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1 Movement and Timing of White Spruce Range Expansion

1.1 How big is the study area?

The main area of interest (AOI) consists of eight USGS HUC 10 watersheds. These watersheds include four
watersheds of the Noatak basin (Kaluich, Cutler, Amakomanak, and Imelyak) that support a large population
of white spruce (Picea glauca) colonists separated by the Baird Mountains from established treelines (SI
Fig. 1) in four watersheds of the Kobuk basin (Redstone, Akillik, Hunt, and Miluet).
## Polygon digitized in Google Earth Pro

study.area <- st_read("1000sqkm.kml",quiet=T) %>%
st_zm()

st_area(study.area) %>%
format(big.mark = ",")

## [1] "1,014,915,911 [m^2]"

1.2 Digitizing

The study used WorldView satellite (WV) images, both WorldView-1 and WorldView-2, to manually count
white spruce (Picea glacua) trees by their shadows, visible across the deep snow of March and April 2018
when the abundant tall willows (Salix spp.) of the area of interest (AOI; Fig. 1a, ED Fig. 1a) were buried.
Here we describe the approach, its validity, and applicability.

Satellite data were mainly used to scale field observations to larger areas by manually digitizing shadows in
Google Earth Pro (GEP). The digitizing was accomplished by a single individual (ST) under the quality
assurance and quality control (QAQC) supervision of the first author (RJD), who also digitized <100 shadows
missed by the technician but subsequently included with the dataset. There was no systematic or quantitative
estimate of congruence between ST and RJD, but in general the QAQC comparisons of shadows lengths with
digitized lines during spot checks suggested that shadows digitized by ST and RJD were within ± 2m in
length, equivalent to about four pixels and when multiplied by the tangent of the sun elevation angle in the
region where we reconstructed historic populations is equivalent to 0.7 m in tree height.

In order to digitize the WV imagery in GEP, we first converted the imagery to “super-overlays” (https:
//developers.google.com/kml/documentation/kml_21tutorial?csw=1#superoverlays). This process degraded
the images such that shadows from very small trees and the tops of tall trees were either lost or became
ambiguous. We have not quantified the drop-out rate, but in the visual comparison of the scene shown in
main text Fig. 1b (constructed using the raster package in R and shown also as SI Fig. 5) with that using
the super-overlay from GEP (SI Fig. 6), it is apparent that the digitizing technician missed the smaller
trees.

We are quite certain the the spruce tree shadows digitized are white and not black spruce (P. mariana).
Black spruce are uncommon at treeline in the Brooks Range and we found none during field surveys in the
Noatak watersheds of the AOI. Similarly, we observed few cottonwoods (Populus balsamifera) upstream of
the confluence of the Imelyak and Cutler Rivers. The most abundant woody vegetation is shrub cover from
dwarf to very tall.

Shrubs in the AOI are mostly less than 2.5 m tall, although some reach 5 m, especially in riparian areas
where felt-leaf willow (Salix alaxensis) thrives. When digitizing, it was generally possible to distinguish spruce
shadows from those of very tall willow. Spruce cast blacker, more triangular or linear shadows than the
grayer, more di�use and broom-topped shadows of willow (SI Figs. 5-10, especially SI Figs. 7-8 ). The
most confusion was between short spruce and tall shrubs. Short spruce were not visible on summer scenes,
which if visible in summer could have aided in distinguishing from tall shrubs. Also some spruce cast longer,
more linear shadows in winter scenes, obscuring spruce individuals that were collinear with shadows. Overall,
we documented errors of commission of 7.0% and of omission of 5.8% (see Field Validation below).

4

https://developers.google.com/kml/documentation/kml_21tutorial?csw=1#superoverlays
https://developers.google.com/kml/documentation/kml_21tutorial?csw=1#superoverlays


1.3 Field Validation

The digitizing technician used the ruler tool in GEP to measure from the base of the shadow to its tip. We
made three field expeditions to the AOI to gather information on individual trees for matching with shadows
identified by the technician using WV imagery. The ease of matching depended on the spatial distribution of
trees (the trees were generally widely spaced–see main text Fig. 1 and SI Figs. 5-10). The georeferencing
accuracy of the imagery, as reported by Maxar with the image metadata, was RMSE = 3.9 m. The built-in
GNSS on late-model iPhones we used for field surveys was probably around 3 m, as the landscape is open and
trees are sparse. The WV images were acquired at 5-23¶ o�-nadir giving confidence in the orthorectification
accuracy. When o�-nadir angle is Ø 25¶

, positional accuracy in orthorectified imagery tends to be poorer
than imagery captured more directly overhead.

As a measure of our ability to correctly identify trees among the 1,971 digitized shadows within the region of
population reconstruction (small central rectangle in ED Fig. 1a and red rectangles in SI Fig. 1-4), we
visited 157 shadow locations (8% of the 1,971 shadow locations) to collect heights and other data. Of these
157 shadow locations, 11 shadows were cast by very tall willows (7%); nine of these willows were within a 9
ha area of riparian flood plain and two were on hillsides, the latter being where most spruce grow.

Of the 146 shadows confirmed as trees, two were dead (1%), and another su�ered most likely wind damage, as
we found a recently broken ¥ 1.5 m green crown laying on the ground. We added its length to the standing
height measured with a laser range-finder.

Finally, as a measure of omission, we found three sets of trees that were collinear, such that the single digitized
shadow length overestimated the height of the tree standing to the SW (toward the sun) and missed the
other tree(s) to the NE that cast their overlapping shadows in line with the first. Six trees among the 157
field-checked shadows fell into this category of omission and an additional three trees were missed during
digitizing but observed in the field near shadow locations.

In summary, 155 trees were identified in the field where we expected 157. Applying this fraction overall
suggest (155/157) ú 1971 = 0.987 ú 1, 971 = 1, 945 trees represent the reconstructed population. Overall in the
AOI, the total adult count of 5,988 individuals based on shadows may be closer to 5,910 trees. Moreover, in
so far as our estimates of age based on tree height are usefully predictive, perhaps 2% of the “trees” in our
reconstruction are not a single tree casting long shadows, but 2-3 younger, collinear trees. Thus our estimate
of past populations may be slightly biased to older trees, implying that the population growth rate may be
slightly higher than estimated.
mat <- data.frame(Field_tree=c(146,9,155),

Field_non_tree=c(11,NA,NA),
Image_total_trees=c(157,NA,NA))

rownames(mat)=c("Image_tree","Image_non_tree","Field_total_trees")
kable(mat, caption = "Classification error matrix.")

Classification error matrix.

Field_tree Field_non_tree Image_total_trees
Image_tree 146 11 157
Image_non_tree 9 NA NA
Field_total_trees 155 NA NA

Upon return from the field, RJD plotted the digitized shadow points and the field points on a 27-inch monitor
and visually matched the two. Usually the nearest shadow was matched to the field point, but shadows were
also matched to field points based on shadow length as well as proximity.

For example, in the upper left corner of the super-overlay image SI Fig. 9 there is a cluster of five shadows
(marked at base with yellow bullets) and five field points located with GNSS (marked as green tree icons)
with the field-measured heights of the trees (m) associated with the field points as green numbers.
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In SI Fig. 9 the field point marked “5.3” is farther from the longest shadow base than is the field point
marked “3.3” that is located to the right. Similarly, a second field point also marked “3.3” and to the left
is closer to the second longest shadow in the cluster and located just below the number. Because the two
shadows to either side (left and right) of the longest shadow are approximately equal and each is relatively
near a field point labeled “3.3”, they were assigned the nearby heights 3.3 m, and the longest shadow was
assigned a height of 5.3 m. Similarly, the two mid-length shadows below the three shadows near the top edge
are approximately equal and so matched with the field heights of 4.1 m and 4 m.

We made field expeditions to six study areas: three inside the red rectangles in SI Figs. 2 and 4 (“GaiaHill,”
“BobWoods,” and “Bu�alo Drifts”) and three other areas to the east and shown as clusters of small, green tree
icons in SI Fig. 2 (“Cutler,” “AmakW,” and “AmakE”). Among-area variability was apparent in the snow
depth, terrain slope angle relative to the sun azimuth at the time of image capture, and in the sun elevation
angle itself due to the timing of image capture. The variability was identified from the height of trees casting
shadows and from the slope and intercept of linear regressions of field-measured height on digitized shadow
length.These consideraations are discussed below in SI Calc. 4.1-4.2.

1.4 How many colonists are documented (minimum)?

The AOI is located between 156.5¶ and 159¶ W, although the file “LatLongMaxEntAll.csv” contains juvenile
colonists outside the AOI. The file “BestShadowData.csv” contains the digitized shadows from the AOI.
shadows <- read.csv("BestShadowData.csv")

A total of 5,988 shadows were digitized using super-overlays of very-high resolution imagery imported into
Google Earth Pro by one technician with QAQC overseen by RJD (SI Fig. 1). All observed shadows that
appeared cast by spruce (i.e., black pixels in a triangular or thin linear arrangement) were measured for
length from base to the pixels judged as most likely to be the tip of the shadow. Shadows were digitized
“wall-to-wall” across the available imagery shown in SI Fig. 1 and within the Noatak watersheds of the AOI.
t19 <- read.csv("./2019_09_TreesWithHeights.csv")
t20 <- read.csv("./2020_09_TreesWithHeights.csv")
t21 <- read.csv("./2021_07_TreesWithHeights.csv")

A subset of the 5,988 shadow locations were visited in the field where 353 individuals were measured (SI
Fig. 2). Details of the correspondence between shadows and ground-truthed trees are given below in SI
Calc. 4, Reconstructing Population Growth.
juveniles <- read.csv("LatLongMaxEntAll.csv") %>%

filter(lon.W > 156.5 & lon.W < 159) %>%
filter(AgeClass !="adult")

The total 770 juveniles located in the field over the course of four field expeditions to the AOI are shown in
SI Fig. 3. The sum of these two counts is 6,758 geo-located individuals.

1.5 How many kilometers did ground-transects cover in the study area?

fils <- dir()
fils <- fils[str_sub(fils,-3,-1)=="kml"]
fils <- fils[fils != "1000sqkm.kml"]
bucket <- rep(NA,length(fils))

for(i in 1:length(fils)){
bucket[i] <- st_read(fils[i],quiet=T) %>% st_zm() %>% st_length()}

Using GNSS ground tracks from field campaigns and summing their lengths gives 403 km.
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1.6 Cone bearing trees and their heights

We measured heights and cone-bearing conditions of individuals during, after and prior to the Brooks
Range-wide mast seeding event of 2020. We classified trees based on cone count classes. In the year previous
to the mast, we searched the ground below trees as well crowns for evidence of cones.
Cones.2021 <- read.csv("HeightsPlus_summer2021.csv") %>%

dplyr::mutate(Year="post-mast",
Cones=Cones,
Height.m=Height.m,
Area=Area,
.keep="none") %>%

na.omit()

Cones.2020 <- read.csv("CutlerSpruce2020.csv") %>%
dplyr::mutate(Year="mast-event",

Cones=Cones,
Height.m=Height.m,
Area=Area,
.keep="none")

Cones.2019 <- read.csv("CutlerSpruce2019Cones.csv") %>%
dplyr::mutate(Year="pre-mast",

Cones=Cones,
Height.m=Height.m,
Area=Area,
.keep="none")

Cone.data <- rbind(Cones.2019,Cones.2020, Cones.2021) %>%
dplyr::mutate(Year=factor(Year,

levels=c("pre-mast","mast-event","post-mast"))) %>%
subset(Height.m > 1) %>%
subset(Cones !="Broken dead") %>%
na.omit()

Cone.data$Cones <- factor(Cone.data$Cones,
levels=c("0",

"1 to 10",
"10 to 50",
"50 to 100",
"100 to 200",
"200 to 400",
"400 to 1000"))

1.6.1 How many trees over 1 m tall were recorded for signs of cones?

paste("Sample size n =",nrow(Cone.data), "trees")

## [1] "Sample size n = 336 trees"

Cone.data %>% tabyl(Year) %>% adorn_pct_formatting(digits=0) %>%
kable(caption="Distribution of all cone-bearing trees by year.")
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1.6.1.1 The frequency of sample spruce with cones by year, as “pre-mast”, “mast”, and
“post-mass.”

Distribution of all cone-bearing trees by year.

Year n percent
pre-mast 76 23%
mast-event 149 44%
post-mast 111 33%

1.6.2 For each cone count-class, what was the fraction of trees sampled by year?

Overall cone counts for all three years among the 336 trees recorded for cone counts:
Cone.data %>% tabyl(Cones) %>% adorn_pct_formatting(digits=0) %>%

kable(caption="Cone count distribution.")

Cone count distribution.

Cones n percent
0 110 33%
1 to 10 53 16%
10 to 50 105 31%
50 to 100 43 13%
100 to 200 16 5%
200 to 400 6 2%
400 to 1000 3 1%

Here are the percentages of total trees observed each year by cone-count class (columns sum to one within
rounding errors).
Cone.data %>% tabyl(Cones,Year) %>%

adorn_percentages("col") %>%
adorn_pct_formatting(digits=0) %>% kable(caption="Cone count distribution by year.")

Cone count distribution by year.

Cones pre-mast mast-event post-mast
0 76% 20% 20%
1 to 10 14% 18% 14%
10 to 50 8% 48% 24%
50 to 100 0% 12% 23%
100 to 200 1% 1% 12%
200 to 400 0% 0% 5%
400 to 1000 0% 0% 3%
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1.6.3 What is the relationship between tree height and cone count during the mast and post
mast years?

cones.ag <- aggregate(Height.m~Cones,
FUN=min,
data=Cone.data,
subset=Year != "pre-mast")

cones.ag$count <- aggregate(Height.m~Cones,
FUN=function(x) sum(!is.na(x)),
data=Cone.data,
subset=Year != "pre-mast")$Height.m

cones.ag$MAx.height.m <- aggregate(Height.m~Cones,
FUN=function(x) round(max(x),1),
data=Cone.data,
subset=Year != "pre-mast")$Height.m

names(cones.ag) <- c("Cones",
"Min.height.m",
"Total.tree.count",
"Max.height.m")

cones.ag %>%
kable(caption="Cone count by tree height.")

Cone count by tree height.

Cones Min.height.m Total.tree.count Max.height.m
0 1.2 52 6.5
1 to 10 1.8 42 5.6
10 to 50 2.0 99 6.7
50 to 100 3.8 43 9.5
100 to 200 3.9 15 7.9
200 to 400 6.1 6 10.7
400 to 1000 5.8 3 8.8

1.6.4 How many trees observed had cones?

Total number of cone bearing trees:
paste(sum(Cone.data$Cones != "0"), "trees")

## [1] "226 trees"

1.6.5 And how many of those trees with cones were 2.5 m or taller?

cone.trees <- Cone.data %>%
subset(Cones != "0")

Number of cone-bearing trees greater than 2.5 m tall:
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n.over2.5m <- cone.trees %>%
subset(Height.m >= 2.5) %>%
nrow()

paste(n.over2.5m, "trees")

## [1] "223 trees"

Trees under 2.5 m tall with cones by their height and area:
row.names(cone.trees) <- NULL
cone.trees %>%

filter(Height.m < 2.5) %>%
arrange(Height.m) %>%
kable(caption="Height of three juvenile-sized trees with cones.")

Height of three juvenile-sized trees with cones.

Cones Area Height.m Year
1 to 10 AmakW 1.80 post-mast
10 to 50 AmakW 2.00 post-mast
1 to 10 W. Fork Cutler 2.26 mast-event

Percentage of trees with cones over 2.5 m:
(100*n.over2.5m/nrow(cone.trees)) %>%

round() %>%
paste0("%")

## [1] "99%"

Shortest cone-bearing tree:
min(cone.trees$Height.m) %>%

paste("meters tall")

## [1] "1.8 meters tall"

1.7 When did the 20 oldest aged trees establish?

This uses data that relies on results from SI Calc. 2, a supplement that shows calculations of establishment
years using relative growth rates of juveniles (RGR), and on results from SI Calc. 3, a supplement that
shows calculations of RGR.
aged.trees <- read.csv("./AgingIncrementCoreHeight V3.csv") %>%

dplyr::mutate(est.year=Establishment_yr) %>%
subset(est.year < 1950) %>%
arrange(est.year)

aged.trees %>%
dplyr::mutate(est.year,

year.class=cut(est.year,
breaks=c(1900,1910,1920,1930,1940,1950)),
.keep="none") %>%

aggregate(est.year~year.class,
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FUN=length,
data=.) %>%

dplyr::mutate(tree.count=est.year,
year.class=c("(1900,1910]",

"(1910,1920]",
"(1920,1930]",
"(1930,1940]",
"(1940,1950]"),

.keep="none") %>%
kable(caption="Count of 20 oldest trees

by establishment decade.")

Count of 20 oldest trees by establishment decade.

year.class tree.count
(1900,1910] 1
(1910,1920] 3
(1920,1930] 2
(1930,1940] 5
(1940,1950] 9

The rather large increase in tree.count approximately 3-4 decades after the oldest individuals established
(i.e., identified as “(1900,1910]” and “(1910,1920])”, suggests local reproduction when the earliest colonists
matured26 at about 30 years.

1.7.1 How far are the eight oldest trees from the established Kobuk treelines?

The eight oldest tree establishment years, 1901, 1914, 1917, 1919, 1928, 1930, 1932, 1933, cover 32 years and
were likely all long-distance dispersal (LDD) events from seeds sourced at the Kobuk treeline or beyond, since
white spruce produce seeds in quantity26 at 30 y old.
BRTL.coords <- readOGR("BRTL.AOI.shp",

verbose = FALSE) %>%
coordinates()

oldest.trees.dist <- rdist.earth(aged.trees[,c("lon","lat")],
BRTL.coords,
miles=F) %>%

apply(1,min) %>%
range() %>%
round(1)

paste("Oldest colonists are",
min(oldest.trees.dist),
"to",max(oldest.trees.dist),
"km from established treelines")

## [1] "Oldest colonists are 5.1 to 13.5 km from established treelines"
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1.8 Distance calculations

1.8.1 How far are the colonists from nearest established treelines?

SI Figure 1 shows the digitized adult spruce identified from shadows (yellow dots) and the established
treelines (green lines). We found the distances between each spruce shadow and each established treeline
vertex and from those distances we identified the nearest vertex. We followed the same procedure for juveniles
shown in SI Fig. 3.

From these two sets of distances we calculated the range of colonist-to-established-treeline distances in
kilometers using the rdist.earth() function in the fields package in R:
##### distances

juveniles <- juveniles %>% mutate(Long=-lon.W,
Lat=lat.N)

distances.Adults <- rdist.earth(shadows[,c("long","lat")],
BRTL.coords,
miles=F)

distances.Juveniles <- rdist.earth(juveniles[,c("Long","Lat")],
BRTL.coords,
miles=F)

## Get nearest distances

adults <- apply(distances.Adults,1,min) %>%
range() %>%
round(1)

juves <- apply(distances.Juveniles,1,min) %>%
range() %>%
round(1)

The range in kilometers from colonists to established Brooks Range Treeline (BRTL) is
paste(min(c(adults,juves)),"to",max(c(adults,juves)),"km")

## [1] "1.3 to 42.1 km"

1.9 Northward movement

Estimating northward movement of spruce relied on locations of nearest treelines to each adult and of nearest
adult to each juvenile. The di�erence in latitudes was then multiplied by the distance between two parallels
of latitude 1¶ apart.

1.9.1 How many adults are mapped as shadows?

shadows <- read.csv("BestShadowData.csv")
nrow(shadows) %>%

format(big.mark=",") %>%
paste("adults")

## [1] "5,988 adults"
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1.9.2 How many vertices along BRTL are contained in the Kobuk watersheds adjacent to the
AOI?

BRTL.coords <- readOGR("BRTL.AOI.shp",
verbose = FALSE) %>%
coordinates() %>%
data.frame()

nrow(BRTL.coords) %>%
format(big.mark=",") %>%
paste("vertices of treelines")

## [1] "3,366 vertices of treelines"

1.10 How far north in degrees and distance have adults moved from Kobuk
treelines?

This is a four-step process:

1. Identify the nearest vertex for each adult shadow.
2. Establish the nearest latitude coordinates of the each adult and the nearest established treeline vertex.
3. Find displacement as di�erence in latitude between adult and nearest vertex.
4. Multiply by distance per degree north (km/¶N) to estimate northward displacement in km.

Note that three adults were located farther north in the field (SI Fig. 2 near word “River” in “Cutler River”
label). These are appended to the shadow dataset.
##### Step 1: Find nearest established treeline vertex to each adult

northern.field.adults <- data.frame(long=c(-158.01011,-158.01649,-158.02017),
lat=c(67.67165,67.67113,67.63182))

shadows.lat.lon <- rbind(shadows[,c("long","lat")],
northern.field.adults)

distances.Adults <- rdist.earth(shadows.lat.lon,
BRTL.coords,
miles=F) %>%

apply(1,min)

which.ones <- rdist.earth(shadows.lat.lon,
BRTL.coords,
miles=F) %>%

apply(1,which.min)

shadows.lat.lon <- dplyr::mutate(shadows.lat.lon,
lon.BRTL=BRTL.coords$coords.x1[which.ones],
lat.BRTL=BRTL.coords$coords.x2[which.ones],
degrees.N=lat-lat.BRTL)

1.10.1 Maximum adult distance north of established treeline in degrees:

max(shadows.lat.lon$degrees.N,na.rm=T) %>% round(3)

## [1] 0.156
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1.11 Convert from degrees to kilometers north

To determine a conversion factor from degrees latitude north to kilometers north, we applied the rdist.earth()
function along the meridian longitude -157.6891¶ that passes through the AOI and between degrees 67¶N
and 68¶N that bound the AOI.
deg.to.km <- matrix(c(-157.6891,67,

-157.6891,68),
byrow=T,ncol=2,nrow=2) %>%

rdist.earth(miles=F) %>%
max(na.rm=T)

paste(round(deg.to.km,2),"km/degree")

## [1] "111.32 km/degree"

The distance in kilometers between 67¶ and 68¶ N is 111.32 km.

Multiplying all latitudinal displacements by this conversion factor gives displacements north in kilometers:
shadows.lat.lon <- dplyr::mutate(shadows.lat.lon,

km.N=degrees.N*deg.to.km)

The maximum distance north (in kilometers) of an adult colonist is 17.4 km:
summary(shadows.lat.lon$km.N)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.620 3.458 5.561 5.375 7.648 17.357

The negative distance reflects that the nearest treeline may be north of a colonist because the treeline itself is
not a straight east-west line.

