Supplementary Information

Mechanistic classification and benchmarking of polyolefin depolymerization over silica-alumina-based catalysts

Wei-Tse Lee¹, Antoine van Muyden¹, Felix D. Bobbink¹, Mounir D. Mensi¹, Jed R. Carullo¹, Paul J. Dyson^{1,*}

¹Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. ^{*}Corresponding author: Paul J. Dyson (paul.dyson@epfl.ch)

Supplementary Figure 1 Powder X-ray of SiO₂-Al₂O₃-based catalysts. Measurements of SiO₂-Al₂O₃, Co/SiO₂-Al₂O₃, Ni/SiO₂-Al₂O₃ and Ru/SiO₂-Al₂O₃ with $2\theta = 4-50$ degree. Source data are provided as a Source Data file.

Supplementary Figure 2 Powder X-ray of Zeo-Y_H-based catalysts. Measurements of Zeo-Y_H, Co/Zeo-Y_H, Ni/Zeo-Y_H and Ru/Zeo-Y_H with 2θ = 4-50 degree. Source data are provided as a Source Data file.

Supplementary Figure 3 Powder X-ray of ZSM-5_H-based catalysts. Measurements of ZSM-5_H, Co/ZSM-5_H, Ni/ZSM-5_H and Ru/ZSM-5_H with 2θ = 4-50 degree. Source data are provided as a Source Data file.

Supplementary Figure 4 Curve fitted XPS analysis of Co 2p region of Co/ZSM-5_H catalyst. Fitting according to Mark Biesinger et al.¹ Source data are provided as a Source Data file.

Supplementary Figure 5 Curve fitted XPS analysis of Ni 2p region of Ni/ZSM-5_H catalyst. Fitting according to Mark Biesinger et al.¹ Source data are provided as a Source Data file.

Supplementary Figure 6 Curve fitted XPS analysis of Ru 3d and C 1s region of Ru/ZSM-5_H catalyst. Fitting according to David J. Morgan.² Source data are provided as a Source Data file.

Supplementary Figure 7 SEM images (scale bar = 10 μ m) showing the particle distributions. a ZSM-5_H (6.4-9.4 μ m), b Co/ZSM-5_H (6.3-9.7 μ m), c Ni/ZSM-5_H (6.3-8.6 μ m) and d Ru/ZSM-5_H (6.0-10.4 μ m).

Supplementary Figure 8 Electron microscopy images of ZSM-5_H. TEM brightfield image (scale bar = 20 nm) of **a** ZSM-5_H. HAADF image (scale bar = 20 nm) of **b** ZSM-5_H. STEM-EDS elemental mapping of **c** Al, **d** Si, **e** O, **f** Co, **g** Ni and **h** Ru.

Supplementary Figure 9 Electron microscopy images of Ru/ZSM-5_H. TEM bright-field image (scale bar = 20 nm) of **a** Ru/ZSM-5_H. HAADF image (scale bar = 20 nm) of **b** Ru/ZSM-5_H with Ru NP distributions = 5.4±0.8 nm. STEM-EDS elemental mapping of **c** AI, **d** Si, **e** O and **f** Ru.

Supplementary Figure 10 Electron microscopy images of Co/ZSM-5_H. HAADF image (scale bar = 20 nm) of a Co/ZSM-5_H with Co NP distributions = 3.6±0.5 nm. STEM-EDS elemental mapping of b Al, c Si, d O and e Co.

Supplementary Figure 11 Electron microscopy images of Ni/ZSM-5_H. HAADF image (scale bar = 20 nm) of **a** Ni/ZSM-5_H with Ni NP distributions = 3.1±0.4 nm. STEM-EDS elemental mapping of **b** Al, **c** Si, **d** O and **e** Ni.

Supplementary Figure 12 Product distributions after nC_{16} (1.59 g) deconstructions. In the presence of unmodified silica-alumina catalysts (0.1 g): SiO₂-Al₂O₃, Zeo-Y_H and ZSM-5_H, 45 bar H₂, 2 hrs. Note that nC_{12} signal originated from the addition as an internal standard has been suppressed, and the yield of C₁₂ products was derived from the nC_{16} substrate. Error bars = standard deviation. Source data are provided as a Source Data file.

