

values. Visually the log-normal distribution seems like a better fit than the discrete power law

considered in the main text, mostly because there does seem to be some nonlinear drop-off in

the extreme tails. However, this could also reflect influence of measurement error2 and sampling

variability in the extreme tail. We can test this using Vuong’s likelihood ratio test which compares

the Kullback-Leibler criteria for the two fits. In Table A.1, we find strong evidence that the log-

2For instance, BBC Pandemic dataset has individuals record their daily contacts. It’s likely that they are better
at estimating small group sizes relative to big ones and may lump or round estimates for larger groups.
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Figure A.8: Estimates of log-normal parameters for the Copenhagen Networks Study
(CNS) and the BBC Pandemic study by setting. Plot is complementary cumulative distri-
bution function versus gathering size with lines showing fitted power law distribution. Estimates for
α and kmin obtained using maximum likelihood for discrete power law using the poweRlaw package
in R.

normal is a better fit for all but the household contacts.
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Table A.1: Vuong’s test comparing discrete log-normal and power-law distribution fits
to empirical data on gathering size.

Data source R-statistic p-value

BBC Pandemic

Home 1.24 0.216

Work / school 6.66 <0.001

Other 5.37 <0.001

Total 4.20 <0.001

Copenhagen Networks Study 5.89 <0.001

Notes: R-statistic is the ratio of log-likelihoods of the dis-

crete log-normal and power-law fits, positive values favor the

log-normal distribution. p-values are for two-sided hypothesis

that log-normal is a better fit.
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