The 95th percentile of distance north in kilometers:
quantile(prob=0.95,shadows.lat.lon$km.N) %>%

round(2) %>%
paste("km N")

## [1] "9.71 km N"

1.12 What is the rate of movement for the furthest forward adult?

Consider the year 1901 as the year of initial colonization and 2021 as the year of observation, giving an
interval of 12 decades.

The rate of adult movement is 17.4 km over 12 decades or 1.4 km decade≠1

1.13 How many juvenile records are we reporting?

“LatLongMaxEntAll.csv” includes juveniles found outside the AOI, so we subset it to include only those
juveniles within the longitudes of the AOI (SI Fig. 3).
juveniles <- read.csv("LatLongMaxEntAll.csv") %>%

dplyr::mutate(Long = -lon.W,
Lat = lat.N) %>%

subset(Long <= -156.5 & Long > -159) %>%
subset(AgeClass !="adult") %>%
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dplyr::mutate(Long=Long,
Lat=Lat,
.keep="none")

paste(nrow(juveniles), "juveniles located in the field.")

## [1] "770 juveniles located in the field."

1.14 How far north are the furthest forward juveniles from the nearest adults?

1.14.1 In degrees north?

shadows <- read.csv("BestShadowData.csv")

##### Get nearest distances

distances.Juves2Adults <- rdist.earth(juveniles,
shadows.lat.lon,
miles=F) %>%

apply(1,min)

## get nearest treeline point and its location

which.ones <- rdist.earth(juveniles,
shadows.lat.lon,
miles=F) %>%

apply(1,which.min)

## find latitudes of nearest adults then find differences in latitudes

juveniles <- dplyr::mutate(juveniles,
km.Juves2Adults=distances.Juves2Adults,
lon.adults=shadows.lat.lon$long[which.ones],
lat.adults=shadows.lat.lon$lat[which.ones],
degrees.N=Lat-lat.adults)

paste("Maximum juvenile-from-adult northward displacement in degrees:",
round(max(juveniles$degrees.N),3))

## [1] "Maximum juvenile-from-adult northward displacement in degrees: 0.206"

The furthest north juvenile is 0.206¶ north of the nearest adult. It is north of the Noatak River near the
mouth of the Cutler River.

1.14.2 In kilometers north?

Here are all the furthest forward juveniles that are more than 5 km north of the nearest adult:
juveniles <- dplyr::mutate(juveniles,

km.N=degrees.N*deg.to.km)

juves.over10km.away <- juveniles %>%
subset(km.N > 5)

juves.over10km.away %>%
arrange(desc(km.N)) %>%
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mutate(km.N = round(km.N,1)) %>%
dplyr::select(km.N) %>%
kable(caption="Distance from nearest adult

of 14 most distant juveniles.")

Distance from nearest adult of 14 most distant juveniles.

km.N
22.9
21.8
15.0
9.8
9.6
9.3
9.3
9.3
9.3
9.3
9.3
9.3
9.3
9.3

How many kilometers apart are the 14 furthest forward juveniles, given we know their five locations?
most.distant <- which(juveniles$km.N > 5)

## locations of 14 furthest forward

pops <- matrix(c(-158.3433,67.87696,
-158.331100,67.805425,
-158.2288,67.86737,
-158.2485,67.75948,
-158.2225,67.75480),
nrow=5,ncol=2,byrow=T)

closest <- RdistEarth(pops,miles=F) %>%
apply(1,FUN=function(x) min(x[x>0]))

closest %>%
round(1) %>%
data.frame(distance_to_nearest_others_in_km=.) %>%
kable(caption="Distances among most distant juvenile populations.")

Distances among most distant juvenile populations.

distance_to_nearest_others_in_km
4.9
6.2
4.9
1.2
1.2
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1.15 How far north are these furthest forward juveniles from the nearest es-
tablished treelines?

BRTL.coords <- readOGR("BRTL.AOI.shp",
verbose = FALSE) %>%
coordinates() %>%
data.frame()

farthest <- juveniles[most.distant,]

##### Get nearest distances

farthest$Juves2Treelines <- rdist.earth(farthest,
BRTL.coords,
miles=F) %>%

apply(1,min)

## get nearest treeline point and its location

which.ones <- rdist.earth(farthest,
BRTL.coords,
miles=F) %>%

apply(1,which.min)

## find latitudes of nearest treelines then find difference in latitudes

farthest <- dplyr::mutate(farthest,
lon.BRTL=BRTL.coords$coords.x1[which.ones],
lat.BRTL=BRTL.coords$coords.x2[which.ones],
degrees.N=Lat-lat.BRTL,

km.N=deg.to.km*degrees.N)

Range in northness metrics from established treelines for the 14 furthest forward juveniles calculated as:
farthest %>% summarize(North.displacement.deg=

round(range(degrees.N),3),
Metric=c("Min","Max")) %>%

kable(caption="Degrees north of treeline of
14 furthest forward juveniles.")

Degrees north of treeline of 14 furthest forward juveniles.

North.displacement.deg Metric
0.239 Min
0.361 Max

farthest %>% summarize(North.displacement.km=
round(range(km.N),1),
Metric=c("Min","Max")) %>%

kable(caption="Range from established treelines of 14 furthest forward juveniles.")

Range from established treelines of 14 furthest forward juveniles.

North.displacement.km Metric
26.6 Min
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North.displacement.km Metric
40.2 Max

1.15.1 How far north of established treelines are the 14 furthest forward juveniles?

The juveniles range from 0.239¶ to 0.361¶ north of nearest BRTL treeline.

1.15.2 How many kilometers north of treelines?

The juveniles range from 26.6 km to 40.2 km north of nearest BRTL treeline.

1.15.3 How much growth was recently added for the furthest forward juveniles with growth
measurements?

distant.juves <- read.csv("Farthest14Juveniles.csv")

Of the 14 farthest forward juveniles n = 8 had growth measurments. The mean fraction of total height added
in most recent five years was 57% with sd = 14%.

1.16 How far are juveniles generally from adults?

This dataframe has the calculated distances for all juveniles using the approach from above:
juvenile.stats <- read.csv("JuvenileMovementStats.csv")

It shows that juvenile colonists were found to range from 393 m above and -216 m below nearest adults.

1.16.1 We used relative growth rates (RGR) to estimate year of establishment of the single
most distant juvenile:

SI Calc. 3 shows calculations for estimating RGR of juveniles based on using RGR to estimate juvenile age
and so year of establishment.
year.of.most.distant <- read.csv("Farthest14Juveniles.csv") %>%

subset(lat == max(lat)) %>%
.$raw.est.year

year.of.most.distant %>% sort()

## [1] 1997

1.16.2 The summary statistics for elevations (m.asl = meters above sea level) of all juvenile
samples are:

juvenile.stats %>%
mutate(juvenile.elev=round(juvenile.elev)) %>%
summarize(Min.m.asl=min(juvenile.elev),

Percentile25.m.asl=quantile(p=0.25,juvenile.elev),
Median.m.asl=quantile(p=0.5,juvenile.elev),
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Mean.m.asl=round(mean(juvenile.elev)),
Percentile75.m.asl=quantile(p=0.75,juvenile.elev),
Percentile97.5.m.asl=quantile(p=0.975,juvenile.elev),
Max.m.asl=max(juvenile.elev)) %>%

kable(caption="Summary statistics of juvenile elevation (meters above sea level).")

Summary statistics of juvenile elevation (meters above sea level).

Min.m.asl Percentile25.m.asl Median.m.asl Mean.m.asl Percentile75.m.asl Percentile97.5.m.asl Max.m.asl
282 442 492 507 522 752.775 846

1.16.3 The median distance to nearest adult of the 770 samples of juveniles was 59 meters

round(1000*median(juvenile.stats$adult.dist.km)) %>%
paste("m")

## [1] "59 m"

1.17 How many juveniles are more than 300 m away from the nearest adult?

Reference 26 cites 300 meters as long-distance dispersal (LDD) for white spruce.
tot.300 <- sum(juvenile.stats$adult.dist.km > 0.3)

paste(tot.300,"juveniles,")

## [1] "244 juveniles,"

perc.300 <- round(100*tot.300/nrow(juvenile.stats))

or 32%.

1.18 How many are more than 800 m away?

Reference 27 cites 800 meters as LDD for white spruce.
tot.800 <- sum(juvenile.stats$adult.dist.km > 0.8)

paste(tot.800,"juveniles,")

## [1] "99 juveniles,"

perc.800 <- round(100*tot.800/nrow(juvenile.stats))

or 13%.

1.19 What are the velocities (as northward component of speed) and speed,
given the year of establishment and distances of adults and juveniles from
established treelines?

year.of.most.distant <- read.csv("Farthest14Juveniles.csv") %>%
subset(lat == max(lat)) %>%

.$raw.est.year
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juvenile.stats <- read.csv("JuvenileMovementStats.csv")

read.csv("AgingIncrementCoreHeight V3.csv") %>%
summarize(year.of.establishment.of.oldest.tree=

min(Establishment_yr,na.rm=T)) %>%
kable(caption="Year of establishment of oldest trees.")

Year of establishment of oldest trees.

year.of.establishment.of.oldest.tree
1901

1.19.1 Number of years between colonization of Cutler basin and arrival of established
seedling to Noatak River:

delta.y <- year.of.most.distant - 1901

delta.y %>%
paste("years")

## [1] "96 years"

1.19.2 Kilometers from furthest forward juvenile to nearest treeline:

distance.from.treeline <- max(juvenile.stats$BRTL.km)

distance.from.treeline %>%
round(1) %>%
paste("km")

## [1] "42.1 km"

1.19.3 Furthest forward juvenile distance in kilometers north from nearest treeline:

distance.from.treeline.N <- max(juvenile.stats$diff.dist.N.BRTL.km)

distance.from.treeline.N %>%
round(1) %>%
paste("km")

## [1] "40.2 km"

1.20 Northward migration velocity in km N/decade:

(10*distance.from.treeline.N/delta.y) %>%
round(1) %>%
paste("km N/decade")
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## [1] "4.2 km N/decade"

1.21 Migration speed in km/decade:

(10*distance.from.treeline/delta.y) %>%
round(1) %>%
paste("km/decade")

## [1] "4.4 km/decade"
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2 Calculating Age to Increment Core Height

We used a sample of the 2015-2020 relative growth rates (RGR) from 300 juvenile colonists (calculations
shown below in SI Calc. 3) to estimate the age that a cored tree was when it reached the height at which
it was cored. We then subtracted this amount from the estimated establishment year of the cross-dated
increment core.

The first assumption is that the five-years of growth follow an exponential curve

H(t) = H0 exp(RGRt)

where t is years after 2015 and H0 was height in 2015. SI Calculation 3 shows the theory and code used to
derive RGR for each individual juvenile.

We used the RGR for each juvenile to estimate when the individual was 2 cm tall. We selected 2 cm as an
estimate of the height of a successful seedling at the end of its first season and estimated the year the juvenile
was 2 cm tall as t = ln(h2015/2)/RGR. We saved the individual-specific RGR (“growth.rate”), year at 2 cm
(“year.at.2.cm”), and height in 2015 (“Initial.cm”) within the file “Juvenile.RGR.age.lat.lon.csv” used here.

Across all 300 juvenile colonists, the correlation between the natural log of height in 2015 and the year it was
2 cm tall was strong and negative. The relationship between RGR and year formed the basis for estimating
how many years it took a tree to reach the increment core height.
dat <- read.csv("./Juvenile.RGR.age.lat.lonV2.csv")

cor.test(~year.at.2cm+log(Initial.cm),
data=dat,
subset=Source=="colonist")

##
## Pearson�s product-moment correlation
##
## data: year.at.2cm and log(Initial.cm)
## t = -16.163, df = 298, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7394798 -0.6180683
## sample estimates:
## cor
## -0.6834725

2.1 Using juvenile colonist growth rates to estimate age at core height

Because all the core heights from colonist adults were under 20 cm, we used only RGR from juveniles that
were under 20 cm tall in 2015.
new.r <- read.csv("./Juvenile.RGR.age.lat.lonV2.csv") %>%

filter(Initial.cm <= 20) %>%
filter(Source=="colonist")

There were 83 juvenile colonists Æ 20 cm from four areas in the AOI.

Using H(t) = H0 exp(RGRt) with H0 = 2 and H equal to the height, C, at the increment core hole, the time
T to C from H0 = 2 is

T = ln(C/2)
R̄

= — ln C + —o,

where —o = ≠ ln(C)/R̄ and — = 1/R̄, where R̄ is some measure of average RGR.
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We modeled this relationship using a linear mixed model with sample area as a random factor and T estimates
the years before 2015 when a juvenile was 2 cm tall, given a height C in 2015.

We numerically adjusted the height of a successful seedling to arrive at an x-intercept of 2 cm. In particular,
the lmer() fit with an x-intercept = 2 used 0.9 ”= 2 in the denominator of the dividend as

T = ln(C/0.9)
RGR

.

mod.mer <- new.r %>%
lmer((I(2015-year.at.2cm)) ~ log(Initial.cm) + (1|Field.Site),

data=.)

summary(mod.mer)

## Linear mixed model fit by REML [�lmerMod�]
## Formula: (I(2015 - year.at.2cm)) ~ log(Initial.cm) + (1 | Field.Site)
## Data: .
##
## REML criterion at convergence: 395.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.8012 -0.5553 -0.2633 0.3613 3.7316
##
## Random effects:
## Groups Name Variance Std.Dev.
## Field.Site (Intercept) 13.351 3.654
## Residual 6.356 2.521
## Number of obs: 83, groups: Field.Site, 4
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -0.9367 2.8161 -0.333
## log(Initial.cm) 4.1615 0.8204 5.073
##
## Correlation of Fixed Effects:
## (Intr)
## lg(Intl.cm) -0.741

lmer.Intercept <- fixef(mod.mer)[1]

lmer.slope <- fixef(mod.mer)[2]

The relationship between T, “years-from-2-cm-to-core-height-above-ground, C”, is T = -0.94 + 4.16 ln C

where C is core height in cm above ground.

While this result is crude, without a large degree of destructive sampling in a scientifically sensitive area, it is
convenient.

Applying it to the core samples gives for the first set:
cores1 <- read.csv("./Core.hts.2020_cleaned.csv") %>%

dplyr::mutate(Colin.ID,
TreeID,
Core.ht.cm,
estab.year.adj=round(lmer.Intercept+lmer.slope*log(Core.ht.cm)),
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.keep="none") %>%
merge(read.csv("./Cutler2020_tree_ages.csv"),

by="Colin.ID") %>%
dplyr::mutate(Colin.ID,

TreeID,
Core.ht.cm,
Established.year=Est.yr-estab.year.adj,
.keep="none")

cores1.m <- read.csv("./CutlerSpruce2020.csv") %>%
dplyr::mutate(lat,lon,TreeID,Height.m,

.keep="none") %>%
merge(cores1,by="TreeID")

And the second set:
cores2 <- read.csv("./Core.hts.2019_cleaned.csv") %>%

dplyr::mutate(Colin.ID,
TreeID,
Core.ht.cm,
estab.year.adj=round(lmer.Intercept+lmer.slope*log(Core.ht.cm)),

.keep="none") %>%
merge(read.csv("./Cutler2019_tree_ages.csv"),

by="Colin.ID") %>%
dplyr::mutate(Colin.ID,

TreeID,
Core.ht.cm,
Established.year=Est.yr-estab.year.adj,
.keep="none")

cores2.m <- read.csv("./CutlerSpruce2019.csv") %>%
dplyr::mutate(lat,

lon=long,
TreeID=ID,
Height.m,
keep="none") %>%

merge(cores2,by="TreeID")

Put together:
aged.trees <- data.frame(Colin.ID=c(cores2.m$Colin.ID,cores1.m$Colin.ID),

ID=c(cores2.m$TreeID,cores1.m$TreeID),
Core.ht.cm=c(cores2.m$Core.ht.cm,cores1.m$Core.ht.cm),
Established.year=c(cores2.m$Established.year,cores1.m$Established.year),
lat=c(cores2.m$lat,cores1.m$lat),
lon=c(cores2.m$lon,cores1.m$lon),
Height.m=c(cores2.m$Height.m,cores1.m$Height.m))

paste(sum(!is.na(aged.trees$Established.year)), "trees with years of establishment")

## [1] "142 trees with years of establishment"

This dataset represents a total of 142 trees with years of establishment.

The heights above ground (cm) of the tree-cores are described as
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summary(aged.trees$Core.ht.cm)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA�s
## 2.000 5.000 5.000 6.468 10.000 20.000 5

The dataset with estimated estimated years of establishment is saved as:
# Not run
# write.csv(aged.trees,row.names=F,
# "./AgingIncrementCoreHeight V3.csv")
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3 Calculating Relative Growth Rates (RGR) for Juveniles

We measured the height above ground of the most recent six bud scars on juvenile colonists encountered
along transects through the AOI in four areas. We also did the same for juveniles within sample plots at 14
established treelines. These heights above ground provided relative growth rates (RGR) for each individual
juvenile. The RGRs in turn provide a means to age juveniles and to age when an increment-cored tree first
reached the height above ground of the increment bore hole (SI Calc. 2). We also use RGR to compare
growth in colonists to established treeline juveniles (SI Calc. 6).

3.1 Growth Model and Assumptions

We assume that the five-years of growth follows an exponential curve

H(t) = H0 exp(RGRt)

where t is years after 2015 and H0 is height in 2015. We use juveniles for which we measured the last six bud
scar heights above ground, applying simple linear regression of log(H) on t, where the parameter of interest
is RGR, the relative growth rate.

We chose the function lm() with semi-log regression rather than nls() with an exponential curve for two
reasons. First nls() fails for those instances when growth is linear in time. Second, the residuals are
heteroscedastic when height is not logged, violating an assumption of homoscedasticity in nls().

The following code calculates the RGR for each individual and saves it as a data frame with associated
metadata about that individual, including its location and sample area, as well as the calculated age at 2 cm.
Section SI Calc. 3.5 provides code and figures showing semi-log plots for the 505 individual juveniles (i.e.,
height < 2.5 m) as the growth curve for each.

3.2 Data Wrangling

We select only the juvenile sized trees and create a “Year” variable centered at 2015.
suppressMessages(library(ggplot2))
suppressMessages(library(ggridges))
suppressMessages(library(tidyverse))
library(stringr)
library(lme4)

raw <- read.csv("./JuvenileGrowthRaw.csv") %>%
filter(Height.cm < 250) %>%
dplyr::mutate(Year=year-2015)

3.2.1 Upper Noatak Basin Juvenies

First we handle the juveniles from the Cutler River basin and from the Phillip Smith55 treeline (67.997¶,
161.521¶). The Phillip Smith treeline marks the uppermost established treeline on the Noatak River.

The Cutler River basin and the Phillip Smith treeline are located within the Noatak basin. The Phillip Smith
treeline is located about 135 km from the nearest known spruce in the AOI. Neither of these sites are part of
the Brooks Range Treeline (BRTL) as defined here. BRTL juveniles are handled below and include juveniles
measured at established experimental field sites at established treelines in the lower Noatak basin, the Kobuk
basin, and the Koyukuk basin.
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3.2.2 Summary of all bud scar heights (cm) above ground

summary(raw$Height.cm)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.125 27.250 46.125 61.203 80.000 248.625

3.2.3 Define vectors to hold the calculated values and metadata.

First setup some empty vectors:

“growth.rate” is RGR.

“Initial.cm” is the height above ground of the 2015 bud scar.

“R.sq” is the R
2 from the regression of ln(h) on t, the number of years after 2015.

“Phone” is the smartphone used in the field to record measurements.

“Field.Site” is the area sampled, generaly treated as a random factor.

“Source” is the population from which the juvenile was sampled: Colonist or Established Treeline.

“lat” and “lon” are GNSS locations of the juvenile.

“year.at.2cm” is the estimated year the juvenile established (SI Calc. 3.3).
IDs <- unique(raw$uniqueID)
how.many <- length(IDs)

growth.rate <- rep(NA,how.many)
Initial.cm <- rep(NA,how.many)
R.sq <- rep(NA,how.many)
Phone <- rep(NA,how.many)
Field.Site <- rep(NA,how.many)
Source <- rep(NA,how.many)
lat <- rep(NA,how.many)
lon <- rep(NA,how.many)
year.at.2cm <- rep(NA,how.many)

Next, loop through all individuals in the Noatak basin filling the vectors defined above with values.
for(i in 1:how.many)
{temp <- raw %>%

subset(uniqueID==IDs[i])
mod <- lm(log(Height.cm)~Year,

data=temp)
R.sq[i] <- summary(mod)$r.squared
growth.rate[i] <- coef(mod)[2]
Phone[i] <- unique(temp$Phone)
Initial.cm[i] <- min(temp$Height.cm)
Field.Site[i] <- unique(temp$Field.Site)
Source[i]=unique(temp$Source)
lon[i]=unique(temp$lon)
lat[i]=unique(temp$lat)
year.at.2cm[i]=

round(2015-(log(min(temp$Height.cm)/2)/coef(mod)[2]))
}
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Finally, save the summary statistics for all Noatak basin individuals
dat <- data.frame(Field.Site=Field.Site,

ID=IDs,
growth.rate=growth.rate,
Phone=Phone, # field recording device
Source=Source,
Initial.cm=Initial.cm,
R.sq=R.sq)

dat %>%
tabyl(Field.Site) %>%
adorn_pct_formatting(digits=0) %>%
kable(caption="Frequency distribution of Noatak basin juvenile samples.")

Frequency distribution of Noatak basin juvenile samples.