Supplementary Figure 13 Product distributions after nC_{16} (1.59 g) deconstructions. In the presence of Co-modified catalysts (0.1 g, metal loading = 2.5 wt%): Co/SiO₂-Al₂O₃, Co/Zeo-Y_H and Co/ZSM-5_H, 45 bar H₂, 2 hrs. Note that nC_{12} signal originated from the addition as an internal standard has been suppressed, and the yield of C₁₂ products was derived from the nC_{16} substrate. Error bars = standard deviation. Source data are provided as a Source Data file.

Supplementary Figure 14 Product distributions after nC_{16} (1.59 g) deconstructions. In the presence of Ni-modified catalysts (0.1 g, metal loading = 2.5 wt%): Ni/SiO₂-Al₂O₃, Ni/Zeo-Y_H and Ni/ZSM-5_H, 45 bar H₂, 2 hrs. Note that nC_{12} signal originated from the addition as an internal standard has been suppressed, and the yield of C₁₂ products was derived from the nC_{16} substrate. Error bars = standard deviation. Source data are provided as a Source Data file.

Supplementary Figure 15 Product distributions after nC_{16} (1.59 g) deconstructions. In the presence of Ru-modified catalysts (0.1 g, metal loading = 2.5 wt%): Ru/SiO₂-Al₂O₃, Ru/Zeo-Y_H and Ru/ZSM-5_H, 45 bar H₂, 2 hrs. Note that nC_{12} signal originated from the addition as an internal standard has been suppressed, and the yield of C₁₂ products was derived from the nC_{16} substrate. Error bars = standard deviation. Source data are provided as a Source Data file.

Supplementary Figure 16 Product distributions after nC_{16} (1.59 g) deconstructions. In the presence of a SiO₂-Al₂O₃ (0.1 g) and b Zeo-Y_H (0.1 g) under 45 bar H₂ and N₂ at 375 °C, 2 hrs. Note that nC_{12} signal originated from the addition as an internal standard has been suppressed, and the yield of C₁₂ products was derived from the nC_{16} substrate. Error bars = standard deviation. Source data are provided as a Source Data file.

Supplementary Figure 17 ¹H NMR spectra of liquid products after nC₁₆ (1.59 g) deconstruction. In the presence of ZSM-5_H (0.1 g) 375 °C, 2 hrs under a 30 bar H₂, proton integration: 1.00, 9.16, 16.03, 148.03 = CDCl₃ (gray marked area, δ = 7.20-7.35), aromatic (δ = 6.0-8.0), unsaturated (δ = 2.0-6.0), saturated (δ = 0.25-2.0) and **b** 60 bar H₂, proton integration: 1.00, 8.15, 11.58, 141.13 = CDCl₃ (gray marked area, δ = 7.20-7.35), aromatic (δ = 6.0-8.0), unsaturated (δ = 2.0-6.0), saturated (δ = 0.25-2.0) and **b** = 7.20-7.35), aromatic (δ = 6.0-8.0), unsaturated (δ = 2.0-6.0), saturated (δ = 0.25-2.0).

Supplementary Figure 18 ¹H NMR spectra of liquid products after nC₁₆ (1.59 g) deconstruction. In the presence of Ni/ZSM-5_H (0.1 g) 375 °C, 2 hrs under a 30 bar H₂, proton integration: 1.00, 3.74, 2.40, 913.45 = CDCl₃ (gray marked area, δ = 7.20-7.35), aromatic (δ = 6.0-8.0), unsaturated (δ = 2.0-6.0), saturated (δ = 0.25-2.0) and b 60 bar H₂, proton integration: 1.00, 1.01, 0.83, 1077.34 = CDCl₃ (gray marked area, δ = 7.20-7.35), aromatic (δ = 6.0-8.0), unsaturated (δ = 2.0-6.0), saturated (δ = 0.25-2.0) and b 2.0-7.35), aromatic (δ = 6.0-8.0), unsaturated (δ = 2.0-6.0), saturated (δ = 0.25-2.0).