Field.Site n percent
AmakCutlerRidge 19 5%
AmakE 79 22%
AmakW 195 54%
Cutler 7 2%
PhilipSmith 60 17%

3.3 Calculating Age at 2 cm for Colonists using RGR

The RGR is compared to H0 to determine a relationship such that given the height in 2015, what would
be the best estimate of how long it took to reach that height from 2 cm, the assumed height of a robust
germinant at the end of its first growing season that has survived to 2021, the year of sampling. That is,
given height h2015 find T so that:

h2015 = 2 exp(rT )

or

T = log(h2015/2)
RGR

Subtracting T from 2015 gives the year of establishment, here defined as “year.at.2cm”.
DAT.noatak <- data.frame(lat=lat,

lon=lon,
Field.Site=Field.Site,
ID=IDs,
growth.rate=growth.rate,
Phone=Phone,
Source=Source,
Initial.cm=Initial.cm,
year.at.2cm=year.at.2cm,
R.sq=R.sq)

This dataframe as used above in SI Calc. 2 Calculating Age to Increment Core Height.
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3.3.1 Brooks Range Treeline (BRTL) juveniles

Now do something similar for all individuals from BRTL, leaving out some unused variables.
BRTL <- read.csv("./BRTL JuvenileGrowthRaw.csv")

3.3.2 Summary of all bud scar heights (cm) above ground

summary(BRTL$Height.cm)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.20 18.52 42.00 49.91 76.45 142.00

BRTL <- BRTL %>%
subset(Height.cm < 250) %>%
dplyr::mutate(Year=year-2015)

# vectors defined
IDs <- unique(BRTL$uniqueID)
how.many <- length(IDs)
growth.rate <- rep(NA,how.many)
Initial.cm <- rep(NA,how.many)
R.sq <- rep(NA,how.many)
Phone <- rep(NA,how.many)
Field.Site <- rep(NA,how.many)
Source <- rep(NA,how.many)

for(i in 1:how.many)
{temp <- BRTL %>%

subset(uniqueID==IDs[i])
mod <- lm(log(Height.cm)~Year,

data=temp)
R.sq[i] <- summary(mod)$r.squared
growth.rate[i] <- coef(mod)[2]
Phone[i] <- unique(temp$Phone)
Initial.cm[i] <- min(temp$Height.cm)
Field.Site[i] <- unique(temp$Field.Site)
Source[i]=unique(temp$Source)

}

## Collect vectors into data frame

dat.BRTL <- data.frame(Field.Site=Field.Site,
ID=IDs,
growth.rate=growth.rate,
Phone=Phone,
Source=Source,
Initial.cm=Initial.cm,
R.sq=R.sq)

table(dat.BRTL$Field.Site)

##
## ALL 3 AML3 AMR1 KEL1 KER1 KUL1 KUR1 OML1 OMR1 TAL1 TAR1 TIL1 TIR1
## 5 15 14 12 12 12 13 6 11 12 12 9 12
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3.4 Statistics of coe�cient of determination

Here are summaries of the R
2 values from the semi-log regressions.

summary(DAT.noatak$R.sq[DAT.noatak$Source=="colonist"])

3.4.0.1 Colonist juvenile coe�cients of determination

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7414 0.9846 0.9913 0.9867 0.9955 0.9999
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Distribution of coe�cient of determination for juvenile colonist log(height) regressed on year.

summary(dat.BRTL$R.sq)

3.4.0.2 Established treeline juvenile coe�cients of determination (R
2)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7071 0.9778 0.9892 0.9785 0.9943 0.9988

3.5 Individual juvenile growth curves

Below we present graphical representations of the most recent five years of growth for all juveniles measured,
organized by sample area, and showing code for the first set of graphs. The remaining graphs are produced
similarly, but code is hidden. In all plots, the y-axis is a log scale with heights (cm) indicated at 10, 40, and
160 cm.
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3.5.1 300 individual Colonist growth curves used for estimating RGR

raw <- read.csv("./JuvenileGrowthRaw.csv")

There are four colonist areas with relative growth rates (RGR) calculated for each:

1. Cutler Colonist
2. AmakCutlerRidge
3. AmakE
4. AmakW

3.5.1.1 Cutler Cutler valley has 7 juvenile samples.
#### Cutler

raw %>% subset(Field.Site == "Cutler") %>%
ggplot(aes(x=year-2015,y=log(Height.cm),col=uniqueID)) +
geom_point() +
facet_wrap(vars(uniqueID)) +
geom_smooth(method = "lm",se=F) +
guides(col="none") +
scale_x_continuous(breaks=0:5,labels=2015:2020) +

scale_y_continuous(breaks=log(c(10,40,160)),
labels=c(10,40,160)) +

labs(y="Height (cm)",
x="") +

theme(axis.text.x =
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element_text(angle = 90,
vjust = 0.5,
hjust=1))

## �geom_smooth()� using formula �y ~ x�
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Growth curves for Cutler colonist juveniles.
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3.5.1.2 AmakCutlerRidge AmakCutlerRidge has 19 juvenile samples.

## �geom_smooth()� using formula �y ~ x�

AmakCutlerRidgegoldCT04AmakCutlerRidgegoldCT05AmakCutlerRidgegoldCT06AmakCutlerRidgegoldCT07

AmakCutlerRidgeblueLP7 Amak Cutler AmakCutlerRidgeblueLP8 Amak Cutler AmakCutlerRidgegoldCT01AmakCutlerRidgegoldCT02AmakCutlerRidgegoldCT03

AmakCutlerRidgeblueLP 2 Amak Cutler AmakCutlerRidgeblueLP3 Amak−Cutler AmakCutlerRidgeblueLP4 Amak Cutler 5 kinkAmakCutlerRidgeblueLP5 Amak Cutler AmakCutlerRidgeblueLP6 Amak Cutler 

AmakCutlerRidgeblueJ1 Amak CutlerAmakCutlerRidgeblueJ2 Amak CutlerAmakCutlerRidgeblueJ3 Amok CutlerAmakCutlerRidgeblueJ4 Amak Cutler AmakCutlerRidgeblueJ5 Amak Cutler 
20

15
20

16
20

17
20

18
20

19
20

20
20

15
20

16
20

17
20

18
20

19
20

20
20

15
20

16
20

17
20

18
20

19
20

20
20

15
20

16
20

17
20

18
20

19
20

20
20

15
20

16
20

17
20

18
20

19
20

20

10

40

10

40

10

40

10

40

H
ei

gh
t (

cm
)

Growth curves for AmakCutlerRidge colonist juveniles.
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3.5.1.3 AmakW Colonist growth curves by individual AmakE area has 79 juvenile samples.

## �geom_smooth()� using formula �y ~ x�
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Growth curves for AmakE colonist juveniles.

## �geom_smooth()� using formula �y ~ x�
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Growth curves for AmakE colonist juveniles.

3.5.1.4 AmakW Colonist growth curves by individual AmakW area has 195 samples

## �geom_smooth()� using formula �y ~ x�
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Growth curves for AmakW colonist juveniles.

## �geom_smooth()� using formula �y ~ x�
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Growth curves for AmakW colonist juveniles.

## �geom_smooth()� using formula �y ~ x�
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Growth curves for AmakW colonist juveniles.

## �geom_smooth()� using formula �y ~ x�
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Growth curves for AmakW colonist juveniles.

## �geom_smooth()� using formula �y ~ x�
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Growth curves for AmakW colonist juveniles.

3.5.2 271 individual growth curves for juveniles from established treelines and used for esti-
mating RGR

BRTL <- read.csv("./BRTL JuvenileGrowthRaw.csv")
read.csv("./GrowthRates_BRTL.csv") %>%

aggregate(data=.,
growth.rate~Field.Site,
FUN=length) %>%

dplyr::mutate(Field.Site,
juveniles=growth.rate,
.keep="none") %>%

kable(caption="Juvenile sample sizes by established treeline.")

Juvenile sample sizes by established treeline.

Field.Site juveniles
AGL 6
AGR 10
ALL 3 5
AML3 15
AMR1 14
CLL 13
CLR 8
HFL 17
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Field.Site juveniles
HFR 12
KEL1 12
KER1 12
KUL1 12
KUR1 13
OML1 6
OMR1 11
TAL1 12
TAR1 12
TIL1 9
TIR1 12

The established treeline juveniles come from multiple field sites, all but one of which (Philip Smith) are BRTL
sites. Seven are from the Noatak basin, eight from the Kobuk basin, and five from the Koyukuk basin. The
Koyukuk was used because the Alatna basin abuts the Noatak basin and the uppermost named tributary of
the Noatak, “Lucky Six Creek,” has a population of colonists.

The BRTL sites come from established treelines that form upper (high elevation) and lower (low elevation)
boundaries of forests on hillsides.

1. PhilipSmith
2. Kugururok high elevation “KUL1”
3. Kugururok low elevation “KUR1”
4. Kelly high elevation “KEL1”
5. Kelly low elevation “KER1”
6. Squirrel high elevation “TAL1”
7. Squirrel low elevation “TAR1”
8. Omar high elevation “OML1”
9. Omar low elevation “OMR1”

10. Timber high elevation “TIL1”
11. Timber low elevation “TIR1”
12. Ambler high elevation “AML3”
13. Ambler low elevation “AMR1”
14. Alatna high elevation “ALL 3”
15. Agashashok high elevation “AGL”
16. Agashashok low elevation “AGR”
17. John high elevation “HFL”
18. John low elevation “HFR”
19. Koyukuk high elevation “CLL”
20. Koyukuk low elevation “CLR”
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PhilipSmith growth curves for 60 individuals.

## �geom_smooth()� using formula �y ~ x�
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Growth curves for PhilipSmith established treeline juveniles.
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## �geom_smooth()� using formula �y ~ x�
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Growth curves for PhilipSmith established treeline juveniles.
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Kugururok River high elevation “KUL1” 12 samples; low elevation “KUR1” has 13 samples.

## �geom_smooth()� using formula �y ~ x�
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Growth curves for Kugururok established treeline juveniles.
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Kelly River high elevation “KEL1” has 12 samples; low elevation “KER1” has 12 samples

## �geom_smooth()� using formula �y ~ x�
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Growth curves for Kelly established treeline juveniles.
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Squirrel River high elevation “TAL1” and low elevation “TAR1” have 12 samples each.

## �geom_smooth()� using formula �y ~ x�
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Growth curves for Squirrel established treeline juveniles.
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Omar River high elevation “OML1” has 6 samples; low elevation “OMR1” has 11 samples.

## �geom_smooth()� using formula �y ~ x�
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Growth curves for Omar established treeline juveniles.
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Timber Creek high elevation “TIL1” has 12 samples; low elevation “TIR1” has 12 samples.

## �geom_smooth()� using formula �y ~ x�
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Growth curves for Timber Creek established treeline juveniles.
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Ambler River high elevation “AML1” has 15 samples; low elevation “AMR1” has 14 samples.

## �geom_smooth()� using formula �y ~ x�
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Growth curves for Timber Creek established treeline juveniles.
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Alatna high elevation “ALL3” has 5 samples.

## �geom_smooth()� using formula �y ~ x�
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Growth curves for Alatna established treeline juveniles.
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Agashashok has 6 high elevation “AGL” and 10 low elevation “AGR” samples.
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Growth curves for Agashashok established treeline juveniles.
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Growth curves for Agashashok established treeline juveniles.
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John has 17 high elevation “HFL” and 12 low elevation “HFR” samples.
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Growth curves for John established treeline juveniles.
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Growth curves for John established treeline juveniles.
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Koyukuk has 13 high elevation “CLL” and 8 low elevation “CLR” samples.
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Growth curves for Koyukuk established treeline juveniles.
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Growth curves for Koyukuk established treeline juveniles.

4 Reconstructing Population Growth

Using 1,971 shadows, we reconstructed population size from the years 1900 to 1980 in an area of 136 km2

that includes two sub-watersheds of the Cutler River basin in the AOI. The area of reconstruction is labeled
with “Simulated population area” as a central black rectangle in ED Fig. 1 andas a red rectangle in SI Figs.
1-4. We began with year 1900 because that was near the year estimated for establishment of oldest aged tree
in the sub-watershed. We ended in 1980 because trees younger than about 40 years were not reliably visible
on the super-overlay imagery: they were too short to cast detectable shadows given the deep snow of 2018
(see SI Calc. 4.4. below).

As a basis for simulation, we used 5,988 digitized shadows visible on snow-covered scenes (ED Fig. 1b, SI
Fig. 1) of DigitalGlobe WV imagery (ED Table 1). We identified a sample of shadows cast by spruce and
stratified by length that we located in the field with GNSS, then increment cored basally and/or measured
for height.

To reconstruct the population by year, we began by constructing a linear mixed model of tree height on
digitized shadow length. Then we constructed non-parametric, kernel density probability distributions of
establishment-year by height-class based on aged trees and their heights measured in the field.

Given the linear model for heights on shadow length, we calculated for each of the digitized shadows a height
in meters, then assigned it to one of five height-classes. We did this in a Monte Carlo framework during
the simulations using the covariance matrix of random e�ects for the intercept and regression coe�cient
estimating tree height based on shadow length. Height classes deduced from the shadow measurements
were in some cases only 0.5 m in width. Although, as we show below, the intercept varied by about 0.4
m across the six random study areas, the snow depth at any given tree most certainly di�ered by greater
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than 0.4 m from elsewhere and that motivated our application of Monte Carlo sampling of the covariance
matrix: to capture the among-site variability in snow depth as intercept and the relative sun elevation angle,
whose tangent was the slope (regression coe�cient). As a sensitivity test for the approach, we also provide
results of a simulation using three height classes with interval width of 1.3 m which captured in some degree
the within-site variability in snow depths and the relative sun elevation angles (i.e., the direction uphill or
downhill combined with absolute sun elevation angle).

Given heights estimated from the 1,971 shadows, we determined establishment year for each shadow by
randomly sampling with replacement (bootstrapping) from the kernel density distribution of establishment-
years associated with the height-class of the tree casting the shadow. Because these trees all survived to cast
shadows in 2018, we tallied the count of trees establishing each year as recruitment for that year. We then
cumulatively summed recruitment by year to calculate population size by year.

This flow of calculations, beginning with sampling from the covariance matrix to estimate each height based
on shadow length, then drawing from the non-parametric distributions of ages-given-height class to estimate
year of establishment, and finally cumulatively summing by year, was repeated 1,000 times. Each run of the
simulation applied non-linear least squares (nls() function of base R) to fit an exponential growth model.
The exponential growth rate from each simulation was saved and the exponential curve using the average of
the 1,000 simulations is shown in main text Fig. 3a.

To recap, the population reconstructions shown below use digitized shadows, measured heights, and years of
establishment of increment-cored trees. Reconstructing the population for each year relies on the following
relationships:

1. Height and its relationship with shadow length by incorporating variability across the landscape.
2. Year of establishment, t, and its relationship with height as non-parametric probability distribution.
3. Total number of trees establishing in year t and its relationship with recruitment to the population

visible in 2018 ignoring mortality.
4. Cumulative sum of recruits and its relationship with population size.

The relationships rely on the following three data streams:

1. the digitized lengths of n = 1, 971 spruce shadows cast on the 26 March 2018 scene from WV-1
panchromatic imagery.

read.csv("./BestShadowData.csv") %>%
subset(sun.elevation.deg < 20 &
Shadow_m <= 14.2 &
lat > 67.536 &
long < -157.8) %>%

dplyr::mutate(Shadow_m,
.keep="none") %>%

nrow() %>% format(big.mark=",") %>% paste("shadows")

## [1] "1,971 shadows"

2. The establishment-year for 124 aged trees that are > 3m tall (of the 150 total). The choice of 3 m as a
cut-o� is because shorter trees were more di�cult to see as shadows due to snow depth and their short,
ambiguous, or absent shadow length.

dat.r <- read.csv("./AgingIncrementCoreHeight V3.csv") %>%
subset(Height_m > 3)

nrow(dat.r) %>% paste("trees with establishment year")

## [1] "124 trees with establishment year"

3. The heights of n = 260 adult colonists matched to their shadows in six areas from three watersheds.
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shadows.and.heights <- read.csv("./Shadows and Heights.csv") %>%
subset(!is.na(Shadow.m))

str(shadows.and.heights)

## �data.frame�: 260 obs. of 5 variables:
## $ ID : chr "Amak 27" "S14" "Amak 43 cutler giant" "Amak 52" ...
## $ Height.m: num 5.5 4.6 10.7 7.7 8.5 ...
## $ Shadow.m: num 7.1 10.2 34.3 33.2 29.6 ...
## $ Where.3 : chr "AmakE" "AmakW" "AmakW" "AmakW" ...
## $ Shadow : chr "yes" "yes" "yes" "yes" ...

4.1 Modeling Height by Shadow Length

Given the heights and shadow lengths, we used linear mixed e�ects models with study area (the six study
sites) of field sampling as a random factor to capture both the variability of terrain slope-angle and of
snow-depth to predict height of spruce as a function of shadow length.

On a flat landscape covered uniformly in snow, the height of each tree would equal snow depth added to the
product of shadow length with the tangent of sun elevation angle. However, because both the relative sun
elevation angle casting shadows on surface snow and snow depth vary with terrain, we used a linear mixed
e�ects model of height on shadow length, interpreting the intercept as average snow depth and the inverse
tangent of the regression coe�cient as average sun elevation angle relative to the terrain slope. We then
applied the fixed e�ects as coe�cients in a linear model to estimate height from shadow for 1,971 shadows in
the sub-watershed study area but included variability in the coe�cients by drawing from the random e�ects
covariance matrix in a Monte Carlo approach.

We measured heights from trees matched with shadows during three field campaigns:
Cutler19 <- read.csv("./September2019TreesWithHeights.csv") %>%

dplyr::mutate(ID=ID,
lat=lat,
lon=long,
Height.m,
Shadow.m,
Status,
Where.3,
sample.year,
.keep="none")

Cutler20 <- read.csv("./September2020TreesWithHeights.csv") %>%
dplyr::mutate(ID=ID,

lat=lat,
lon=lon,
Height.m,
Shadow.m,
Status,
Where.3,
sample.year=2020,
.keep="none")

Amak21 <- read.csv("./July2021TreesWithHeights.csv") %>%
subset(ID != "Amak 35 Massive cone Dwarf") %>%
subset(Sunlight.presence != "absent") %>%
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dplyr::mutate(ID,
Height.m,
lat=lat,
lon=long,
Shadow.m=shadow_length,
Status,
Where.3=ifelse(long < -157.4,

"AmakW", "AmakE"),
sample.year=2021,
.keep="none")

dat <- rbind(Amak21,Cutler20,Cutler19) %>%
dplyr::mutate(Where.3=

ifelse(Where.3 %in% c("CutlerHillside",
"CutlerValley","UpperCutlerValley"),
"Cutler Main",Where.3),

Shadow=ifelse(is.na(Shadow.m),"no","yes"))

dat.L <- subset(dat,Status=="live") %>%
dplyr::mutate(ID,
lat,
lon,
Height.m,
Shadow.m,
Study.area=Where.3,
Shadow,
.keep="none")

dat.L$Study.area[which(is.na(dat.L$Study.area))] <- "Cutler Main"

dat.L$Study.area <- factor(dat.L$Study.area,
levels=c("Cutler Main","AmakE", "BuffaloDrifts","AmakW",

"GaiaHill","BobWoods"))

4.1.1 What tree heights cast no shadows?

The only direct measurement of snow depth was a snow-pit “8-10 feet deep” (2.4-3 m) dug in one location
in late March 2018 by pilot Eric Sieh of Kotzebue, Alaska. Here we use measured tree heights to further
estimate snow depth. By portraying the heights of trees casting and not casting shadows across the six study
areas in the AOI as violin plots, it is possible to visualize the variability in snow depth with a reference snow
depth as 2.4-3 m (the snow pit depth) in tree height.
dat.L %>%

ggplot(aes(y=Height.m,x=Study.area,fill=Shadow)) +
geom_violin() +
labs(x="Landscapes",

y="Field height (m)") +
geom_hline(yintercept=c(2.4,3)) +
scale_y_continuous(breaks=0:10)

In the violin plots for study areas “Cutler Main”, “AmakE”, “AmakW”, and “GaiaHill” there is a degree of
matching between the maximum height of trees that fail to cast shadows (“Max_fail”) and the minimum
height of trees that do cast shadows (“Min_cast”). If Max_fail = Min_cast, then that would be evidence of
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snow depth uniformity.

The Max_fail and Min_cast values of “Bu�aloDrifts” and “BobWoods” di�er most. For both study areas,
the overlap of violin plots of shadow casting trees with non-shadow casting suggests variability in snow depth.
These two study sites have the most variable topography, marked by parallel ridgelines and other surface
features perpendicular to the prevailing winter winds (SI Fig. 11). In contrast, “Cutler Main” (SI Fig.
13), “AmakE”, “AmakW” (SI Fig. 10) and “GaiaHill” suggest more uniform snow depths, because each
study site displays violin plots with Max_fail ¥ Min_cast.

These visual comparisons can be made more rigorous by considering the heights at each study site. First, in
each area find the number of trees measured for height that cast shadows:
ag.count.yes <- aggregate(Height.m~Study.area,

FUN=length,
data=dat.L,
subset=Shadow=="yes")

Next, aggregate over each study site the heights of trees casting shadows by finding the shortest height in
each area casting a shadow (i.e., “Min_cast” defined above). Also append the number of measured trees
casting shadows.
shadows.yes <- aggregate(Height.m~Study.area,

FUN=min,
data=dat.L,
subset=Shadow=="yes") %>%

dplyr::mutate(Study.area,
Min_cast=round(Height.m,1),
n.trees=ag.count.yes$Height.m,
.keep="none") %>%

arrange(Min_cast)

shadows.yes %>%
kable(caption="Sample size (n.trees) of

trees casting shadows by study area with minimum height (Min_cast) in meters.")

Sample size (n.trees) of trees casting shadows by study area with minimum height (Min_cast) in meters.

Study.area Min_cast n.trees
BobWoods 2.2 65
GaiaHill 2.8 72
Bu�aloDrifts 3.1 33
AmakW 3.1 69
AmakE 3.6 16
Cutler Main 3.8 5

Perform a similar analysis for trees measured for height but not casting shadows by identifying the maximum
heights (i.e., “Max_fail” defined above).
ag.count.no <- aggregate(Height.m~Study.area,

FUN=length,
data=dat.L,
subset=Shadow=="no")

shadows.no <- aggregate(Height.m~Study.area,
FUN=max,
data=dat.L,
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subset=Shadow=="no") %>%
dplyr::mutate(Study.area,

Max_fail=Height.m,
n.trees=ag.count.no$Height.m,
.keep="none") %>%

arrange(Max_fail)

shadows.no %>%
kable(caption="Sample size (n.trees) of trees without shadows by study area

with maximum height (Max_fail) in meters.")

Sample size (n.trees) of trees without shadows by study area with maximum height (Max_fail) in meters.

Study.area Max_fail n.trees
GaiaHill 2.9 14
AmakW 3.0 8
BobWoods 3.4 7
AmakE 3.6 14
Cutler Main 3.7 21
Bu�aloDrifts 4.4 9

Finally, checking for variability between minimum height casting shadows (“Min_cast”) and maximum height
not casting shadows (“Max_fail”) o�ers an indication of within-study area variability in snow depth: a small
di�erence between Min_cast and Max_fail suggests uniform snow depth across a study site, whereas a large
di�erence suggests snow drifting and wind scouring.