Supplementary Figure 19 GC-FID traces of liquid products after the nC₁₆ (1.59 g) deconstruction. In the presence of a Ru/SiO₂-Al₂O₃ (0.1 g, metal loading = 2.5 wt%), b Ru/Zeo-Y_H (0.1 g, metal loading = 2.5 wt%) and c Ru/ZSM-5_H (0.1 g, metal loading = 2.5 wt%) under 45 bar H₂ at 325 °C, 2 hrs. Note that the peaks with retention time ~2.7 and ~14.1 min were diethyl ether (solvent for the GC sample) and nC₁₂ (internal standard), respectively.

Supplementary Figure 20 Product distributions after nC_{16} (1.59 g) deconstructions. In the presence of Zeo-Y_H-based catalysts with various Si/Al ratios (0.1 g, metal loading = 2.5 wt%): Zeo-Y_H, Zeo-Y_H [60], Zeo-Y_H [80], Ni/Zeo-Y_H, Ni/Zeo-Y_H [60], Ni/Zeo-Y_H [80], Ru/Zeo-Y_H, Ru/Zeo-Y_H [60], and Ru/Zeo-Y_H [80], 45 bar H₂, 2 hrs. Note that nC_{12} signal originated from the addition as an internal standard has been suppressed, and the yield of C_{12} products herein is derived from the nC_{16} substrate. Error bars = standard deviation. Source data are provided as a Source Data file.

Supplementary Figure 21 TGA analysis of fresh and used catalyst. a Zeo-Y_H b Zeo-Y_H [80] c ZSM-5_H d Ni/ZSM-5_H e Ru/ZSM-5_H with a ramping rate of 5 °C/min from 35 to 900 °C and a flow rate of 20 mL/min under air. Source data are provided as a Source Data file.

Supplementary Figure 22 nC₁₆ (1.59 g) deconstructions with 45 bar H₂ at 275, 325 and 375 °C, 2 hrs. In the presence of a SiO₂-Al₂O₃-based catalysts (0.1 g, metal loading = 2.5 wt%): SiO₂-Al₂O₃, Co/SiO₂-Al₂O₃, Ni/SiO₂-Al₂O₃, Ru/SiO₂-Al₂O₃, b Zeo-Y_H-based catalysts (0.1 g, metal loading = 2.5 wt%): Zeo-Y_H, Co/Zeo-Y_H, Ni/Zeo-Y_H, Ru/Zeo-Y_H, c ZSM-5_H-based catalysts (0.1 g, metal loading = 2.5 wt%): ZSM-5_H, Co/ZSM-5_H, Ni/ZSM-5_H. Error bars = standard deviation. Source data are provided as a Source Data file.

Supplementary Figure 23 nC₁₆ **(1.59 g) deconstructions with 45 bar H**₂ **at 375 °C, 2 hrs.** In the presence of Zeo-Y_H-based catalysts with varying Si/AI ratios (0.1 g, metal loading = 2.5 wt%): Zeo-Y_H, Zeo-Y_H [60], Zeo-Y_H [80], Ni/Zeo-Y_H, Ni/Zeo-Y_H [60], Ni/Zeo-Y_H [80], Ru/Zeo-Y_H, Ru/Zeo-Y_H [60], and Ru/Zeo-Y_H [80]. Error bars = standard deviation. Source data are provided as a Source Data file.

а

b

С

Supplementary Figure 24 nC₁₆ (1.59 g) deconstruction with 45 bar H₂, 2 hrs. In the presence of SiO₂-Al₂O₃, Co/SiO₂-Al₂O₃, Ni/SiO₂-Al₂O₃, Ru/SiO₂-Al₂O₃, Zeo-Y_H, Co/Zeo-Y_H, Ni/Zeo-Y_H, Ru/Zeo-Y_H, ZSM-5_H, Co/ZSM-5_H, Ni/ZSM-5_H and Ru/ZSM-5_H (cat. = 0.1 g, metal loading = 2.5 wt%) at a 275 °C, b 325 °C and c 375 °C. Error bars = standard deviation. Source data are provided as a Source Data file.

% (<i>3d</i>)
-
-
-
2.6

Supplementary Table 1 XPS surface relative atomic concentration of the ZSM-5_Hbased catalysts.

Supplementary Table 2 XPS surface species and their relative concentrations of the <u>ZSM-5_H-based catalysts</u>.

Catalyst	Specie %			
	Co(0)% (2p)	CoO% (2p)	Co(OH) ₂ % (2p)	
C0/2010-5_11	1.4	2.2	96.4	
	Ni(0)% (<i>2p</i>)	NiO% (<i>2p</i>)	Ni(O)OH% (2p)	Ni(OH) ₂ % (2p)
INI/23IVI-3_П	1.8	0.3	60.4	37.5
	Ru(0)% (<i>3d</i>)	RuO ₂ % (<i>3d</i>)	RuO ₂ ·H ₂ O% (<i>3d</i>)	RuCl₃% (<i>3d</i>)
Ku/∠∂IVI-⊅_∏	86.0	3.9	6.7	3.4

Supplementary Table 3 *n*-Hexadecane deconstructions with the 12 catalysts from the main library at 275, 325, and 375 °C including the carbon balance and hydrogen consumption.

			Catalyst	➤ C ₁ - isoC ₁₆		
		\checkmark \checkmark	~ ~ ~ ~	45 bar H ₂ , Δ , 2 hrs,	10	
Entry	Catalyst	Temp. (ºC)	Conv. (%) [g]	C ₁₋₄ Yield (%) [g]	C ₅₋₁₆ Yield (%) [g]	H ₂ Cons. (%) [g]
1	SiO ₂ -Al ₂ O ₃	275 ⁰C	2.1±0.2 [0.03±0.00]	0.0 [0.00]	2.1 [0.03]	1 [0.00]
2	SiO ₂ -Al ₂ O ₃	325 °C	3.8±1.0 [0.06±0.02]	0.1 [0.00]	3.7 [0.06]	6 [0.01]
3	SiO ₂ -Al ₂ O ₃	375 ⁰C	2.1±0.2 [0.03±0.00]	0.1 [0.00]	2.0 [0.03]	5 [0.01]
4	Zeo-Y_H	275 ⁰C	4.5±0.3 [0.07±0.00]	0.3 [0.01]	4.2 [0.07]	2 [0.00]
5	Zeo-Y_H	325 °C	8.5±0.5 [0.14±0.01]	0.7 [0.01]	7.7 [0.12]	10 [0.02]
6	Zeo-Y_H	375 ⁰C	26.7±1.4 [0.42±0.02]	3.3 [0.05]	23.3 [0.37]	11 [0.03]
7	ZSM-5_H	275 ⁰C	13.7±2.4 [0.22±0.04]	3.8 [0.06]	10.0 [0.16]	5 [0.01]
8	ZSM-5_H	325 °C	91.6±4.4 [1.46±0.07]	35.5 [0.58]	56.2 [0.90]	17 [0.04]
9	ZSM-5_H	375 ⁰C	98.0±2.0 [1.56±0.03]	77.3 [1.27]	20.8 [0.33]	23 [0.06]
10	Co/SiO ₂ -Al ₂ O ₃	275 ⁰C	2.3±0.2 [0.04±0.00]	0.1 [0.00]	2.2 [0.03]	4 [0.01]
11	Co/SiO ₂ -Al ₂ O ₃	325 °C	2.3±0.3 [0.04±0.00]	0.0 [0.00]	2.2 [0.03]	2 [0.00]
12	Co/SiO ₂ -Al ₂ O ₃	375 ⁰C	2.4±0.1 [0.04±0.00]	0.1 [0.00]	2.2 [0.03]	7 [0.02]
13	Co/Zeo-Y_H	275 ⁰C	1.9±0.4 [0.03±0.01]	0.0 [0.00]	1.9 [0.03]	4 [0.01]
14	Co/Zeo-Y_H	325 °C	5.5±1.2 [0.09±0.02]	0.2 [0.00]	5.2 [0.08]	6 [0.01]
15	Co/Zeo-Y_H	375 ⁰C	6.1±1.2 [0.10±0.02]	1.2 [0.02]	4.9 [0.08]	8 [0.02]
16	Co/ZSM-5_H	275 ⁰C	1.9±0.1 [0.03±0.00]	0.1 [0.00]	1.8 [0.03]	6 [0.01]
17	Co/ZSM-5_H	325 °C	5.9±0.1 [0.09±0.00]	1.2 [0.02]	4.7 [0.07]	6 [0.01]
18	Co/ZSM-5_H	375 ⁰C	49.0±3.7 [0.78±0.06]	12.7 [0.21]	36.3 [0.58]	13 [0.03]