Among-study area variability is evident by comparing the di�erences in Min_cast and Max_fail between
areas. With over a meter of di�erence between Min_cast and Max_fail, “Bu�aloDrifts” (Fig. 12) and
“BobWoods” (Fig. 9) appear to have more drifting and scouring than the other four study areas that display
10 cm or less di�erence between Min_cast and Max_fail.

The among-area variability varies more when comparing the Max_fail (range = 1.5 m) and Min_cast (range
= 1.6 m) than within-area.
merge(shadows.no,shadows.yes,by="Study.area") %>%

dplyr::mutate(diff.m= abs(Max_fail - Min_cast)) %>%
arrange(diff.m) %>%

kable(caption="Sample size (n.trees.x) of trees without shadows
with maximum height (Max_fail) in meters and of trees
with shadows (n.trees.x) with minimum height (Min_cast)
in meters. Difference between Max_fail and Min_cast gives
index of snow depth variability.")

Sample size (n.trees.x) of trees without shadows with maximum height (Max_fail) in meters and of trees with
shadows (n.trees.x) with minimum height (Min_cast) in meters. Di�erence between Max_fail and Min_cast
gives index of snow depth variability.

Study.area Max_fail n.trees.x Min_cast n.trees.y di�.m
AmakE 3.6 14 3.6 16 0.0
Cutler Main 3.7 21 3.8 5 0.1
AmakW 3.0 8 3.1 69 0.1
GaiaHill 2.9 14 2.8 72 0.1
BobWoods 3.4 7 2.2 65 1.2
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Study.area Max_fail n.trees.x Min_cast n.trees.y di�.m
Bu�aloDrifts 4.4 9 3.1 33 1.3

4.1.2 Linear mixed model of height on shadow length

The above analysis shows random variability in snow depth. Snow depth is a physical property of the
landscape captured by the intercept in a linear model of height on shadow length. There is also random
variability in the terrain’s hill-slope relative to the sun. The relative sun-elevation angle across the landscape
is captured by the regression slope. The section above shows that there is variability in snow depth both
within and among sites. We address the variability using a linear mixed e�ects model with study-site as a
random factor with six levels.

The lmer() function of the lme4 R package handles unbalanced designs well. Here, “Shadow.m” is the fixed
covariate of interest, “Study.site” is the random spatial factor, and the model specifies both random intercept
(snow depth variability) and random regression slope (sun elevation angle variability)
mod.mer <- lmer(Height.m ~ Shadow.m + (Shadow.m|Study.area),

data=dat.L, REML=T)

Intercept <- mean(coef(mod.mer)$Study.area[,1])

Slope <- mean(coef(mod.mer)$Study.area[,2])

summary(mod.mer)

## Linear mixed model fit by REML [�lmerMod�]
## Formula: Height.m ~ Shadow.m + (Shadow.m | Study.area)
## Data: dat.L
##
## REML criterion at convergence: 458
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.04918 -0.60994 -0.02494 0.61164 2.83697
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Study.area (Intercept) 0.045953 0.21437
## Shadow.m 0.006669 0.08166 -0.46
## Residual 0.303897 0.55127
## Number of obs: 260, groups: Study.area, 6
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 2.84714 0.13847 20.561
## Shadow.m 0.26997 0.03761 7.178
##
## Correlation of Fixed Effects:
## (Intr)
## Shadow.m -0.571

Calculating the random e�ects covariance matrix using the correlation matrix and standard deviations for
(Intercept) and Shadow.m follows:
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##these are the random effects standard deviations

S.ran <- c(0.21437,0.08166)

## these are random effects correlations

R.ran <- matrix(c(1,-0.46,-0.46,1),
nrow=2)

##these are the fixed effects standard deviations

S.fix <- c(0.13847,0.03761 )
## this is fixed effects correlation

R.fix <- matrix(c(1,-0.571,-0.571,1),
nrow=2)

## according to B. Bolker and others at

## https://stats.stackexchange.com/questions/62850/obtaining-covariance-matrix-from-correlation-matrix

# the following gives covariance matrices easily
(cov.ran <- outer(S.ran,S.ran)*R.ran)

## [,1] [,2]
## [1,] 0.045954497 -0.008052509
## [2,] -0.008052509 0.006668356

(cov.fix <- outer(S.fix,S.fix)*R.fix)

## [,1] [,2]
## [1,] 0.019173941 -0.002973686
## [2,] -0.002973686 0.001414512
## fixed effects estimates

(mu <- fixef(mod.mer))

## (Intercept) Shadow.m
## 2.8471433 0.2699687

Given these covariance matrices and a vector of means for use in the mvrnorm() function in the MASS
package, we calculated Monte Carlo estimates of heights by shadow length.

The following table displays the estimates of snow depth by location using the mixed e�ects model intercepts
and the tangent of the relative sun elevation angles as regression slope. Taking the inverse tangent of the
regression slope we can compare the mean relative sun elevation angle to the sun elevation angle on a flat
surface the day the imagery was captured.
coefficents <- coef(mod.mer)$Study.area

names(coefficents) <- c("Intercept", "Shadow.m")

coefficents <- round(coefficents[order(coefficents$Intercept),],2)

dplyr::mutate(coefficents,
rel.sun.elev.deg=round(180*atan(Shadow.m)/pi),
imagery.sun.elev.deg=c(18,18,18,18,27,27),
diff.angle=imagery.sun.elev.deg-rel.sun.elev.deg) %>%
arrange(diff.angle) %>%

kable(caption="Regression coefficients (Intercept and slope = Shadow.m), average sun elevation angle (degrees) relative to hill slope (rel.sun.elev.deg), imagery sun elevation angle (degrees) from metadata (imagery.sun.elev.deg), and difference between elevation angles giving estimate of mean hill slope in direction of sun azimuth.")
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Regression coe�cients (Intercept and slope = Shadow.m), average sun elevation angle (degrees) relative to
hill slope (rel.sun.elev.deg), imagery sun elevation angle (degrees) from metadata (imagery.sun.elev.deg), and
di�erence between elevation angles giving estimate of mean hill slope in direction of sun azimuth.

Intercept Shadow.m rel.sun.elev.deg imagery.sun.elev.deg di�.angle
BobWoods 2.67 0.33 18 18 0
GaiaHill 2.73 0.27 15 18 3
Cutler Main 2.87 0.25 14 18 4
AmakE 2.91 0.39 21 27 6
Bu�aloDrifts 2.86 0.20 11 18 7
AmakW 3.04 0.19 11 27 16

The di�erence between “imagery sun elevation angle” and the “relative sun elevation angle” is the terrain
slope angle measured along the sun azimuth angle in the direction away from the sun. If the di�erence is
positive, as here for all sites but GaiaHill, then the terrain slope is such that the shadow is cast uphill.

We can plot the snow depth estimates as horizontal lines alongside tree heights measured in the field
categorized by whether they cast visible shadows or not.
dat.L %>%

ggplot(aes(y=Height.m,x=Study.area,fill=Shadow)) +
geom_violin() +
labs(x="Landscapes",

y="Field height (m)") +
geom_hline(yintercept=2.5) +

geom_hline(yintercept=2.8,
linetype="dashed") +

geom_hline(yintercept=coef(mod.mer)$Study.area[,1],
linetype="dotted",
colour=1:6)

4.2 What’s the probability of not casting a shadow given height?

We can apply a generalized linear mixed e�ects logistic regression model to estimate probability of not casting
a shadow as a function of tree height, where study-area provides the random e�ects in intercept and regression
slope.
inv.logt <- function(a,b,x){exp(a + b*x)/(1+ exp(a + b*x))}

dat.L <- dat.L %>%
dplyr::mutate(no.shadow= ifelse(Shadow=="no",1,0))

shad.mer <- glmer(no.shadow~Height.m+(Height.m | Study.area),
data=dat.L,
family=binomial,
subset=Height.m <= 6)

summary(shad.mer)

## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: no.shadow ~ Height.m + (Height.m | Study.area)
## Data: dat.L
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## Subset: Height.m <= 6
##
## AIC BIC logLik deviance df.resid
## 84.2 102.6 -37.1 74.2 290
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.4341 -0.0697 -0.0121 -0.0006 21.0377
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Study.area (Intercept) 31.166 5.583
## Height.m 1.537 1.240 -0.97
## Number of obs: 295, groups: Study.area, 6
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 16.214 5.177 3.132 0.00173 **
## Height.m -5.136 1.443 -3.560 0.00037 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Correlation of Fixed Effects:
## (Intr)
## Height.m -0.987

Let’s compare the mixed e�ects model above and a fixed e�ects model to the data.
shad.lm <- glm(no.shadow~Height.m,

data=dat.L,
family=binomial,
subset=Height.m <= 6)

littlecuts <- seq(1,9.5,0.5)
mids <- (littlecuts[1:(length(littlecuts)-1)] +

littlecuts[2:length(littlecuts)])/2

dat.L.ag.tot <- dat.L %>%
dplyr::mutate(Height.class=cut(Height.m,littlecuts)) %>%
aggregate(no.shadow~Height.class,

FUN=length,
data=.)

dat.L.ag <- dat.L %>%
dplyr::mutate(Height.class=cut(Height.m,littlecuts)) %>%
aggregate(no.shadow~Height.class,

FUN=sum,
data=.) %>%

dplyr::mutate(prop.no.shad=no.shadow/dat.L.ag.tot$no.shadow,
Height.class=Height.class,
mids=mids,
.keep="none")

plot(prop.no.shad~mids,
data=dat.L.ag,
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pch=16,cex=0.5,ann=F)

mtext(side=1,line=2,"Height (m)")
mtext(side=2,line=2,"Probability unobserved")

curve(inv.logt(fixef(shad.mer)[1],fixef(shad.mer)[2],x),
add=T,col="blue")

curve(inv.logt(coef(shad.lm)[1],coef(shad.lm)[2],x),
add=T)

abline(h=0.5,lty=2)

abline(v=-fixef(shad.mer)[1]/fixef(shad.mer)[2],lty=3,col="blue")
abline(v=-coef(shad.lm)[1]/coef(shad.lm)[2],lty=3)

legend("topright",
bty="n",
lty=1,
col=c("black","blue"),
legend=c("glm","glmer"))

mtext(line=0,side=3,col="blue",
at=-fixef(shad.mer)[1]/fixef(shad.mer)[2],
text=round(-fixef(shad.mer)[1]/fixef(shad.mer)[2],1))

mtext(line=0,side=1,col="black",
at=-coef(shad.lm)[1]/coef(shad.lm)[2],
text=round(-coef(shad.lm)[1]/coef(shad.lm)[2],1))

#-fixef(shad.mer)[1]/fixef(shad.mer)[2]

# inv.logt(fixef(shad.mer)[1],fixef(shad.mer)[2],3)

The figure below, showing the probability of not casting a shadow as a function of height based on two
models, has plots with inflection points at 3 and 3.2 m, suggesting that trees Æ 3.2 m are more likely to be
unobserved on the winter scene WV imagery. Thus, using the shadows to estimate the population of adults
will underestimate that population and given the positive relationship between age and tree height suggests
that the simulated population will miss many younger trees: hence the cut-o� at about 1980.

4.2.1 Model of tree height given shadow length uses the fixed e�ects:

We see that the fixed e�ects 2.8 and 0.27 represent a mean snow depth above 2.8 m and a sun elevation angle
(imagery sun elevation angles: 18¶, 22¶, and 27¶) relative to the surface snow of 15 degrees, suggesting a
mostly southerly (imagery azimuth 181¶) and southwesterly sun azimuth (226¶) cast on slopes facing in part
away from the sun’s azimuth at the time of image capture.

Height = 2.8 + 0.27 ◊ Shadow length.

4.2.2 Estimating 1,971 tree heights using shadow lengths and binning by height

We first use the fixed e�ects of the mixed model (with random e�ects covariance structure to increase
variability in intercept and slope reflecting the variability in topography) to estimate height, then bin into
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five height classes (below in SI Calc. 4.8 we provide a sensitivity analysis with three size classes of wider
height intervals):

1. 3-4 m
2. 4-4.5 m
3. 4.5-5 m
4. 5-5.5 m
5. 5.5-7 m

4.2.2.1 Comparison of random vs. fixed e�ects covariance structure. First, to see the variability
using the random e�ects covariance structure between slope and intercept and fixed e�ects we will take
random draws from each and display bivariate density plots showing the much greater variability in the
random e�ects.
library(MASS)
n <- 2000
ran.df <- mvrnorm(n,

Sigma=cov.ran,
mu=mu) %>%

data.frame() %>%
dplyr::mutate(effects="random")

fix.df <- mvrnorm(n,
Sigma=cov.fix,
mu=mu) %>%

data.frame() %>%
dplyr::mutate(effects="Fixed")
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rbind(ran.df,fix.df) %>%
ggplot(aes(y=X.Intercept.,x=Shadow.m)) +
geom_density_2d_filled(contour_var="ndensity",

alpha=0.75) +
facet_grid(row=vars(effects)) +
labs(x="Regression slope estimates",

y="Intercept",
title = "")
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Bivariate distributions of slope and intercept for height on shadow model for fixed e�ects
model (top) and mixed e�ects model (bottom).

cutpoints <- c(3,seq(4,5.5,0.5),7)

dat <- read.csv("./BestShadowData.csv") %>%
subset(sun.elevation.deg < 20 &
Shadow_m <= 14.2 &
lat > 67.536 &
long < -157.8) %>%
dplyr::mutate(height.m=Slope*Shadow_m + Intercept,

height.class=cut(height.m,cutpoints))

These 1,971 trees fall into the five size classes as follows:
dat %>% tabyl(height.class) %>%

adorn_pct_formatting() %>%
kable(caption="Frequency distribution of height

estimates from 1,971 shadows in two sub-watersheds.")

71



Frequency distribution of height estimates from 1,971 shadows in two sub-watersheds.

height.class n percent
(3,4] 792 40.2%
(4,4.5] 763 38.7%
(4.5,5] 286 14.5%
(5,5.5] 96 4.9%
(5.5,7] 34 1.7%

We wish to estimate the establishment-year for each of these individuals by using their size class to sample
from known establishment-year by size class distributions.

4.3 Establishment-year density distributions by height class

We used the trees that were aged by increment cores and the height of the increment core hole above the
ground (SI Calc. 2). These trees were measured for their heights in the field when cored.

From data streams (2) and (3) above we will bin aged adults into height-classes and construct kernel density
establishment-year distributions for each height class:
year.cuts <- seq(1900,2000,10)
mid.year <- (year.cuts[1:(length(year.cuts)-1)] +

year.cuts[2:length(year.cuts)])/2

dat.aged <- dat.r %>%
dplyr::mutate(height.class=cut(Height_m,cutpoints),

Age.Class=cut(Establishment_yr,year.cuts),
Year.established=Establishment_yr,
prob.no.shadow=inv.logt(fixef(shad.mer)[1],

fixef(shad.mer)[2],Height_m),
.keep="none") %>%

na.omit()

paste(nrow(dat.aged), "aged trees")

## [1] "123 aged trees"

dat.aged %>% tabyl(height.class) %>%
adorn_pct_formatting() %>%
kable(caption="Frequency distribution of 123 trees

of known age and heights into five height-classes.")

Frequency distribution of 123 trees of known age and heights into five height-classes.

height.class n percent
(3,4] 31 25.2%
(4,4.5] 25 20.3%
(4.5,5] 21 17.1%
(5,5.5] 29 23.6%
(5.5,7] 17 13.8%

These 123 individuals with ages and heights are used to construct non-parametric, Gaussian kernel density
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distributions with the following constraints:

1. Each kernel density extends as a discrete distribution across 107 years from 1897 to 2004.

2. Kernel densities are scaled so that any non-zero density value is greater than one.

3. Establishment-year distributions for each height class is constructed with a function called sampler()
that is defined to return a discrete distribution of year of establishment.

sampler <- function(class){
temp <- subset(dat.aged,height.class == class)

dens <- density(temp$Year.established,
bw="SJ",

n=107, ## number of consecutive establishment years

from=1897, ## earliest year

to=2004) ## latest year

k <- 1000 ## scale factor

par(mgp=c(3,0.1,0),tcl=0.1)
plot(k*dens$y~dens$x, ## a visualization

ylim=c(0,50),
type="h",ann=F)

mtext(side=1,line=1,"Establishment year")
mtext(side=2,line=1,"Count")
sample.this <- data.frame(y=round(k*dens$y),

x=round(dens$x)) %>%
subset(y > 0)
rep(sample.this$x,sample.this$y)

}

The function sampler() defined above is applied to each of the height classes to create the “populations” to
resample for 1,000 simulations.

The code for two constructions of the sampling distributions is displayed. The remaining three distributions
do not echo the code.
par(mfrow=c(2,1),mar=c(2,2,0,1))
bigone3_4 <- sampler("(3,4]")

legend("topleft",
bty="n",
legend=paste0("total count = ",length(bigone3_4 )))

legend("topright",
bty="n",
legend=paste0("size class = ","(3,4]","m"))

bigone4_4.5 <- sampler("(4,4.5]")
legend("topleft",

bty="n",
legend=paste0("total count = ",length(bigone4_4.5)))

legend("topright",
bty="n",
legend=paste0("size class = ","(4,4.5]","m"))

par(mfrow=c(2,2),mar=c(2,2,0,1))
bigone4.5_5 <- sampler("(4.5,5]")

legend("topleft",
bty="n",
legend=paste0("total count = ",length(bigone4.5_5)))

legend("topright",
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Density estimates of establishment year as discrete samples of trees by tree heights. Total count
is a scaling factor. Size class gives min and max height of trees generating the distribution.

74



bty="n",
legend=paste0("size class = ","(4.5,5]","m"))

bigone5_5.5 <- sampler("(5,5.5]")
legend("topleft",

bty="n",
legend=paste0("total count = ",length(bigone5_5.5)))

legend("topright",
bty="n",
legend=paste0("size class = ","(5,5.5]","m"))

bigone5.5_7 <- sampler("(5.5,7]")
legend("topleft",

bty="n",
legend=paste0("total count = ",length(bigone5.5_7)))

legend("topright",
bty="n",
legend=paste0("size class = ","(5.5,7]","m"))
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Density estimates of establishment year as discrete samples of trees by tree heights binned
into five height classes. Total count is a scaling factor. Size class gives min and max height of
trees generating the distribution.

Each plot above displays the discrete distribution of establishment-year as a vector to randomly sample (with
replacement) given a height class: “bigone6_7”,“bigone5.5_6”, “bigone5_5.5”,“bigone4.5_5”,“bigone4_4.5”,
“bigone3_4”.
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4.3.1 Given a tree’s height-class estimate establishment-year

The year-of-establishment vectors were sampled with replacement, using the 1,971 estimated heights binned
into height-classes. Once all 1,971 individuals were identified with an establishment-year, the counts of trees
in each establishment-year were aggregated over each year by summing. This aggregation represented a
realization of the number of individuals recruiting for any given year.

The count of trees in each height class are defined as a data frame here (they were displayed above as a table).
These counts are the number of samples to draw from the respective height-class based year-of-establishment
distributions in the re-sampling below and make up a critical object in the re-sampling that follows.
cutpoints <- c(3,seq(4,5.5,0.5),7)

dat <- read.csv("./BestShadowData.csv") %>%
subset(sun.elevation.deg < 20 &
Shadow_m <= 14.2 &
lat > 67.536 &
long < -157.8) %>%
dplyr::mutate(height.m=Slope*Shadow_m + Intercept,

height.class=cut(height.m,cutpoints))

df <- aggregate(height.m~height.class,
FUN=length,data=dat)

names(df)[names(df)=="height.m"] <- "count"
sum(df$count)

## [1] 1971

sampler <- function(class){
temp <- subset(dat.aged,height.class == class)

dens <- density(temp$Year.established,
bw="SJ",

n=107, ## number of consecutive establishment years

from=1897, ## earliest year

to=2004) ## latest year

k <- 1000 ## scale factor

par(mgp=c(3,0.1,0),tcl=0.1)
plot(k*dens$y~dens$x, ## a visualization

ylim=c(0,50),
type="h",ann=F)

mtext(side=1,line=1,"Establishment year")
mtext(side=2,line=1,"Count")
sample.this <- data.frame(y=round(k*dens$y),

x=round(dens$x)) %>%
subset(y > 0)
rep(sample.this$x,sample.this$y)

}

Here additional objects used in the resampling are defined.
n <- 1000 ## the number of resamples

Year <- 1897:2004
time <- length(Year)

rate <- 1:n ## a vector to hold each realizations relative growth rate

intercept <-1:n ## a vector to hold each realizations initial pop size

76



## This data.frame has a row for each year

## and columns for year, population size and relative growth rate

pops <- data.frame(matrix(c(Year,rep(NA,time),rep(NA,time)),
byrow=F,
nrow=time,
ncol=3))

names(pops) <- c("year","pop.size","simulation")

4.4 1,000 simulations

We performed the resampling 1,000 times, each time fitting an exponential growth equation,

N(t) = No exp(kt)

using nls() in R, then averaged the population relative growth rates as k̄.
dat <- read.csv("./BestShadowData.csv") %>%

subset(sun.elevation.deg < 20 &
Shadow_m <= 14.2 &
lat > 67.536 &
long < -157.8)

#sigma <- vcov(mod.mer,full=F) # the fixed effects only version of covariance
sigma <- cov.ran

set.seed(20)
## sample for all n resamples

## propogate uncertainty of height on shadow relationship

for(i in 1:n) ## sampling year of establishment vectors by height class

{ MC.coef <- mvrnorm(1, ## randomly sample intercept and slope

mu=c(Intercept,Slope), ## from lmer height~shadow fixed effects

Sigma=sigma) ## using covariance structure

snow.depth <- MC.coef[1]
tangent.sun <- MC.coef[2]

dat <- dat %>%
dplyr::mutate(height.m=tangent.sun*Shadow_m + snow.depth,

height.class=cut(height.m,cutpoints))
df.1 <- aggregate(height.m~height.class,

FUN=length,data=dat)
names(df.1)[names(df.1)=="height.m"] <- "count"
df.2 <- data.frame(height.class=

c("(3,4]","(4,4.5]",
"(4.5,5]","(5,5.5]",
"(5.5,7]"),

count=0)
df <- merge(df.2,df.1,

by="height.class",
all.x=T) %>%

dplyr::mutate(height.class,
count=count.y,
count=ifelse(is.na(count),0,

count),
.keep="none")
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year <- c(
ifelse(df$count[df$height.class=="(5.5,7]"]==0,0,

sample(x=bigone5.5_7,
df$count[df$height.class=="(5.5,7]"],
replace=T)),

sample(bigone5_5.5,
df$count[df$height.class=="(5,5.5]"],
replace=T),

sample(bigone4.5_5,
df$count[df$height.class=="(4.5,5]"],
replace=T),

sample(bigone4_4.5,
df$count[df$height.class=="(4,4.5]"],
replace=T),

sample(bigone3_4,
df$count[df$height.class=="(3,4]"],
replace=T))