19	Ni/SiO2-Al2O3	275 ⁰C	2.6±0.6 [0.04±0.01]	0.1 [0.00]	2.6 [0.04]	3 [0.01]
20	Ni/SiO2-Al2O3	325 °C	3.3±1.4 [0.05±0.02]	0.1 [0.00]	3.2 [0.05]	4 [0.01]
21	Ni/SiO2-Al2O3	375 ⁰C	3.8±1.2 [0.06±0.02]	0.2 [0.00]	3.7 [0.06]	7 [0.02]
22	Ni/Zeo-Y_H	275 ⁰C	2.1±0.6 [0.03±0.01]	0.6 [0.01]	1.5 [0.02]	4 [0.01]
23	Ni/Zeo-Y_H	325 °C	4.4±0.4 [0.07±0.01]	0.4 [0.01]	4.0 [0.06]	5 [0.01]
24	Ni/Zeo-Y_H	375 ⁰C	20.9±1.3 [0.33±0.02]	0.4 [0.01]	20.5 [0.31]	8 [0.02]
25	Ni/ZSM-5_H	275 ⁰C	2.2±0.2 [0.03±0.00]	0.3 [0.00]	1.9 [0.03]	4 [0.01]
26	Ni/ZSM-5_H	325 °C	8.2±1.8 [0.13±0.03]	0.5 [0.01]	7.7 [0.12]	7 [0.02]
27	Ni/ZSM-5_H	375 ⁰C	85.6±4.1 [1.36±0.07]	28.2 [0.46]	57.3 [0.92]	13 [0.03]
28	$Ru/SiO_2-AI_2O_3$	275 ⁰C	95.6±4.0 [1.52±0.06]	41.5 [0.71]	54.2 [0.86]	27 [0.07]
29	$Ru/SiO_2-Al_2O_3$	325 °C	98.5±0.3 [1.57±0.00]	75.8 [1.33]	22.6 [0.36]	60 [0.14]
30	Ru/SiO ₂ -Al ₂ O ₃	375 ⁰C	99.8±0.2 [1.59±0.00]	96.6 [1.72]	3.3 [0.05]	83 [0.20]
31	Ru/Zeo-Y_H	275 ⁰C	96.0±0.9 [1.53±0.01]	56.6 [0.99]	39.3 [0.63]	44 [0.11]
32	Ru/Zeo-Y_H	325 °C	99.6±0.3 [1.58±0.00]	91.5 [1.62]	8.3 [0.13]	73 [0.18]
33	Ru/Zeo-Y_H	375 ⁰C	99.0±1.0 [1.57±0.02]	92.4 [1.65]	6.9 [0.11]	85 [0.21]
34	Ru/ZSM-5_H	275 ⁰C	99.4±0.6 [1.58±0.01]	92.8 [1.65]	6.6 [0.10]	54 [0.13]
35	Ru/ZSM-5_H	325 °C	98.0±2.0 [1.56±0.03]	99.7 [1.78]	0.3 [0.01]	88 [0.21]
36	Ru/ZSM-5_H	375 ⁰C	99.8±0.2 [1.59±0.00]	98.8 [1.77]	1.1 [0.02]	88 [0.21]

Reaction conditions: *n*-hexadecane (1.59 g, 7.0 mmol), catalyst (0.1 g, metal loading = 2.5 wt%), S/C ratio (substrate/catalyst weight ratio) ~16, 45 bar H₂, 2 hrs. * All yields were calculated as the carbon yield and isomerized C_{16} (*iso* C_{16}) are considered as products. Note that ~87% H₂ consumption (~105.0 mmol) is able to produce methane quantitatively due to the ~1.15 eq. H₂ stichometry.

Supplementary Table 4 *n*-Hexadecane deconstruction using the Zeo-Y_H-based catalysts with varying SARs including the carbon balance and hydrogen consumption.