## counting number of individuals establishing each year

## and merging with a dummy data.frame to capture years without any

## establishing individuals

establishments <- aggregate(data=
data.frame(year=year,

count=1),
count~year,
FUN=sum) %>%

base::merge(data.frame(year=Year,
count2=0),
by="year",
all.y=T) %>%

dplyr::mutate(year=year,
count = ifelse(is.na(count),

count2,
count),

.keep="none") %>%
#### cumulative sums give population size by year

dplyr::mutate(pop.size = cumsum(count))
## Now calculate the relative growth rate from 1900 to 1980

temp <- data.frame(
year=establishments$year,
pop.size=establishments$pop.size,
simulation=i)

mod <- nls(pop.size~a*exp(r*(year-1900)),
data=temp,
subset=year >= 1900 &
year < 1980 &
pop.size > 0,
start=list(a=1,r=0.04))

## save the relative growth rate

rate[i] <- coef(mod)[2]
intercept[i] <- coef(mod)[1]
pops <- rbind(pops,temp)
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}

Clean up the population data.frame “pops”:
pops <- pops[-(1:time),] %>%

subset(pop.size!=0)
row.names(pops) <- 1:nrow(pops)

4.4.1 Find the mean value of growth rate across the 1,000 bootstrap estimates

mean(intercept)

## [1] 6.663963

mean(rate)

## [1] 0.07268329

4.4.2 Expected doubling time for the population

paste(round(log(2)/mean(rate),1), "years")

## [1] "9.5 years"

4.4.3 Expected doubling time for the population

data.frame(rate=rate,
dbl.year=log(2)/rate) %>%

ggplot(aes(x=dbl.year)) +
geom_density() +

labs(x="Doubling time (years) from 1,000 simulations",
title="Five height classes")

paste(round(log(2)/mean(rate),1), "years")

## [1] "9.5 years"

summary(log(2)/rate)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 7.662 8.707 9.532 9.674 10.571 13.300

write.csv(pops,row.names=F,
"./sim.pops.csv")

This is the exponential growth function plotted in Fig. 3 of the text.
# define function
growth <- function(x) mean(intercept)*exp(mean(rate)*(x-1900))
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Density plot of 1,000 estimates of doubling time for the expanding population in two sub-
watersheds. These simulations used five height-classes to sample establishment year.
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4.5 Population simulations displayed

#### Plot the population reconstructions with the bootstrapped growth curve:

decades <- seq(1900,1980,10)

pops %>%
subset(pop.size >= 1) %>%
ggplot(aes(x=year, y=pop.size,

group = simulation)) +
scale_x_continuous(limits=c(1900,1980),

"Year",
breaks=decades,
labels = decades) +

scale_y_continuous(limits=c(0,1700),
name ="Population size",
breaks=seq(0,2000,500),
labels=seq(0,2000,500)) +

geom_line(alpha=0.01,colour="#009E73")

## Warning: Removed 24013 row(s) containing missing values (geom_path).
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1,000 simulated populations of 1,971 trees in two sub-watersheds from 1900 to 1980 con-
tstructed by resampling five height-class distributions of establsihment year and Monte Carlo
sampling of multivariate distribution of height on shadow using a mixed e�ects linear model.
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4.6 Sensitivity Analysis

Here we perform a sensitivity analysis of doubling time by widening each height-class to 1.3 m and so reducing
the number of height classes from five to three.

The width of each height-class di�ers by more than the within-site variability in snow depth. The among-site
snow depth is partly accounted for in the Monte Carlo sampling of model coe�cients that give tree height as
a function of shadow length.
cutpoints <- c(3,4.3,5.6,7)

dat <- read.csv("./BestShadowData.csv") %>%
subset(sun.elevation.deg < 20 &
Shadow_m <= 14.2 &
lat > 67.536 &
long < -157.8) %>%
dplyr::mutate(height.m=Slope*Shadow_m + Intercept,

height.class=cut(height.m,cutpoints))

These 1,971 trees fall into the three size classes as follows:
dat %>% tabyl(height.class) %>%

adorn_pct_formatting() %>%
kable(caption="Frequency distribution of 1,971

shadows into three height-classes predicted to cast the shadows.")

Frequency distribution of 1,971 shadows into three height-classes predicted to cast the shadows.

height.class n percent
(3,4.3] 1277 64.8%
(4.3,5.6] 663 33.6%
(5.6,7] 31 1.6%

year.cuts <- seq(1900,2000,10)
mid.year <- (year.cuts[1:(length(year.cuts)-1)] +

year.cuts[2:length(year.cuts)])/2

dat.aged <- dat.r %>%
dplyr::mutate(height.class=cut(Height_m,cutpoints),

Age.Class=cut(Establishment_yr,year.cuts),
Year.established=Establishment_yr,
prob.no.shadow=inv.logt(fixef(shad.mer)[1],

fixef(shad.mer)[2],Height_m),
.keep="none") %>%

na.omit()

paste(nrow(dat.aged), "aged trees")

## [1] "123 aged trees"

dat.aged %>% tabyl(height.class) %>%
adorn_pct_formatting() %>%
kable(caption="Frequency distribution of 123 trees

of known age and heights into three height-classes.")
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Frequency distribution of 123 trees of known age and heights into three height-classes.

height.class n percent
(3,4.3] 45 36.6%
(4.3,5.6] 65 52.8%
(5.6,7] 13 10.6%

par(mfrow=c(2,2),mar=c(2,2,0,1))
bigone3_4.3 <- sampler("(3,4.3]")

legend("topleft",
bty="n",
legend=paste0("total count = ",length(bigone3_4.3 )))

legend("topright",
bty="n",
legend=paste0("size class = ","(3,4.3]","m"))

bigone4.3_5.6 <- sampler("(4.3,5.6]")
legend("topleft",

bty="n",
legend=paste0("total count = ",length(bigone4.3_5.6)))

legend("topright",
bty="n",
legend=paste0("size class = ","(5,5.5]","m"))

bigone5.6_7 <- sampler("(5.6,7]")
legend("topleft",

bty="n",
legend=paste0("total count = ",length(bigone5.6_7)))

legend("topright",
bty="n",
legend=paste0("size class = ","(5.6,7]","m"))

cutpoints <- c(3,4.3,5.6,7)

dat <- read.csv("./BestShadowData.csv") %>%
subset(sun.elevation.deg < 20 &
Shadow_m <= 14.2 &
lat > 67.536 &
long < -157.8) %>%
dplyr::mutate(height.m=Slope*Shadow_m + Intercept,

height.class=cut(height.m,cutpoints))

df <- aggregate(height.m~height.class,
FUN=length,data=dat)

names(df)[names(df)=="height.m"] <- "count"
sum(df$count)

## [1] 1971

df %>% kable()

height.class count
(3,4.3] 1277
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height.class count
(4.3,5.6] 663
(5.6,7] 31

n <- 1000 ## the number of resamples

Year <- 1897:2004
time <- length(Year)

rate <- 1:n ## a vector to hold each realizations relative growth rate

intercept <-1:n ## a vector to hold each realizations initial pop size

## This data.frame has a row for each year

## and columns for year, population size and relative growth rate

pops <- data.frame(matrix(c(Year,rep(NA,time),rep(NA,time)),
byrow=F,
nrow=time,
ncol=3))

names(pops) <- c("year","pop.size","simulation")

dat <- read.csv("./BestShadowData.csv") %>%
subset(sun.elevation.deg < 20 &
Shadow_m <= 14.2 &
lat > 67.536 &
long < -157.8)

#sigma <- vcov(mod.mer,full=F) # the fixed effects only version of covariance
sigma <- cov.ran

set.seed(14)
## sample for all n resamples

## propogate uncertainty of height on shadow relationship

for(i in 1:n) ## sampling year of establishment vectors by height class

{ MC.coef <- mvrnorm(1, ## randomly sample intercept and slope

mu=c(Intercept,Slope), ## from lmer height~shadow fixed effects

Sigma=sigma) ## using covariance structure

snow.depth <- MC.coef[1]
tangent.sun <- MC.coef[2]

dat <- dat %>%
dplyr::mutate(height.m=tangent.sun*Shadow_m + snow.depth,

height.class=cut(height.m,cutpoints))
df.1 <- aggregate(height.m~height.class,

FUN=length,data=dat)
names(df.1)[names(df.1)=="height.m"] <- "count"
df.2 <- data.frame(height.class=

c("(3,4.3]",
"(4.3,5.6]",
"(5.6,7]"),

count=0)
df <- merge(df.2,df.1,

by="height.class",
all.x=T) %>%

dplyr::mutate(height.class,
count=count.y,
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Density estimates of establishment year as discrete samples of trees by tree heights binned
into three height classes. Total count is a scaling factor. Size class gives min and max height
of trees generating the distribution.
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count=ifelse(is.na(count),0,
count),

.keep="none")

year <- c(
ifelse(df$count[df$height.class=="(5.6,7]"]==0,0,

sample(x=bigone5.6_7,
df$count[df$height.class=="(5.6,7]"],
replace=T)),

sample(bigone4.3_5.6,
df$count[df$height.class=="(4.3,5.6]"],
replace=T),

sample(bigone3_4.3,
df$count[df$height.class=="(3,4.3]"],
replace=T))

## counting number of individuals establishing each year

## and merging with a dummy data.frame to capture years without any

## establishing individuals

establishments <- aggregate(data=
data.frame(year=year,

count=1),
count~year,
FUN=sum) %>%

base::merge(data.frame(year=Year,
count2=0),
by="year",
all.y=T) %>%

dplyr::mutate(year=year,
count = ifelse(is.na(count),

count2,
count),

.keep="none") %>%
#### cumulative sums give population size by year

dplyr::mutate(pop.size = cumsum(count))
## Now calculate the relative growth rate from 1900 to 1980

temp <- data.frame(
year=establishments$year,
pop.size=establishments$pop.size,
simulation=i)

mod <- nls(pop.size~a*exp(r*(year-1900)),
data=temp,
subset=year >= 1900 &
year < 1980 &
pop.size > 0,
start=list(a=1,r=0.04))

## save the relative growth rate

rate[i] <- coef(mod)[2]
intercept[i] <- coef(mod)[1]
pops <- rbind(pops,temp)

}

Clean up the population data.frame “pops”:
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pops <- pops[-(1:time),] %>%
subset(pop.size!=0)

row.names(pops) <- 1:nrow(pops)

4.6.1 Find the mean value of growth rate across the 1,000 bootstrap estimates

mean(intercept)

## [1] 7.640221

mean(rate)

## [1] 0.07147869

double.time <- data.frame(rate=rate,
dbl.year=round(log(2)/rate,1))

4.6.2 Expected doubling time for the population

data.frame(rate=rate,
dbl.year=log(2)/rate) %>%

ggplot(aes(x=dbl.year)) +
geom_density()+

labs(x="Doubling time (years) from 1,000 simulations",
title="Three height classes")

paste(round(log(2)/mean(rate),1), "years")

## [1] "9.7 years"

summary(log(2)/rate)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 7.447 8.808 9.798 9.865 10.796 13.092
#### Plot the population reconstructions with the bootstrapped growth curve:

decades <- seq(1900,1980,10)

pops %>%
subset(pop.size >= 1) %>%
ggplot(aes(x=year, y=pop.size,

group = simulation)) +
scale_x_continuous(limits=c(1900,1980),

"Year",
breaks=decades,
labels = decades) +

scale_y_continuous(limits=c(0,1700),
name ="Population size",
breaks=seq(0,2000,500),
labels=seq(0,2000,500)) +

geom_line(alpha=0.01,colour="#009E73")
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Density plot of 1,000 estimates of doubling time for the expanding population in two sub-
watersheds. These simulations used three height-classes to sample establishment year.
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## Warning: Removed 24016 row(s) containing missing values (geom_path).
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1,000 simulated populations of 1,971 trees in two sub-watersheds from 1900 to 1980 contsructed
by resampling three height-class distributions of establishment year and Monte Carlo sampling
of multivariate distribution of height on shadow using a mixed e�ects linear model.
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5 Foliar Sample Comparisons

Samples from lateral growth on adults produced in 2019 were used to compare growth, foliar concentrations
of nitrogen (N) and phosphorous (P), and the stable isotope ”

15N.

5.1 Linear mixed e�ects model comparing CAG

Current annual growth (CAG) in 2019 of lateral branches in adults was one of three growth metrics used to
compare colonists to established treeline individuals.

We used a linear mixed e�ects model with watershed as a random factor to compare colonist and established
treeline populations.
colonist.CAG <- read.csv("./CAG2019.branch.extensionCutler.csv") %>%

dplyr::mutate(Source="colonist",
Watershed,
Site,
Branch.avg.mm)

estab.treeline.CAG <- read.csv("./CAG2019.branch.extensionBRTL.csv") %>%
dplyr::mutate(Source="established treeline",

Watershed,
Site,
Branch.avg.mm)

CAG <- rbind(colonist.CAG,estab.treeline.CAG) %>%
dplyr::mutate(Watershed=paste(Source,Watershed))

table(CAG$Source)

##
## colonist established treeline
## 17 455

aggregate(Branch.avg.mm~Watershed,
data=CAG,
FUN=length) %>%

dplyr::mutate(Watershed,
Sample.size=Branch.avg.mm,
.keep="none")

## Watershed Sample.size
## 1 colonist Amakomanak Creek 1
## 2 colonist Cutler 5
## 3 colonist Hunt River 5
## 4 colonist Kaluich Creek 1
## 5 colonist WF Cutler 5
## 6 established treeline AG 59
## 7 established treeline AL 60
## 8 established treeline AM 40
## 9 established treeline BO 5
## 10 established treeline CL 10
## 11 established treeline EL 10
## 12 established treeline HF 60
## 13 established treeline KE 60
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## 14 established treeline KU 61
## 15 established treeline OM 60
## 16 established treeline SA 10
## 17 established treeline TA 10
## 18 established treeline TI 10

Because there were many more sample trees from BRTL with more watersheds and more trees within
watersheds, we used the lmer() function in package lme4 as it handles unbalanced designs well.

We are interested in the t value of the fixed factor “Source.” A log-likelihood, drop in deviance test suggests
that fixed e�ect of “Source” as colonist or established treeline is significant.
CAG.mod.null <- lmer(log(Branch.avg.mm)~ (1|Watershed/Site),

data=CAG,
REML=F)

CAG.mod <- lmer(log(Branch.avg.mm)~Source+(1|Watershed/Site),
data=CAG,
REML=F)

anova(CAG.mod.null,CAG.mod)

## Data: CAG
## Models:
## CAG.mod.null: log(Branch.avg.mm) ~ (1 | Watershed/Site)
## CAG.mod: log(Branch.avg.mm) ~ Source + (1 | Watershed/Site)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## CAG.mod.null 4 305.78 322.41 -148.89 297.78
## CAG.mod 5 295.84 316.62 -142.92 285.84 11.94 1 0.0005494 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

5.1.1 Setting REML = T and rerunning we extract the fixed factor coe�cients and the
t≠value for reporting.

CAG.mod <- lmer(log(Branch.avg.mm)~Source+(1|Watershed),
data=CAG,
REML=T)

summary(CAG.mod)

## Linear mixed model fit by REML [�lmerMod�]
## Formula: log(Branch.avg.mm) ~ Source + (1 | Watershed)
## Data: CAG
##
## REML criterion at convergence: 351.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.66008 -0.66354 0.00384 0.64864 2.92976
##
## Random effects:
## Groups Name Variance Std.Dev.
## Watershed (Intercept) 0.08361 0.2892
## Residual 0.11146 0.3339
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## Number of obs: 472, groups: Watershed, 18
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 3.5985 0.1610 22.351
## Sourceestablished treeline -0.6788 0.1813 -3.745
##
## Correlation of Fixed Effects:
## (Intr)
## Srcstblshdt -0.888

In Fig. 3d for the comparison of colonist (C) and established treeline (E) CAG we constructed the means as
the estimates for “(Intercept)” and “(Intercept)” + “Sourceestablished treeline” for colonist CAG
and established treeline CAG respectively. Error bars used the means ±2 ◊ “Std. Error” respectively.

5.2 Linear mixed e�ects model comparing foliar nutrients

As with CAG, we applied linear mixed e�ects models with watershed as a random e�ects to test the null
hypothesis that mean concentrations of nitrogen and phosphorous were the same in colonist and established
treeline populations. Because of sample pooling before chemical analysis, the design is more balanced than
for CAG.
Nutrients <- read.csv("./needle.NP.2019.csv") %>%

dplyr::mutate(Watershed=paste(Source,Watershed))

table(Nutrients$Source)

##
## colonist established treeline
## 20 51

aggregate(perN~Watershed,
data=Nutrients,
FUN=length) %>%

dplyr::mutate(Watershed,
Sample.size=perN,
.keep="none")

## Watershed Sample.size
## 1 colonist Akamoakak Creek 3
## 2 colonist Cutler 3
## 3 colonist Hunt River 5
## 4 colonist Kaluich Creek 3
## 5 colonist WF Cutler 6
## 6 established treeline AG 6
## 7 established treeline AL 6
## 8 established treeline AM 4
## 9 established treeline BO 1
## 10 established treeline CL 2
## 11 established treeline EL 2
## 12 established treeline HF 6
## 13 established treeline KE 6
## 14 established treeline KU 6
## 15 established treeline OM 6
## 16 established treeline SA 2
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## 17 established treeline TA 2
## 18 established treeline TI 2

5.2.1 Nitrogen concentration

N.mod <- lmer(perN~Source+(1|Watershed),
data=Nutrients,REML=T)

summary(N.mod)

## Linear mixed model fit by REML [�lmerMod�]
## Formula: perN ~ Source + (1 | Watershed)
## Data: Nutrients
##
## REML criterion at convergence: -45.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.8314 -0.6303 0.1141 0.6657 3.9102
##
## Random effects:
## Groups Name Variance Std.Dev.
## Watershed (Intercept) 0.0004468 0.02114
## Residual 0.0270543 0.16448
## Number of obs: 71, groups: Watershed, 18
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 1.28245 0.03808 33.674
## Sourceestablished treeline -0.15050 0.04499 -3.345
##
## Correlation of Fixed Effects:
## (Intr)
## Srcstblshdt -0.847

5.2.2 Phosphorous concentration

P.mod <- lmer(perP~Source+(1|Watershed),
data=Nutrients,REML=T)

summary(P.mod)

## Linear mixed model fit by REML [�lmerMod�]
## Formula: perP ~ Source + (1 | Watershed)
## Data: Nutrients
##
## REML criterion at convergence: -292.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.08348 -0.58125 -0.02304 0.54012 2.41202
##
## Random effects:
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## Groups Name Variance Std.Dev.
## Watershed (Intercept) 0.0002056 0.01434
## Residual 0.0005942 0.02438
## Number of obs: 70, groups: Watershed, 18
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.163338 0.008577 19.05
## Sourceestablished treeline -0.036782 0.010160 -3.62
##
## Correlation of Fixed Effects:
## (Intr)
## Srcstblshdt -0.844

5.2.3 N15:N ratio

N15.mod <- lmer(I(d15N/perN)~Source+(1|Watershed),
data=Nutrients,REML=T)

summary(N15.mod)

## Linear mixed model fit by REML [�lmerMod�]
## Formula: I(d15N/perN) ~ Source + (1 | Watershed)
## Data: Nutrients
##
## REML criterion at convergence: 286.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2596 -0.3886 0.0295 0.6167 2.3027
##
## Random effects:
## Groups Name Variance Std.Dev.
## Watershed (Intercept) 0.7376 0.8589
## Residual 2.9001 1.7030
## Number of obs: 71, groups: Watershed, 18
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -2.8711 0.5473 -5.246
## Sourceestablished treeline -2.2744 0.6497 -3.500
##
## Correlation of Fixed Effects:
## (Intr)
## Srcstblshdt -0.842
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6 Relative Growth Rate (RGR) Comparison Between Colonist
and Established Treeline Populations

Juvenile relative growth rate (RGR) from 2015-2020 of the stem leader was calculated for both colonist and
established treeline populations as described in SI Calc. 3.

6.1 Linear mixed e�ects models comparing RGR

Here we compare RGR between the two source populations using the linear mixed e�ects model function
lmer() with these variable assignments:

1. ln(RGR) as the response variable (“growth.rate”).
2. ln(height) in 2015 as a covariate (“log(Initial.cm)”).
3. Random intercepts by field site (“Field.Site”).
4. Fixed factor of interest: colonist or established treeline juveniles (“Source”)).

BRTL <- read.csv("./GrowthRates_NoatakBasin.csv")
NoaBasin <- read.csv("./GrowthRates_BRTL.csv")
Big.dat <- rbind(BRTL,NoaBasin)

6.1.1 The sample sizes for each population source:

table(Big.dat$Source)

##
## colonist established treeline
## 300 271

6.1.2 The sample sizes for each population source by field site:

table(Big.dat$Field.Site,
Big.dat$Source)

##
## colonist established treeline
## AGL 0 6
## AGR 0 10
## ALL 3 0 5
## AmakCutlerRidge 19 0
## AmakE 79 0
## AmakW 195 0
## AML3 0 15
## AMR1 0 14
## CLL 0 13
## CLR 0 8
## Cutler 7 0
## HFL 0 17
## HFR 0 12
## KEL1 0 12
## KER1 0 12
## KUL1 0 12
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## KUR1 0 13
## OML1 0 6
## OMR1 0 11
## PhilipSmith 0 60
## TAL1 0 12
## TAR1 0 12
## TIL1 0 9
## TIR1 0 12

6.1.3 Additive model: set REML = F

First, an additive model assuming the response of RGR to Source of a juvenile is shown only in the intercept.
It assumes that the slope of “log(growth.rate)” on “log(Initial.cm)” is the same for both populations.
mod.A <- lmer(log(growth.rate)~log(Initial.cm)+Source +

(1|Field.Site),
data=Big.dat,REML=F,
subset=Initial.cm > 0)

6.1.4 Interaction model: set REML = F

Second, an interaction model assuming the response of RGR to Source of a juvenile is shown both in the
intercept and in the slope of “log(growth.rate)” on “log(Initial.cm)”.
mod.I <- lmer(log(growth.rate)~log(Initial.cm)*Source +

(1|Field.Site),
data=Big.dat,REML=F,
subset=Initial.cm > 0)

6.1.5 Compare the two models

AIC(mod.A) %>% round(1)

## [1] 359.9

AIC(mod.I) %>% round(1)

## [1] 342.2

�AIC = AIC(mod.A) ≠ AIC(mod.I) = 17.7, so interaction model is better.