	\sim	n-hexadecane	Catalys 45 bar H 375 °C, 2 h	$\begin{array}{c} t \\ \hline \end{array} \\ C_1 - isoC_{16} \\ c_2, \\ nrs, \end{array}$	6
Entry	Catalyst	Conv. (%) [g]	C ₁₋₄ Yield (%) [g]	C ₅₋₁₆ Yield (%) [g]	H ₂ Cons. (%) [g]
1	Zeo-Y_H	26.7±1.4 [0.42±0.02]	3.3 [0.05]	23.3 [0.37]	11 [0.03]
2	Zeo-Y_H [60]	24.6±1.2 [0.39±0.02]	3.8 [0.06]	20.8 [0.33]	8 [0.02]
3	Zeo-Y_H [80]	14.9±0.6 [0.24±0.01]	2.0 [0.03]	12.8 [0.20]	6 [0.01]
4	Ni/Zeo-Y_H	20.9±1.3 [0.33±0.02]	0.4 [0.01]	20.5 [0.31]	8 [0.02]
5	Ni/Zeo-Y_H [60]	5.8±0.5 [0.09±0.01]	0.9 [0.01]	4.9 [0.08]	7 [0.02]
6	Ni/Zeo-Y_H [80]	4.9±0.7 [0.08±0.01]	0.6 [0.01]	4.3 [0.07]	4 [0.01]
7	Ru/Zeo-Y_H	99.0±1.0 [1.57±0.02]	92.4 [1.65]	6.9 [0.11]	85 [0.21]
8	Ru/Zeo-Y_H [60]	99.0±1.0 [1.57±0.02]	98.0 [1.76]	2.0 [0.02]	86 [0.21]
9	Ru/Zeo-Y_H [80]	99.0±1.0 [1.57±0.02]	97.2 [1.75]	2.8 [0.03]	87 [0.21]

Reaction conditions: *n*-hexadecane (1.59 g, 7.0 mmol), catalyst (0.1 g, metal loading = 2.5 wt%), S/C ratio (substrate/catalyst weight ratio) ~16, 45 bar H₂, 375 °C, 2 hrs. * All yields were calculated as the carbon yield and isomerized C₁₆ (*iso*C₁₆) are considered as products. Note that ~87% H₂ consumption (~105.0 mmol) is able to produce methane quantitatively due to the ~1.15 eq. H₂ stichometry.

Supplementary Table 5 Degrees of saturation of the liquid products obtained from the deconstruction of *n*-hexadecane.

Entry	Catalyst	Conversion (%)	Saturated (%, δ = 0.25-2.0)	Unsaturated (%, δ = 2.0-6.0)	Aromatic (%, δ = 6.0-8.0)
1	Zeo-Y_H	26.7±1.4	98.8±0.1	1.2±0.1	0.1±0.1
2	Zeo-Y_H [60]	24.6±1.2	98.6±0.1	1.4±0.1	0.1±0.1
3	Zeo-Y_H [80]	14.9±0.6	98.7±0.1	1.3±0.1	0.1±0.1
4	Ni/Zeo-Y_H	20.9±1.3	99.8±0.2	0.2±0.2	0.1±0.1
5	Ni/Zeo-Y_H [60]	5.8±0.5	99.7±0.3	0.3±0.3	0.1±0.1
6	Ni/Zeo-Y_H [80]	4.9±0.7	99.5±0.5	0.5±0.5	0.1±0.1

Reaction conditions: *n*-hexadecane (1.59 g, 7.0 mmol), catalyst (0.1 g, metal loading = 2.5 wt%), 45 bar H₂, 375 °C, 2 hrs. Note that degrees of saturation are defined by the ratio of proton integrations in the ¹H NMR spectra to indicate the adjacent carbon-carbon bonds (saturated: δ = 0.25-2.0, unsaturated: δ = 2.0-6.0 and aromatics: δ = 2.0-6.0) given the C-H and C-C bond exclusivity of hydrocarbons.

Supplementary References

- 1. Biesinger, M. C. *et al.* Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. *Appl. Surf. Sci.* **257**, 2717–2730 (2011).
- 2. Morgan, D. J. Resolving ruthenium: XPS studies of common ruthenium materials. *Surf. Interface Anal.* **47**, 1072–1079 (2015).