A Likelihood-ratio test shows the interaction model drops the deviance significantly more than expected:
anova(mod.A,mod.I)

## Data: Big.dat
## Subset: Initial.cm > 0
## Models:
## mod.A: log(growth.rate) ~ log(Initial.cm) + Source + (1 | Field.Site)
## mod.I: log(growth.rate) ~ log(Initial.cm) * Source + (1 | Field.Site)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## mod.A 5 359.91 381.65 -174.96 349.91
## mod.I 6 342.17 368.25 -165.08 330.17 19.744 1 8.853e-06 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
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6.2 Interaction model fixed e�ects coe�cients with REML = T

gives truer, more conservative (i.e. bigger) standard errors of fixed e�ects coe�cients.
mod.I.REML <- lmer(log10(growth.rate)~log10(Initial.cm)*Source +

(1|Field.Site),
data=Big.dat,REML=T,
subset=Initial.cm > 0)

(Intercept.C <- fixef(mod.I.REML)[1])

## (Intercept)
## -0.6002489

(Slope.C <- fixef(mod.I.REML)[2])

## log10(Initial.cm)
## -0.2000881

(Intercept.E <- fixef(mod.I.REML)[3])

## Sourceestablished treeline
## -0.01894191

(Slope.E <- fixef(mod.I.REML)[4])

## log10(Initial.cm):Sourceestablished treeline
## -0.1381284

summary(mod.I.REML)

## Linear mixed model fit by REML [�lmerMod�]
## Formula: log10(growth.rate) ~ log10(Initial.cm) * Source + (1 | Field.Site)
## Data: Big.dat
## Subset: Initial.cm > 0
##
## REML criterion at convergence: -601
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -6.0711 -0.5448 0.1233 0.6478 2.7658
##
## Random effects:
## Groups Name Variance Std.Dev.
## Field.Site (Intercept) 0.01116 0.1056
## Residual 0.01800 0.1342
## Number of obs: 571, groups: Field.Site, 24
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -0.60025 0.06512 -9.217
## log10(Initial.cm) -0.20009 0.02473 -8.091
## Sourceestablished treeline -0.01894 0.07455 -0.254
## log10(Initial.cm):Sourceestablished treeline -0.13813 0.03095 -4.463
##
## Correlation of Fixed Effects:
## (Intr) l10(I. Srcstt
## lg10(Intl.) -0.539
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## Srcstblshdt -0.874 0.471
## lg10(I.):St 0.430 -0.799 -0.586

Big.dat %>% ggplot(aes(x=log10(Initial.cm),
y=log10(growth.rate),col=Source)) +

geom_point() +
scale_x_continuous("Height in 2015 (cm)",

breaks=log10(c(1,3,10,30,100)),
labels=c(1,3,10,30,100)) +

scale_y_continuous("RGR (per year)",
breaks=log10(c(0.01,0.03,0.1,0.3)),
labels=c(0.01,0.03,0.1,0.3)) +

geom_smooth(formula = y ~ x, method="loess",
linetype="dotted") +

geom_abline(aes(intercept = Intercept.C, slope = Slope.C),
colour="red") +

geom_abline(aes(intercept = Intercept.C+Intercept.E, slope = Slope.C+Slope.E),
colour="blue")
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Relative growth rate (RGR) of juveniles from colonist (red) and established treeline (blue)
populations by total height (cm) in 2015. Lines give best fit linear mixed e�ects model of log
RGR on log height.

6.2.1 How much greater is RGR for 80-160 cm colonists

than similar sized juveniles at established treelines?
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Big.dat %>%
filter(Initial.cm <= 160 & Initial.cm >= 80) %>%
dplyr::select(Source,growth.rate) %>%
group_by(Source) %>%
summarize(mean.RGL=mean(growth.rate)) %>%
dplyr::mutate(ratio=mean.RGL/min(mean.RGL))

## # A tibble: 2 x 3
## Source mean.RGL ratio
## <chr> <dbl> <dbl>
## 1 colonist 0.103 1.90
## 2 established treeline 0.0544 1
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7 Tree Ring Correlation with July Air Temperatures

Divergence–the lack of a positive correlation between tree ring indices and air temperature–is frequently
observed34,35 in treeline populations of Arctic Alaska during the latter half of the 10th century.

Consider two trees, one a “positive responder” to temperature (i.e., positive correlation between tree ring
indices and temperature) and the other a “negative responder” to temperature (i.e., negative correlation
between tree ring indices and temperature and so showing diveregence). Under similar environmental con-
ditions including warming, the positive responder will grow more rapidly.

We show that nearly all colonists with cross-dated increment cores were positive responders with mean daily
July temperatures in Kotzebue.

7.1 Relationship between mean daily July temperatures in the AOI and Kotzebue

Lapse rates are the regression slopes of the relationship between temperature and elevation. Here we use
remote automated weather stations (RAWS) from the Baird Mountains and Kotzebue instrumental temper-
ature records and regress them against elevation. The strong consistent linearity in the relationship suggests
that temperatures are well correlated among stations and so would be the AOI, since its elevation is within
the range of RAWS.

We use Kotzebue because it is longest record near to the AOI. Kotzebue mean daily July temperatures and
those from three remote automated weather stations (RAWS) show stable lapse rates over the eight years of
records, 2012-2019. The AOI is located geographically between the two highest RAWS, with Imelyak to the
east and Kaluich to the west. The oldest trees aged in the AOI are located at about 450 m asl, intermediate
in elevation between Salmon (366 m asl) and Kaluich (758 m asl).

station.temps <- read.csv("./station_temps.csv") %>% filter(Year < 2020)
colnames(station.temps)[1] <- "Station"
unique(station.temps$Year) %>% sort()

## [1] 2012 2013 2014 2015 2016 2017 2018 2019

Elevations by station:

station.temps %>%
group_by(Station) %>%
dplyr::summarize(elevation.m.asl=round(unique(Elevation_masl))) %>%
arrange(elevation.m.asl) %>%
kable(caption="Elevations in m asl for Kotzebue and remote

automated weather stations (RAWS)
in Baird Mountains.")

Elevations in m asl for Kotzebue and remote automated weather stations (RAWS) in Baird
Mountains.

Station elevation.m.asl
Kotzebue 9
Salmon 366
Kaluich 758
Imelyak 1088
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Over the eight years of recorded temperatures reported here (2012-2019) the mean daily July temperature
of Kotzebue was strongly correlated with that of each RAWS.

stations.by.year <- station.temps %>%
dplyr::select(!Elevation_masl) %>%
pivot_wider(names_from=c(Station), values_from=JulyTemp_C)

Correlation between Kotzebue July air temperature and the RAWS nearest to Kotzebue and lowest in
elevation, Salmon:

cor.test(~Kotzebue+Salmon,data=stations.by.year)

##
## Pearson’s product-moment correlation
##
## data: Kotzebue and Salmon
## t = 5.3833, df = 2, p-value = 0.03282
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.08651334 0.99933817
## sample estimates:
## cor
## 0.9671823

Correlation between Kotzebue July air temperature and the RAWS nearest to the sample of tree cores from
the AOI and intermediate in elevation, Kaluich:

cor.test(~Kotzebue+Kaluich,data=stations.by.year)

##
## Pearson’s product-moment correlation
##
## data: Kotzebue and Kaluich
## t = 7.0366, df = 4, p-value = 0.00215
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6853582 0.9959681
## sample estimates:
## cor
## 0.9619006

Correlation between Kotzebue July air temperature and the RAWS farthest from Kotzebue and highest in
elevation, Imelyak:

cor.test(~Kotzebue+Imelyak,data=stations.by.year)

##
## Pearson’s product-moment correlation
##
## data: Kotzebue and Imelyak
## t = 8.4505, df = 4, p-value = 0.001074
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## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7683777 0.9971696
## sample estimates:
## cor
## 0.9731172

These correlations are best captured by yearly lapse rates, which show strong consistency in their values
across years.

Using a mixed model approach with year as random intercept capturing the annual variability in Kotzebue
air temperature and considering the fixed e�ect intercept as the mean temperature in Kotzebue (i.e., at sea
level) during the eight years:

lapse.lm <- lmer(JulyTemp_C~I(Elevation_masl/1000)+(1|Year),
data=station.temps,subset=Year < 2020)

(intercept <- round(fixef(lapse.lm)[1],2))

## (Intercept)
## 14.7

Here is the mean lapse rate in °C km-1 of elevation over the eight years,

(lapse <- round(fixef(lapse.lm)[2],2))

## I(Elevation_masl/1000)
## -5.41

and its standard error:

(lapse.se <- round(coef(summary(lapse.lm))[2,2],2))

## [1] 0.15

7.2 Lapse rates in Baird Mountains of Brooks Range

station.temps %>% subset(Year < 2020) %>%
mutate(Year=factor(Year)) %>%
ggplot(aes(x=Elevation_masl,

y=JulyTemp_C,
group=Year,
col=Year)) +

scale_y_continuous(expression(Station~mean~daily~July~temperature~(degree*C)),
sec.axis=dup_axis(name=NULL)) +

scale_x_continuous("Elevation (m asl)",
breaks=c(9,366,460,758,1088),
labels=c(9,366,"AOI",758,1088),
sec.axis=sec_axis(name="RAWS station",~.,

breaks=c(9,366,758,1088),
labels=c("Kotzebue","Salmon","Kaluich","Imelyak"))) +
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geom_point() +
geom_smooth(formula=y~x,

method="lm",
se=F) +

theme_gray(base_size = 14) +
geom_abline(intercept=intercept,

slope=lapse/1000,
linetype="dotted") + labs(title=bquote(Dotted~line:~Mean~July~lapse~rate==.(lapse)*degree*C~kmˆ-1)) +
theme(panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),
panel.background = element_blank(),

axis.line = element_line(colour = "black"))
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Dotted line :  Mean July lapse rate = −5.41°C km−1

Mean daily July temperature plotted against elevation for remote area weather stations
(RAWS) in Baird Mountains and Kotzebue by year. Dotted line plots fixed e�ects estimate
from linear mixed e�ects model with year as a random factor.

The strong relationship between RAWS temperatures and elevations, with the AOI elevation well within the
range of RAWS elevations, implies a very strong correlation between Kotzebue and AOI mean daily July
temperatures, similar to those between Kotzebue and the three RAWS (0.96 Æ r Æ 0.97).

7.2.1 Northwest Alaska’s warmest recorded decade

We highlight the di�erence in radial growth during the period 1989-2019 (included in the warmest three
consecutive decades in the Kotzebue July temperature record) with the previous time period in the tree ring
time series.

103



kotz.july <- read.csv("./Kotzebue_Julytemps.csv")
colnames(kotz.july)[1] <- "year"

kotz.july %>%
dplyr::mutate(decade=cut(year,c(1930,1960,1990,2020), dig.lab = 4)) %>%

aggregate(July_mean_C~decade, FUN=function(x) round(mean(x),1),
data=.) %>%

kable(caption="Mean of July temperature
in Kotzebue for each of three decades.")

Mean of July temperature in Kotzebue for each of three decades.

decade July_mean_C
(1930,1960] 11.6
(1960,1990] 12.1
(1990,2020] 13.0

7.2.2 Pre-whitening the July temperature series

We also attempt to “pre-whiten” the July temperature series to remove any autocorrelation present in
that series. A pre-whitened series is just the residuals from a best-fit autoregressive model. We apply this
transformation to the tree ring series below (which typically display persistence or “memory”, i.e., the growth
that a tree does in a given year is related to growth in the previous year(s)) before running correlations with
temperature. For statistical coherence we apply pre-whitening to both the tree-ring and the temperature
data, as climate data can also show persistence.

First, construct a “pre-whitened” (AR residual) temperature series, using same method as tree ring series:
detrend.series() from the dplR package. Take a look at the raw series and the “pre-whitened” series.

kotz.july$July_mean_C_AR <- detrend.series(kotz.july$July_mean_C, method = "Ar", make.plot = F)

Next, plot the two series and compare in the figure below:

raw.temp <- ggplot(kotz.july,
aes(year, July_mean_C)) + geom_line()

ar.temp <- ggplot(kotz.july,
aes(year, July_mean_C_AR)) + geom_line()

plot_grid(raw.temp,
ar.temp,
align = "hv",
axis = "tblr",
nrow = 2)

The temperature series and the pre-whitened series look similar, but the AR version is scaled. The perfect
correlation confirms this:

cor(kotz.july$July_mean_C, kotz.july$July_mean_C_AR)

## [1] 1
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The function detrend.series() from the dplR package doesn’t provide details about its AR model, but we
know that detrend.series() uses the defaults of the base R function ar(), which applies the “Yule-Walker”
method and AR order selection by AIC.

(ar.mod1 <- ar(kotz.july$July_mean_C))

##
## Call:
## ar(x = kotz.july$July_mean_C)
##
##
## Order selected 0 sigma^2 estimated as 3.135

This AR order of 0 (zero) suggests the temperature series is approximately white noise: there is no memory
in the series.

To confirm this is not a result of the Yule-Walker method, we apply a second method, “mle”, as suggested
in Cowpertwait, P.S. and Metcalfe, A. V. (2009) Introductory Time Series with R, Springer, NY.

(ar.mod2 <- ar(kotz.july$July_mean_C,
method = "mle"))

##
## Call:
## ar(x = kotz.july$July_mean_C, method = "mle")
##
##
## Order selected 0 sigma^2 estimated as 3.1

This is the same AR order = 0 as found with the “Yule-Walker” method.

A partial correlogram (autocorrelation values with lag after removing the e�ects of shorter lags) for the July
temperature data shows a significant autocorrelation at lag = 10 (the blue dotted line shown in the next
figure is significance).

pacf(kotz.july$July_mean_C)

However, model complexity is too high for a lag = order = 10 as shown when AIC values are plotted against
order, showing that the lowest AIC is at lag = order = 0.

aic.mod1 <- as.data.frame(ar.mod1$aic)
aic.mod1$order <- as.numeric(rownames(aic.mod1))
colnames(aic.mod1)[1] <- "AIC"

ggplot(aic.mod1, aes(order, AIC)) + geom_line() + theme_bw() +
xlab("AR order")

Because the July temperature series already approximates white noise and does not contain substantial
autocorrelation, we retain the “raw” temperature series in subsequent analyses.
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7.3 Tree ring indices

We begin by reading in tree ring data and ordering the series. A “spaghetti plot” of raw ring widths is shown
in ED. Fig 4b.

cut <- read.rwl("./cutler.trees.rwl") %>%
.[,order(colnames(.))]

## Attempting to automatically detect format.
## Assuming a Tucson format file.

## Warning in readLines(con): incomplete final line found on ’./cutler.trees.rwl’

## There does not appear to be a header in the rwl file
## There are 150 series
## 1 GAIA 1954 2019 0.01
## 2 Tr02 1977 2019 0.01
## 3 Tr03 1983 2019 0.01
## 4 Tr04 1995 2019 0.01
## 5 Tr05 1980 2019 0.01
## 6 Tr07 1977 2019 0.01
## 7 Tr08 1955 2019 0.01
## 8 Tr09 1983 2019 0.01
## 9 Tr10 1991 2019 0.01
## 10 Tr11 1999 2019 0.01
## 11 Tr12 1977 2019 0.01
## 12 Tr13 1998 2019 0.01
## 13 Tr14 2004 2019 0.01
## 14 Tr15 1987 2019 0.01
## 15 Tr16 1979 2019 0.01
## 16 Tr17 1981 2019 0.01
## 17 Tr18 1986 2019 0.01
## 18 Tr19 1981 2019 0.01
## 19 Tr20 2005 2019 0.01
## 20 Tr21 2008 2019 0.01
## 21 Tr22 2004 2019 0.01
## 22 Tr23 2005 2019 0.01
## 23 Tr24 1997 2019 0.01
## 24 Tr25 2006 2019 0.01
## 25 Tr26 2008 2019 0.01
## 26 Tr27 1992 2019 0.01
## 27 Tr28 2000 2019 0.01
## 28 Tr30 2006 2019 0.01
## 29 Tr31 1998 2019 0.01
## 30 Tr32 2004 2019 0.01
## 31 Tr33 1989 2019 0.01
## 32 Tr34 1955 2019 0.01
## 33 Tr35 1985 2019 0.01
## 34 Tr36 1992 2019 0.01
## 35 Tr37 1994 2019 0.01
## 36 Tr38 1989 2019 0.01
## 37 Tr39 1993 2019 0.01
## 38 Tr40 2000 2019 0.01
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## 39 Tr41 1983 2019 0.01
## 40 Tr42 1996 2019 0.01
## 41 Tr43 1996 2019 0.01
## 42 Tr44 1980 2019 0.01
## 43 Tr45 2005 2019 0.01
## 44 Tr46 1999 2019 0.01
## 45 Tr47 1986 2019 0.01
## 46 Tr48 1998 2019 0.01
## 47 Tr49 1953 2019 0.01
## 48 Tr50 1992 2019 0.01
## 49 Tr51 1962 2019 0.01
## 50 Tr52 1946 2019 0.01
## 51 Tr60 1951 2019 0.01
## 52 T01 1995 2020 0.01
## 53 T02 1989 2020 0.01
## 54 T03 1980 2020 0.01
## 55 T04 1979 2020 0.01
## 56 T05 1977 2020 0.01
## 57 T06 1999 2020 0.01
## 58 T07 1933 2020 0.01
## 59 T08 1964 2020 0.01
## 60 T09 1985 2020 0.01
## 61 T10 1983 2020 0.01
## 62 T100 1971 2017 0.01
## 63 T101 1991 2020 0.01
## 64 T102 1968 2020 0.01
## 65 T11 1976 2020 0.01
## 66 T12 1952 2020 0.01
## 67 T13 1952 2020 0.01
## 68 T14 1967 2020 0.01
## 69 T16 1962 2020 0.01
## 70 T17 1999 2020 0.01
## 71 T18 1976 2020 0.01
## 72 T19 1993 2020 0.01
## 73 T20 1983 2020 0.01
## 74 T21 1954 2020 0.01
## 75 T22 1986 2020 0.01
## 76 T23 1947 2020 0.01
## 77 T25A 1982 2020 0.01
## 78 T25B 1972 2020 0.01
## 79 T26 1966 2020 0.01
## 80 T27 1969 2020 0.01
## 81 T28 1982 2020 0.01
## 82 T29 1988 2020 0.01
## 83 T30 1993 2020 0.01
## 84 T31 1984 2020 0.01
## 85 T32 1988 2020 0.01
## 86 T33 1983 2020 0.01
## 87 T34 1985 2020 0.01
## 88 T35 1981 2020 0.01
## 89 T36 1996 2020 0.01
## 90 T37 1996 2020 0.01
## 91 T38 1979 2020 0.01
## 92 T39 1984 2020 0.01
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## 93 T40 1996 2020 0.01
## 94 T41 1988 2020 0.01
## 95 T42 1952 2020 0.01
## 96 T43 1983 2020 0.01
## 97 T44 1991 2020 0.01
## 98 T45 1995 2020 0.01
## 99 T46 1984 2020 0.01
## 100 T47 1990 2020 0.01
## 101 T48 1989 2020 0.01
## 102 T49 1967 2020 0.01
## 103 T50 1979 2020 0.01
## 104 T51 1979 2020 0.01
## 105 T52 1990 2020 0.01
## 106 T53 1963 2020 0.01
## 107 T54 1978 2020 0.01
## 108 T55 1982 2020 0.01
## 109 T57 1980 2020 0.01
## 110 T58 1984 2020 0.01
## 111 T59 1968 2020 0.01
## 112 T60 1984 2020 0.01
## 113 T61 1965 2020 0.01
## 114 T62 1988 2020 0.01
## 115 T63 1982 2020 0.01
## 116 T64 1975 2020 0.01
## 117 T65 1985 2020 0.01
## 118 T66 1992 2020 0.01
## 119 T67 1963 2020 0.01
## 120 T68 1967 2020 0.01
## 121 T69 1988 2020 0.01
## 122 T70 1980 2020 0.01
## 123 T71 1978 2020 0.01
## 124 T72 1982 2020 0.01
## 125 T73 1991 2020 0.01
## 126 T74 2009 2020 0.01
## 127 T75 2002 2020 0.01
## 128 T76 1991 2020 0.01
## 129 T77 1993 2020 0.01
## 130 T78 1979 2020 0.01
## 131 T79 1980 2020 0.01
## 132 T80 1984 2020 0.01
## 133 T81 1974 2020 0.01
## 134 T82 1979 2020 0.01
## 135 T83 1996 2020 0.01
## 136 T84 1984 2020 0.01
## 137 T85 1989 2020 0.01
## 138 T86 1971 2020 0.01
## 139 T87 1991 2020 0.01
## 140 T88 1990 2020 0.01
## 141 T89 1955 2020 0.01
## 142 T90 1998 2020 0.01
## 143 T91 1995 2020 0.01
## 144 T92 1997 2020 0.01
## 145 T94 1980 2020 0.01
## 146 T95 1973 2020 0.01

110



## 147 T96 2004 2020 0.01
## 148 T97 1996 2020 0.01
## 149 T98 1983 2020 0.01
## 150 T99 1988 2020 0.01

The main purpose of analysis here is to compare growth rates across years in light of Kotzebue temperature.

The chron() function in the dplR package computes a mean of the series allowing a visualization of average
growth (line plot) and a view of sample depth (gray area) through time.

chron(cut, prefix = "cut") %>%
crn.plot(abline.pos = NULL, ylab = "Ring width (mm)")
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7.4 Ages corrected by core height

We used relative growth rates (SI Calc. 3) of small spruce Ø 20 cm tall to estimate ages at height in (SI
Calc. 2), then applied the relationship to core height.

cut.ages <- read.csv("./Cutler_treeAges and pith info.csv") %>%
mutate(id=TreeID,

nRings,
.keep="none")

ext.ages <- read.csv("./AgingIncrementCoreHeight_V3.csv") %>%
mutate(id=Core_ID,

Height_m,
Establishment_yr,
.keep="none") %>%

merge(cut.ages,
by = "id")

7.3.1 Compute tree ring indices

Compute basal area index (BAI) using bai.in() where output is in mm2.
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cut.dat <- read.csv("./cutler.trees.d2pith_CORRECTED.csv") %>%
.[order(.$series),]
names(cut.dat)[names(cut.dat)=="series"] <- "id"

cut.bai <- bai.in(cut,
d2pith = cut.dat)

Compute pre-whitened (autoregressive residual) series using detrend() in the dplR package.

suppressWarnings(cut.ar <- detrend(cut, method = "Ar"))
## throws warnings for 5 series that Ar fits are not all positive.

Add year for converting to long format.

cut.bai$year <- as.numeric(rownames(cut.bai))
cut$year <- as.numeric(rownames(cut))
cut.ar$year <- as.numeric(rownames(cut.ar))

Pivot as longer data frames and convert BAI from mm2 to cm2

cut.bai.df <- pivot_longer(cut.bai,
cols = -year,
values_to = "bai.mm2",
names_to = "id") %>%

data.frame() %>%
dplyr::mutate(bai.cm2=bai.mm2/100) %>%
na.omit()

cut.df <- pivot_longer(cut,
cols = -year,
values_to = "rw.mm",
names_to = "id") %>%

data.frame() %>%
na.omit()
cut.ar.df <- pivot_longer(cut.ar,

cols = -year,
values_to = "rwi.ar",
names_to = "id") %>%

data.frame() %>%
na.omit()

Combine data frames of basal area index, ring width, and auto-regression residuals as one data frame.

cut.df <- mutate(cut.bai.df,
rw.mm=cut.df$rw.mm) %>%

merge(cut.ar.df,
by = c("year","id"),
all.x = T)

Sum ring-widths cumulatively by individual tree id as the tree grows to define radius by year in mm.
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## package data.table can make indexed assignments by reference
cut.dT <- data.table(cut.df) %>%

.[order(year),
radius.mm := cumsum(rw.mm),
by=list(id)]

7.5 Data frame of ring indices and Kotzebue July air temperatures

The following code merges several dataframes and adds the distance to pith to each radius converted radius
to cm (originally in mm), then merges with tree ages that have been adjusted by the estimated age that the
tree reached the height of the increment core hole (median 5 cm above ground).

The dataframe retains only the variables needed for correlations and merges with 1937-2020 July air tem-
peratures from Kotzebue.

Cutler.rings.kotz.C <-
join(as.data.frame(cut.dT),

cut.dat, by = "id") %>%
dplyr::mutate(radius.cm=

(radius.mm + d2pith)/10) %>%
merge(ext.ages[,c("id",

"Height_m",
"Establishment_yr",
"nRings")], all.x = T) %>%

dplyr::mutate(id,
Height_m,
Establishment_yr,
nRings,
year,
bai.cm2,
ln_bai.cm2=log(bai.cm2),
radius.cm,

rwi.ar,
.keep="none") %>%

merge(kotz.july,
by="year")

Nine trees lack core height above-ground measures, or other data needed for the next steps, and are removed.

missing.dat <- Cutler.rings.kotz.C %>%
filter(is.na(Establishment_yr)) %>%
summarize(no.core.ht=length(unique(id)))

missing.dat$no.core.ht

## [1] 9

7.6 Growth trends by cambial age

We also show BAI by cambial age (i.e., years from the pith) for the first 30 years for each age class, juvenile
vs. adult.
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Thick lines give means by age class. The thin lines show individual series. Both show growth in contemporary
juveniles is unique to the last 30 years among all trees.

Older trees tend to lack innermost rings missed during field coring and so are often missing the youngest
cambial ages.

bai.df <- merge(as.data.frame(cut.dT),
cut.dat, by = "id")

# add the ages and establishment year as well
bai.df <- merge(bai.df, cut.ages[,c("id","Age","Est.yr","nRings")])
# Add age classes
bai.df$age.class <- ifelse(bai.df$Age > 30, "adult (>30y)", "juvenile (<30y)") # Get a secondary age class that includes the first 30 years of the older trees # I.e., the "adults" when they were young
bai.df$cambial.age <- bai.df$year - bai.df$Est.yr
bai.df$Cohort <- cut(bai.df$Est.yr, seq(1900,2020,30), dig.lab = 4) # Re-convert bai from mm2 to cm2
bai.df$bai.cm2 <- bai.df$bai.mm2*0.01
# Aggregate to means and se of the two metrics of growth - bai and AR
bai.agg <- aggregate(bai.cm2 ~ year + age.class, data = bai.df, FUN = length)
ar.agg <- aggregate(rwi.ar ~ year + age.class, data = bai.df, FUN = length)
rw.agg <- aggregate(rw.mm ~ year + age.class, data = bai.df, FUN = length)
colnames(bai.agg)[3] <- "samp.depth"
colnames(ar.agg)[3] <- "samp.depth"
colnames(rw.agg)[3] <- "samp.depth"
# Means
bai.agg$bai.cm2 <- aggregate(bai.cm2 ~ year + age.class, data = bai.df, FUN = mean)[,3]
ar.agg$rwi.ar <- aggregate(rwi.ar ~ year + age.class, data = bai.df, FUN = mean)[,3]
rw.agg$rw.mm <- aggregate(rw.mm ~ year + age.class, data = bai.df, FUN = mean)[,3]
# 2 se
bai.agg$bai.cm2.se <- aggregate(bai.cm2 ~ year + age.class, data = bai.df, FUN = function(x)sd(x)/sqrt(length(x)))[,3]
ar.agg$rwi.ar.se <- aggregate(rwi.ar ~ year + age.class, data = bai.df,
FUN = function(x)sd(x)/sqrt(length(x)))[,3]
rw.agg$rw.mm.se <- aggregate(rw.mm ~ year + age.class, data = bai.df,
FUN = function(x)sd(x)/sqrt(length(x)))[,3]
agg <- merge(bai.agg, ar.agg[,!(colnames(ar.agg) %in% "samp.depth")],

by = c("year","age.class"), all.x = T)
agg <- merge(agg, rw.agg[,!(colnames(rw.agg) %in% "samp.depth")],

by = c("year","age.class"), all.x = T)

# Convert to long format
agg.long <- pivot_longer(agg[,!(colnames(agg) %in% c("bai.cm2.se","rwi.ar.se","rw.mm.se"))],

cols = c("bai.cm2","rwi.ar","rw.mm"),
names_to = "growth.metric", values_to = "growth.value")

agg.long[,6] <- pivot_longer(agg[,!(colnames(agg) %in% c("bai.cm2","rwi.ar","rw.mm"))],
cols = c("bai.cm2.se","rwi.ar.se","rw.mm.se"),

names_to = "growth.metric.se", values_to = "growth.value.se")[,5]

agg.long$growth.metric <- factor(agg.long$growth.metric, levels = c("rw.mm","rwi.ar", "bai.cm2"))

# Function to compute mean ± 2 se in stat_summary() in ggplot
mean_2se <- function(x){
y <- mean(x)
se <- sd(x)/sqrt(length(x))
ymin <- y - 2*se
ymax <- y + 2*se
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data.frame(y,ymin,ymax)
}

# All trees
ggplot(bai.df[bai.df$cambial.age <= 30,],

aes(cambial.age, bai.cm2)) +
geom_line(aes(cambial.age, bai.cm2, group = id, color = age.class),

alpha = 0.5) +
stat_summary(geom = "line", aes(cambial.age, bai.cm2, id = age.class),

color = "black",
fun.data = mean_2se, size = 1.5) +

stat_summary(geom = "line", aes(cambial.age, bai.cm2, color = age.class),
fun.data = mean_2se, size = 1) +

scale_color_manual(name = "Contemporary age class",
values=c(cbPalette[4],cbPalette[5])) +

theme_bw() +
scale_x_continuous(breaks = seq(0,30, by = 5)) +
theme(#axis.text.x = element_text(angle = 90),

legend.position = c(0.2,0.8),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black")) +

xlab("Cambial age (years from pith)") +
ylab(bquote("BAI ("*cmˆ2*")"))

## Warning: Ignoring unknown aesthetics: id
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7.7 Cambial age growth across thirty-year cohorts

Here the BAI plotted by age group to more clearly discern the cambial age-related patterns. It appears that
over four thirty-year periods, all trees grew at about the same rate for the first 5 years. Then two series of
three decades, the early colonial decades and the most recent decades, continued to grow rapidly while the
other two slowed somewhat, and finally at about age 20, the most recent cohort of trees diverged as fastest
growing juveniles over the record.

bai.df.juv <- bai.df %>% filter(cambial.age <= 30) %>% mutate(Cohort=factor(Cohort))

sample.size <- aggregate(id ~ Cohort, data = bai.df.juv, FUN = \(x) length(unique(x)))
colnames(sample.size)[2] <- "n"
sample.size$n <- paste0("n = ", sample.size$n)
sample.size$cambial.age = 15
sample.size$bai.cm2 = 25

ggplot(bai.df.juv, aes(x=cambial.age, y=bai.cm2, group = Cohort)) +
facet_wrap(~Cohort) +
geom_smooth() +
geom_point(size=0.1,alpha=0.5) +
geom_text(data=sample.size, aes(x=cambial.age, y=bai.cm2, label=n)) +

theme_bw() +
theme(#panel.grid.major = element_blank(),

#panel.grid.minor = element_blank(),
panel.background = element_blank(),
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axis.line = element_line(colour = "black")) +
labs(x="Cambial age (y)",y=expression(BAI~(cmˆ2)))

## ‘geom_smooth()‘ using method = ’gam’ and formula ’y ~ s(x, bs = "cs")’
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#ggsave("./BAI_30_cambial_age.pdf",height=4,width=4)
bai.df %>% filter(cambial.age <= 30) %>% mutate(Cohort=factor(Cohort)) %>%
ggplot(aes(x=cambial.age, y=log10(bai.cm2), colour = Cohort)) +
# geom_line(aes(group = id), alpha = 0.25) +

geom_point(size=0.1) +
geom_smooth() +

scale_x_continuous(breaks = seq(0,30, by = 5),
lim=c(0,30)) +

scale_y_continuous(breaks = c(-2,-1,0,1),
labels=c(0.01,0.1,1,10)) +

geom_vline(xintercept=c(5,10,15,20,25),
linetype=c("solid","dotted","dotdash","dashed","solid"),
colour=c("gray",rep("black",4))) +

labs(x="Cambial age (y)",y=expression(BAI~(cmˆ2))) +
theme_bw() +

theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"))

## ‘geom_smooth()‘ using method = ’gam’ and formula ’y ~ s(x, bs = "cs")’
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We can also examine each tree’s first 30 years of growth by plotting against calendar year instead of cambial
age.

ggplot(bai.df[bai.df$cambial.age <= 30,],
aes(year, bai.cm2)) +

geom_line(aes(year, bai.cm2, group = id, color = age.class),
alpha = 0.5) +

stat_summary(geom = "line", aes(year, bai.cm2, id = age.class),
color = "black",
fun.data = mean_2se, size = 1.5) +

stat_summary(geom = "line", aes(year, bai.cm2, color = age.class),
fun.data = mean_2se, size = 1) +

scale_color_manual(name = "Contemporary age class", values=c(cbPalette[4],cbPalette[5])) +
theme_bw() +
scale_x_continuous(breaks = seq(1930,2020, by = 10), limits = c(1930,2019)) +
theme(#axis.text.x = element_text(angle = 90),

legend.position = c(0.2,0.8),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black")) +

xlab("Year") +
ylab(bquote("BAI ("*cmˆ2*")"))

## Warning: Ignoring unknown aesthetics: id

## Warning: Removed 8 rows containing non-finite values (stat_summary).
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## Removed 8 rows containing non-finite values (stat_summary).

## Warning: Removed 8 row(s) containing missing values (geom_path).
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7.8 Correlations of tree ring metrics with July air temperature

We measured 150 individual tree ring series. However, 9 cores were missing core heights so could not be
assigned to an establishment year, leaving 141 samples that could be confidently assigned to adult or juvenile
age classes.

The Kotzebue air temperatures are likely the best available proxy for the Cutler River basin because the
lapse rates appear quite stable, at least over the last decade (as shown above).

For each individual tree ring series, this function calculates the correlations between the two ring indices
(BAI and AR) and Kotzebue July temperature (both raw data and pre-whitened - same as AR - data).

Pearson.r.stats <- function(only.these) {
IDs <- unique(only.these$id)

how.many <- length(IDs)
## Vectors to fill
Establishment_yr <- rep(NA,how.many)

r.BAI <- r.AR <- rep(NA,how.many)
p.BAI <- p.AR <- rep(NA,how.many)
series.len <- nRings <-rep(NA,how.many)

## A loop to fill all the vectors
for(i in 1:how.many) {
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temp <- subset(only.these,
id == IDs[i])

Establishment_yr[i] <-
max(temp$Establishment_yr)

test.BAI <-
cor.test(~ln_bai.cm2+July_mean_C_AR,data=temp)
test.AR <-

cor.test(~rwi.ar+July_mean_C_AR,data=temp)
r.BAI[i] <- test.BAI$estimate
p.BAI[i] <- test.BAI$p.value
r.AR[i] <- test.AR$estimate
p.AR[i] <- test.AR$p.value
nRings[i] <- max(temp$nRings)
series.len[i] <-

sum(!is.na(temp$bai.cm2))
}

data.frame(id=IDs,
Establishment_yr,
series.len,
nRings,
r.BAI,
p.BAI,
r.AR,

p.AR) }

7.8.1 Ring-width indices of juveniles (estimated age < 30 y) and correlations with temperature
since 1989

Rather than separate juveniles by height, here they are separated by age: establishment year after 1989.

Juvees.stats <- subset(Cutler.rings.kotz.C,
Establishment_yr >= 1989) %>%

Pearson.r.stats() %>%
dplyr::mutate(age.class="juvenile (<30 y)")

There are n = 15 individuals and include over 2/3 are above 2.5 tall: 1.68, 1.93, 2.09, 2.14, 2.37, 2.6, 2.6,
2.6, 2.7, 2.9, 3.3, 3.5, 3.6, 3.9, 5.53.

7.9 Juveniles and temperature

The correlations between July Kotzebue air temperature and ring indices for juveniles are generally positive
and relatively strong.

Juvees.stats %>%
summarize(n=nrow(.),

posBAI=sum(r.BAI > 0),
r.BAI.min=round(min(r.BAI),2),
r.BAI.mean=round(mean(r.BAI),2),
r.BAI.max=round(max(r.BAI),2),
sigBAI=sum(p.BAI <= 0.05),

posAR=sum(r.AR > 0),
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r.AR.min=round(min(r.AR),2),
r.AR.mean=round(mean(r.AR),2),
r.AR.max=round(max(r.AR),2),

sigAR=sum(p.AR <= 0.05)) %>%
kable(caption="Descriptive statistics for correlations, r,

between juvenile tree-core indices (BAI nad AR) and
Kotzebue July air temperature.")

Descriptive statistics for correlations, r, between juvenile tree-core indices (BAI nad AR) and
Kotzebue July air temperature.

n posBAI r.BAI.min r.BAI.mean r.BAI.max sigBAI posAR r.AR.min r.AR.mean r.AR.max sigAR
15 15 0.22 0.46 0.64 9 15 0.31 0.53 0.81 10

All 15 juveniles show positive correlations between ring indices and July air temperature, with 9 BAI series
and 10 AR series significant at the p <= 0.05 level.

Besides showing more series with significant correlations, the AR index had a higher mean correlation with
July temperatures than BAI.

7.9.1 Ring-width indices of adults (estimated age > 30 y) and correlations with temperature
since 1989

Here adults are defined in terms of establishment age being prior to 1989. In addition to selecting only
adults, the correlations between ring width statistics and Kotzebue July air temperature are calculated only
for the 30 years 1989-2019.

Adults.stats <- subset(Cutler.rings.kotz.C,
Establishment_yr < 1989) %>%

filter(year >= 1989) %>%
Pearson.r.stats() %>%
dplyr::mutate(age.class="adult (>30y)")

There were n = 125 individuals of those measured for height and with known establishment years, 119 were
2.5 m tall or taller.

7.10 Adults and temperature

Correlations between July Kotzebue air temperature and ring indices for adults were mostly positive but
tended to be weaker than for juveniles.

Adults.stats %>%
summarize(n=nrow(.),

posBAI=sum(r.BAI > 0),
r.BAI.25=sum(r.BAI > 0.25),

r.BAI.min=round(min(r.BAI),2),
r.BAI.mean=round(mean(r.BAI),2),
r.BAI.max=round(max(r.BAI),2),

sigBAI=sum(p.BAI <= 0.05),
posAR=sum(r.AR > 0),
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r.AR.25=sum(r.AR > 0.25),
r.AR.min=round(min(r.AR),2),
r.AR.mean=round(mean(r.AR),2),
r.AR.max=round(max(r.AR),2),

sigAR=sum(p.AR <= 0.05)) %>%
kable(caption="Descriptive statistics for correlations, r,

between adult tree-core indices (BAI nad AR) and
Kotzebue July air temperature.")

Descriptive statistics for correlations, r, between adult tree-core indices (BAI nad AR) and
Kotzebue July air temperature.

n posBAIr.BAI.25 r.BAI.minr.BAI.meanr.BAI.maxsigBAI posARr.AR.25 r.AR.minr.AR.meanr.AR.maxsigAR
126 124 34 -0.03 0.23 0.71 16 124 99 -0.17 0.36 0.8 64

Of 125 adults, 123 show positive correlations between BAI and July air temperature and 123 positive
correlations between AR and July air temperature, with 16 BAI series and 64 AR series significant at the p
<= 0.05 level. Besides showing more series with significant correlations, the AR index had a higher mean
correlation with July temperatures than the BAI index.

7.10.1 Graphical comparisons of adults, juveniles, BAI, and AR

Bind together and widen all the data

dat <- bind_rows(Adults.stats, Juvees.stats)
wide.dat <- data.frame(

r =
c(dat$r.BAI, dat$r.AR),

index.type =
c(rep("ln(BAI)", length(dat$r.BAI)),
rep("AR", length(dat$r.AR))),

age.class = c(dat$age.class, dat$age.class))

The adult time series from 1989 to 2019:

adults <- aggregate(
cbind(bai.cm2, rwi.ar) ~ year,

data = Cutler.rings.kotz.C, subset = Establishment_yr < 1989,
FUN = function(x){c(m = mean(x), s = 2*sd(x)/sqrt(sum(!is.na(x))))}
)

means <- c(adults$bai.cm2[,1],adults$rwi.ar[,1])
variability <- c(adults$bai.cm2[,2],adults$rwi.ar[,2])
cutler.time.adult <-

data.frame(age.class=rep("adult (>30y)",nrow(adults)),
year=rep(adults$year,nrow(adults)),
mean.index=means,
min.index=means-variability,
max.index=means+variability,
index.type=c(rep("BAI",nrow(adults)),
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rep("AR",nrow(adults)))) %>%
subset(year >= 1989 & year < 2019)

And the juveniles:

juveniles <- aggregate(
cbind(bai.cm2, rwi.ar) ~ year,

data = Cutler.rings.kotz.C,
subset = Establishment_yr >= 1989,

FUN=function(x){c(m = mean(x), s = 2*sd(x)/sqrt(sum(!is.na(x))))}
)

means <- c(juveniles$bai.cm2[,1], juveniles$rwi.ar[,1])
variability <- c(juveniles$bai.cm2[,2], juveniles$rwi.ar[,2])
cutler.time.juveniles <-

data.frame(age.class = rep("juvenile (<30y)", nrow(juveniles)),
year = rep(juveniles$year, nrow(juveniles)),
mean.index = means,
min.index = means - variability,
max.index = means + variability,
index.type = c(rep("BAI", nrow(juveniles)),

rep("AR", nrow(juveniles)))) %>%
subset(year >= 1989 & year < 2019)

time.series.dat <- rbind(cutler.time.adult,cutler.time.juveniles)

7.11 Plotting distributions of correlations of BAI with July Kotzebue tempera-

ture

wide.dat[wide.dat$index.type == "ln(BAI)",] %>%
mutate(age.class=factor(age.class,

levels=c("juvenile (<30 y)","adult (>30y)"))) %>%
ggplot(aes(x=ring.index, y=age.class)) + labs(fill="Age class") + #facet_grid(row=var
scale_x_continuous(lim=c(-0.25,1), expand = c(0.01, 0)) +
geom_density_ridges(

aes(x = r,
fill=age.class),

alpha = .5,
color = "black",
from = -0.25, to = 1) +
scale_fill_manual(values=c(cbPalette[5], cbPalette[4])) +

#geom_vline(xintercept=0, linetype="dotted") +
coord_cartesian(clip = "on") +

scale_y_discrete(labels = NULL, breaks = NULL,
expand = c(0.01, 0)) +

labs(y = element_blank(),
x="log(BAI) Correlation with July °C") +

theme_bw() +
theme_ridges(grid = FALSE) +

theme(text = element_text(size = 19),
legend.position="right") +

theme(strip.background = element_blank()) +
geom_vline(xintercept=0)
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## Picking joint bandwidth of 0.0516
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Distribution of correlation coe�cient between ln(BAI) and temperature for juveniles (yellow)
and adults (green).
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8 Climate

8.1 PRISM

The Parameter-elevation Regressions on Independent Slopes Model (PRISM) group at Oregon State Uni-
versity produced a set of gridded climate products representing 30-year mean temperatures (1981-2010)
and precipitation for Alaska69. We extracted July mean daily temperatures and the sum of November
through March precipitation from the four Noatak watersheds of the AOI and the adjacent four Kobuk
watersheds where the established treelines are located. In addition, we extracted the gridded values for any
pixel containing colonists and any pixel containing BRTL.

First, a function for reading and reprojecting PRISM rasters:
prism.project <- function(fil)
{r <- raster(fil)

extent(r)[1] <- extent(r)[1] - 360
extent(r)[2] <- extent(r)[2] - 360
crs(r) <- CRS("+init=epsg:4269")
crop(r,br.extent)

}

Some details:
load("br.extent.RData")
pal <- carto_pal(7,"Teal") ## color for maps

safe_colorblind_palette <- c("#88CCEE","#CC6677","#DDCC77",
"#117733","#332288","#AA4499",

"#44AA99","#999933","#882255",
"#661100","#6699CC","#888888")

geog <- "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs"
nad83 <- "+init=epsg:4269"

The Noatak watersheds (AOI) and the adjacent Kobuk watersheds:
HUC10.AOI <- c("Kaluich Creek","Cutler River",

"Imelyak River","Amakomanak Creek")
HUC10.kobuk <- c("Akillik River","Hunt River",

"Redstone River","Miluet Creek")

AOI.83.kob.noa <- readOGR("./AOI.shp",
verbose=F) %>%

spTransform(CRS(nad83)) %>%
.[.@data$name %in% c(HUC10.AOI,HUC10.kobuk),]

noatak.watersheds <- AOI.83.kob.noa[AOI.83.kob.noa$Basin == "Noatak",]

kobuk.watersheds <- AOI.83.kob.noa[AOI.83.kob.noa$Basin == "Kobuk",]

The Brooks Range established treelines within the four Kobuk watersheds:
BRTL.points <- readOGR("./BRTL.AOI.shp",

verbose=F) %>%
spTransform(CRS(nad83))

The digitized shadow locations:
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adult.colonists <- read.csv("./BestShadowData.csv") %>%
mutate(Long=long,

Lat=lat)

adult.colonists.nad83 <- SpatialPointsDataFrame(coords=
adult.colonists[,c("Long","Lat")],
data=adult.colonists[,c("Long","Lat")],

proj4string=CRS(geog)) %>%
spTransform(CRS(nad83))

The PRISM rasters
temp <- prism.project("./ak_tmean_1981_2010.07.txt")

names(temp) <- "layer"

precip.11 <- prism.project("./ak_ppt_1981_2010.11.txt")
precip.12 <- prism.project("./ak_ppt_1981_2010.12.txt")
precip.1 <- prism.project("./ak_ppt_1981_2010.01.txt")
precip.2 <- prism.project("./ak_ppt_1981_2010.02.txt")
precip.3 <- prism.project("./ak_ppt_1981_2010.03.txt")

Summing the winter precipitation:
precip <- precip.3 + precip.2 + precip.1 +

precip.12 + precip.11

Stacking July temperature and November-March precip.
var.rs <- stack(c(temp,

precip))

Extracting climate variables for envelope plots

First, AOI adult colonists, recording cell numbers so as to reduce redundancy.
vars.noa <- var.rs %>%

crop(noatak.watersheds) %>%
mask(noatak.watersheds) %>%
raster::extract(adult.colonists.nad83, ## colonist locations

cellnumbers=T)

Combine these PRISM pixel values with the data frame of colonists:
adult.colonists.nad83@data <- cbind(adult.colonists.nad83@data,

vars.noa)

There are
nrow(adult.colonists.nad83@data) %>%

format(big.mark=",") %>%
paste("adults")

## [1] "5,988 adults"

The climate envelope uses landscape pixels, not individual trees which would inflate the importance of some
pixels:
adult.colonists <- aggregate(cbind(layer.1,

layer.2)~cells,
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data=adult.colonists.nad83@data,
FUN=mean) %>%

mutate(layer.1, ## July C

layer.2, ## winter snow

Basin="Colonists",
.keep="none")

nrow(adult.colonists) %>%
format(big.mark=",") %>%

paste("colonist pixels")

## [1] "708 colonist pixels"

In the data frame “adult.colonists” each row is a pixel with at least one adult colonist. Each pixel has a
winter precipitation sum and a July mean temperature.

Extract pixels for Noatak AOI watersheds
vars.noa.H2Osheds.df <- var.rs %>%

crop(noatak.watersheds) %>%
mask(noatak.watersheds) %>%
values() %>%
data.frame %>%
mutate(Basin="Noatak watersheds")

And for Kobuk watersheds
vars.kob.H2Osheds.df <- var.rs %>%

crop(kobuk.watersheds) %>%
mask(kobuk.watersheds) %>%
values() %>%
data.frame %>%
mutate(Basin="Kobuk watersheds")

Repeat for BRTL

Kobuk BRTL:
### Kobuk BRTL

vars.kob.treelines <- var.rs %>%
crop(kobuk.watersheds) %>%
mask(kobuk.watersheds) %>%
raster::extract(BRTL.points,

cellnumbers=T)

BRTL.points@data <- cbind(BRTL.points@data,
vars.kob.treelines)

BRTL <- aggregate(cbind(layer.1,
layer.2)~cells,
data=BRTL.points@data ,
FUN=mean) %>%

mutate(layer.1,
layer.2,
Basin="Established treelines",
.keep="none")

Note that BRTL occupies more pixels than the colonist population.
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nrow(BRTL) %>%
format(big.mark=",") %>%

paste("treeline pixels")

## [1] "1,213 treeline pixels"

Because there are fewer colonist (1213) pixels and we wish to compare the climate envelopes among watersheds
and sources of adult trees, we randomly select the same number of pixels from BRTL and watersheds as
pixels among colonists.
seed <- 140
sample.pix <- function(df,seed=140){

set.seed(seed)
sample(nrow(df),nrow(adult.colonists))

}

dat.r <- rbind(BRTL[sample.pix(BRTL),],
adult.colonists,

vars.noa.H2Osheds.df[sample.pix(vars.noa.H2Osheds.df),],
vars.kob.H2Osheds.df[sample.pix(vars.kob.H2Osheds.df),]) %>%

mutate(Basin=factor(Basin,
levels=c("Established treelines",
"Colonists",
"Kobuk watersheds",
"Noatak watersheds")))

8.2 Constructing climate envelopes

# Not run
# dat.r %>% ggplot(aes(x=layer.2,
# y=layer.1,
# col=Basin)) +
# geom_density_2d_filled(contour_var = "ndensity") +
# facet_wrap(vars(Basin)) +
# guides(fill = "none") +
# guides(col = "none") +
# ylim(8,16) +
# xlim(110,170)+
# geom_hline(yintercept=10,col="yellow")+
# labs(x = "1980-2010 mean winter precipitation (mm)",
# y = "1980-2010 mean July temperature (C)")
# ggsave(�../../Figures/ComparingKobukNoatak4.pdf�,
# width = 4,
# height = 4, units = �in�)

8.3 Kotzebue and the Chukchi Sea

8.3.1 Kotzebue mean daily July temperature

The Kotzebue, Alaska (162.5966¶ W, 66.8983¶ N) July temperature record is the most complete in the region
and most complete of the summer months in Kotzebue, with 84 annual monthly records from 1937 to 2021.

Here we display the 1937-2020 record downloaded from NOAA (see Methods).
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July <- read.csv("./KotzebueTemps Upto 2020.csv") %>%
subset(Month ==7 ) %>%
mutate(Year=Year,

July.C=(TAVG-32)*5/9,
.keep="none")

Are all the years between 1937 and 2020 in the record? Compare the “Year” values with the sequence
from 1937 to 2020.
identical(seq(1937,2020),

July$Year)

## [1] TRUE

Are any July mean daily temperatures missing? No, all 84 are non-NA.
sum(!is.na(July$July.C))

## [1] 84

**What is the warming trend from 1937 to 2020?"
mod <- lm(July.C~Year,

data=July,
subset= Year >= 1937)

warming <- round(100*coef(mod)[2],2)

warming %>%
paste("degrees C per century")

## [1] "2.28 degrees C per century"

8.4 1937-2020 Kotzebue July Air Temperatures

July %>%
ggplot(aes(x=Year,

y=July.C)) +
geom_line() +
xlim(1920,2020) +
scale_x_continuous(breaks=seq(1920,2020,10)) +
scale_y_continuous("Kotzebue July Temperature (C)",

sec.axis=sec_axis(~.-5.36*0.45,
"450 m asl July Temperature(C)")) +

geom_smooth(formula=y~x,method="loess") +
theme_gray(base_size = 14) +
theme(axis.text.x =

element_text(angle = 90,
vjust = 0.5, hjust=1))+

labs(title=bquote(Warming~trend==.(warming)*degree*C~centuryˆ-1))

## Scale for �x� is already present. Adding another scale for �x�, which will
## replace the existing scale.

#ggsave("../../Figures/KotzebueTemps2020.pdf")
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8.5 Chukchi Sea Ice

The Chukchi Sea is directly north of the Bering Strait, and represents that part of the Arctic Ocean west of
the Beaufort Sea and east of the East Siberian Sea where sea ice is declining most rapidly32.

Here we display the sea ice record for October downloaded from NSIDC (see Methods). We chose October
because it is the month where temperatures generally fall below freezing for the duration of the winter in
northwest Alaska. It is the month of below freezing air temperatures with minimum sea ice cover, thus the
maximum open water available for evaporation and deposition as snow.
chukchi.precip <- read.csv("./ChukchiIceAreaFall.csv")

The 41 years of coverage are
paste(min(chukchi.precip$YEAR),"to",max(chukchi.precip$YEAR))

## [1] "1979 to 2019"

with no missing years,
identical(chukchi.precip$YEAR,

seq(1979,2019))

## [1] TRUE

and no missing months of October sea ice estimates:
sum(!is.na(chukchi.precip$OCT))

## [1] 41

Sea ice extent has been declining over this time period
chukchi.precip %>% ggplot(aes(x=YEAR,y=OCT)) +

geom_point() +
geom_line() +
scale_y_continuous(lim=c(0,600000),

breaks=seq(0,600000,100000),
labels=seq(0,0.6,0.1))+

labs(y=expression(Sea~ice~area~(10ˆ6*kmˆ2))) +
labs(title="October Sea Ice Cover") +
geom_smooth(formula=y~x,method="loess")

Because it is open water that leads to precipitation, we re-plotted this data set as millions of km2 of open
water Chukchi Sea open water during October by subtracting ice cover from the maximum ice extent in the
record which occurred in April
chuk <- read.csv("./ChukchiArea.csv")
apply(chuk[,-1],2,

function(x) round(max(x/10ˆ6,na.rm=T),4)) %>%
sort(decreasing=T)

## APR JAN MAR FEB DEC MAY JUN NOV JUL OCT SEP
## 0.8232 0.8226 0.8219 0.8183 0.8180 0.8088 0.7622 0.7439 0.6025 0.5847 0.4696
## AUG
## 0.4325

of
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chuk.tot <- max(chuk,na.rm=T)/10ˆ6

chuk$YEAR[which.max(chuk$APR)]

## [1] 2006

We also downloaded Kotzebue precipitation for winter months during the same hydrological years at the
NOAA data portal and combined them with the Chukchi ice data converted to open water.
chuk.kotz <- chukchi.precip %>%

mutate(Year=YEAR,
H2O.SEP.milkm2=chuk.tot-SEP/10ˆ6,
H2O.OCT.milkm2=chuk.tot-OCT/10ˆ6,
H2O.NOV.milkm2=chuk.tot-NOV/10ˆ6,
H2O.DEC.milkm2=chuk.tot-DEC/10ˆ6,
Dec.cm=Fol.DEC.in*2.54,
Jan.cm=Fol.JAN.in*2.54,
Feb.cm=Fol.FEB.in*2.54,
Mar.cm=Fol.MAR.in*2.54,
TOT.cm=sqrt(Dec.cm+Jan.cm+Feb.cm+Mar.cm),
Tot.cm=sqrt(Jan.cm+Feb.cm+Mar.cm),
tot.cm=sqrt(Feb.cm+Mar.cm)) %>%

na.omit()

The strongest correlations between precipitation and open water was found
round(cor(chuk.kotz),3) ## max r = 0.438 for OCT open water vs Feb+Mar precip

## YEAR SEP OCT NOV DEC Fol.DEC.in Fol.JAN.in
## YEAR 1.000 -0.851 -0.799 -0.695 -0.579 0.167 -0.071
## SEP -0.851 1.000 0.918 0.687 0.481 -0.172 -0.053
## OCT -0.799 0.918 1.000 0.834 0.593 -0.187 0.026
## NOV -0.695 0.687 0.834 1.000 0.761 -0.115 0.206
## DEC -0.579 0.481 0.593 0.761 1.000 0.023 0.033
## Fol.DEC.in 0.167 -0.172 -0.187 -0.115 0.023 1.000 -0.258
## Fol.JAN.in -0.071 -0.053 0.026 0.206 0.033 -0.258 1.000
## Fol.FEB.in 0.357 -0.390 -0.372 -0.200 -0.124 0.207 0.225
## Fol.MAR.in 0.192 -0.269 -0.343 -0.297 -0.273 0.104 0.027
## Year 1.000 -0.851 -0.799 -0.695 -0.579 0.167 -0.071
## H2O.SEP.milkm2 0.851 -1.000 -0.918 -0.687 -0.481 0.172 0.053
## H2O.OCT.milkm2 0.799 -0.918 -1.000 -0.834 -0.593 0.187 -0.026
## H2O.NOV.milkm2 0.695 -0.687 -0.834 -1.000 -0.761 0.115 -0.206
## H2O.DEC.milkm2 0.579 -0.481 -0.593 -0.761 -1.000 -0.023 -0.033
## Dec.cm 0.167 -0.172 -0.187 -0.115 0.023 1.000 -0.258
## Jan.cm -0.071 -0.053 0.026 0.206 0.033 -0.258 1.000
## Feb.cm 0.357 -0.390 -0.372 -0.200 -0.124 0.207 0.225
## Mar.cm 0.192 -0.269 -0.343 -0.297 -0.273 0.104 0.027
## TOT.cm 0.308 -0.395 -0.406 -0.219 -0.159 0.459 0.349
## Tot.cm 0.275 -0.368 -0.377 -0.211 -0.208 0.115 0.507
## tot.cm 0.325 -0.402 -0.438 -0.307 -0.198 0.265 0.079
## Fol.FEB.in Fol.MAR.in Year H2O.SEP.milkm2 H2O.OCT.milkm2
## YEAR 0.357 0.192 1.000 0.851 0.799
## SEP -0.390 -0.269 -0.851 -1.000 -0.918
## OCT -0.372 -0.343 -0.799 -0.918 -1.000
## NOV -0.200 -0.297 -0.695 -0.687 -0.834
## DEC -0.124 -0.273 -0.579 -0.481 -0.593
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## Fol.DEC.in 0.207 0.104 0.167 0.172 0.187
## Fol.JAN.in 0.225 0.027 -0.071 0.053 -0.026
## Fol.FEB.in 1.000 0.499 0.357 0.390 0.372
## Fol.MAR.in 0.499 1.000 0.192 0.269 0.343
## Year 0.357 0.192 1.000 0.851 0.799
## H2O.SEP.milkm2 0.390 0.269 0.851 1.000 0.918
## H2O.OCT.milkm2 0.372 0.343 0.799 0.918 1.000
## H2O.NOV.milkm2 0.200 0.297 0.695 0.687 0.834
## H2O.DEC.milkm2 0.124 0.273 0.579 0.481 0.593
## Dec.cm 0.207 0.104 0.167 0.172 0.187
## Jan.cm 0.225 0.027 -0.071 0.053 -0.026
## Feb.cm 1.000 0.499 0.357 0.390 0.372
## Mar.cm 0.499 1.000 0.192 0.269 0.343
## TOT.cm 0.852 0.673 0.308 0.395 0.406
## Tot.cm 0.850 0.709 0.275 0.368 0.377
## tot.cm 0.873 0.781 0.325 0.402 0.438
## H2O.NOV.milkm2 H2O.DEC.milkm2 Dec.cm Jan.cm Feb.cm Mar.cm TOT.cm
## YEAR 0.695 0.579 0.167 -0.071 0.357 0.192 0.308
## SEP -0.687 -0.481 -0.172 -0.053 -0.390 -0.269 -0.395
## OCT -0.834 -0.593 -0.187 0.026 -0.372 -0.343 -0.406
## NOV -1.000 -0.761 -0.115 0.206 -0.200 -0.297 -0.219
## DEC -0.761 -1.000 0.023 0.033 -0.124 -0.273 -0.159
## Fol.DEC.in 0.115 -0.023 1.000 -0.258 0.207 0.104 0.459
## Fol.JAN.in -0.206 -0.033 -0.258 1.000 0.225 0.027 0.349
## Fol.FEB.in 0.200 0.124 0.207 0.225 1.000 0.499 0.852
## Fol.MAR.in 0.297 0.273 0.104 0.027 0.499 1.000 0.673
## Year 0.695 0.579 0.167 -0.071 0.357 0.192 0.308
## H2O.SEP.milkm2 0.687 0.481 0.172 0.053 0.390 0.269 0.395
## H2O.OCT.milkm2 0.834 0.593 0.187 -0.026 0.372 0.343 0.406
## H2O.NOV.milkm2 1.000 0.761 0.115 -0.206 0.200 0.297 0.219
## H2O.DEC.milkm2 0.761 1.000 -0.023 -0.033 0.124 0.273 0.159
## Dec.cm 0.115 -0.023 1.000 -0.258 0.207 0.104 0.459
## Jan.cm -0.206 -0.033 -0.258 1.000 0.225 0.027 0.349
## Feb.cm 0.200 0.124 0.207 0.225 1.000 0.499 0.852
## Mar.cm 0.297 0.273 0.104 0.027 0.499 1.000 0.673
## TOT.cm 0.219 0.159 0.459 0.349 0.852 0.673 1.000
## Tot.cm 0.211 0.208 0.115 0.507 0.850 0.709 0.933
## tot.cm 0.307 0.198 0.265 0.079 0.873 0.781 0.895
## Tot.cm tot.cm
## YEAR 0.275 0.325
## SEP -0.368 -0.402
## OCT -0.377 -0.438
## NOV -0.211 -0.307
## DEC -0.208 -0.198
## Fol.DEC.in 0.115 0.265
## Fol.JAN.in 0.507 0.079
## Fol.FEB.in 0.850 0.873
## Fol.MAR.in 0.709 0.781
## Year 0.275 0.325
## H2O.SEP.milkm2 0.368 0.402
## H2O.OCT.milkm2 0.377 0.438
## H2O.NOV.milkm2 0.211 0.307
## H2O.DEC.milkm2 0.208 0.198
## Dec.cm 0.115 0.265
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## Jan.cm 0.507 0.079
## Feb.cm 0.850 0.873
## Mar.cm 0.709 0.781
## TOT.cm 0.933 0.895
## Tot.cm 1.000 0.889
## tot.cm 0.889 1.000

as between October (“H2O.OCT.milkm2”) and the square root of Feb + March precip (“tot.cm”) with a
one-tailed test of the correlation between the two as
cor.test(~H2O.OCT.milkm2+tot.cm,

alternative="greater",
data=chuk.kotz)

##
## Pearson�s product-moment correlation
##
## data: H2O.OCT.milkm2 and tot.cm
## t = 3.0039, df = 38, p-value = 0.002349
## alternative hypothesis: true correlation is greater than 0
## 95 percent confidence interval:
## 0.1968116 1.0000000
## sample estimates:
## cor
## 0.4380585

The only other correlation > 0.40 was square root of Dec through March precipitation with October open
water,with a one-tailed test of the correlation given as
cor.test(~H2O.OCT.milkm2+TOT.cm,

data=chuk.kotz)

##
## Pearson�s product-moment correlation
##
## data: H2O.OCT.milkm2 and TOT.cm
## t = 2.7399, df = 38, p-value = 0.00931
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1083525 0.6370611
## sample estimates:
## cor
## 0.4061531

and correlations of the same precipitation sums with the sum of October and September open water.
chuk.kotz %>% ggplot(aes(x=YEAR,y=TOT.cm)) +

geom_point() +
geom_line() +
scale_y_continuous(breaks=c(2,3,4),

labels=c(2,3,4)ˆ2)+
labs(y="Precipitation (cm)") +
labs(title="Kotzebue December to March") +
geom_smooth(formula=y~x,method="loess")

Taken together, increasing temperatures, October open water, and precipitation all show increasing trends
over the same time period (ED Fig. 6):
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sea.ice <- chuk.kotz %>%
mutate(EnvVar=H2O.OCT.milkm2,

type="Open_water_E.6km2",
Year=YEAR,
.keep="none")

winter.precip <- chuk.kotz %>%
mutate(EnvVar=TOT.cm,

type="Dec_Mar_precip.cm",
Year=YEAR,
.keep="none")

July.T <- July %>%
mutate(EnvVar=July.C,

type="temp_July_C",
Year=Year,
.keep="none")

## Not Run

## ED Figure 5.a-c Time series of instrumental records from Kotzebue for

## mean July air temperature and total Dec-March precipitation;

## and satellite-sensed October open water in the Chukchi Sea

# index.names <- c(
# �Dec_Mar_precip.cm� = �Winter~precip~(cm)�,
# �Open_water_E.6km2� = �Open~water~(kmˆ2)�,
# �temp_July_C� = �July~(degree*C)�)
#
# scales_y <- list(
# �Dec_Mar_precip.cm� = scale_y_continuous(limits = c(1.5, 4.5),
# breaks=c(2,3,4),labels=c(2,3,4)ˆ2),
# �Open_water_E.6km2� = scale_y_continuous(limits = c(0.1, 0.8),
# breaks = seq(0.1, 0.8, 0.2)),
# �temp_July_C� = scale_y_continuous(limits = c(9, 18),
# breaks = seq(0, 18, 3)))
#
# rbind(sea.ice,
# winter.precip,
# July.T) %>%
# filter(Year <= 2019) %>%
# ggplot(aes(x=Year,y=EnvVar,colour=type)) +
# geom_point() +
# geom_line() +
# theme_void() +
# facet_grid_sc(rows = vars(type),
# scales = list(y = scales_y),
# labeller = labeller(type =
# as_labeller(index.names, label_parsed))) +
# geom_smooth(formula=y~x,method="loess") +
# labs(y=NULL) +
# guides(colour="none") +
# theme_bw() +
# theme(axis.text.x=(element_text(angle = 90))) +
# theme(panel.grid.major = element_blank(),
# panel.grid.minor = element_blank(),
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# panel.background = element_blank(),
# axis.line = element_line(colour = "black")) +
# theme(text = element_text(size = 12)) +
# theme(plot.title = element_text(size=12))
#

8.5.1 Correlations among Kotzebue July temperature, Chukchi open water, and Kotzebue
winter precipitation

First make a dataframe holding all three:
climate.vars <- July %>%

inner_join(chuk.kotz[,c("H2O.OCT.milkm2","TOT.cm","YEAR")],
by=c("Year"="YEAR"))

The correlation between Kotzebue July temperature, Chukchi open water is one-tailed because we expect
that warmer temperatures should lead to more open water:
cor.test(data=climate.vars,

alternative="greater",
~July.C+H2O.OCT.milkm2)

##
## Pearson�s product-moment correlation
##
## data: July.C and H2O.OCT.milkm2
## t = 2.4659, df = 38, p-value = 0.009147
## alternative hypothesis: true correlation is greater than 0
## 95 percent confidence interval:
## 0.1190756 1.0000000
## sample estimates:
## cor
## 0.3714081

cor.test(data=climate.vars,
alternative="greater",
~TOT.cm+H2O.OCT.milkm2)

##
## Pearson�s product-moment correlation
##
## data: TOT.cm and H2O.OCT.milkm2
## t = 2.7399, df = 38, p-value = 0.004655
## alternative hypothesis: true correlation is greater than 0
## 95 percent confidence interval:
## 0.1592171 1.0000000
## sample estimates:
## cor
## 0.4061531
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