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Supplementary Figure 1
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Study design and variant prioritization strategy. Genome-wide association study meta-analysis
design. The number of cases, controls and variants examined and the number of genome-wide signifi-
cant (p < 5x10°®) loci identified in each cohort are indicated. NIHR-RD refers to the NIHR BioResource
Rare Disease collaboration cohort. The Venn diagrams on the left illustrate the number of
genome-wide significant loci that were identified in the different cohorts/meta-analyses. ‘UK’ refers to
the meta-analysis of the UK cohorts (NIHR-RD and 100K Genomes Project). ‘META ' refers to the com-
bined meta-analysis of the UK meta-analysis with FinnGen.
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Supplementary Figure 2
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Principal component analysis. The first two principal components are shown for the NIHR BioRe-
source Rare Disease collaboration cohort (NIHR-RD) (a) and the 100,000 Genomes Project cohort (b)
highlighting intrahepatic cholestasis of pregnancy (ICP) cases (red) by ethnicity (European (EUR)
circle, not European cross). European controls are indicated by black circles and not European con-
trols are indicated by grey crosses. Only individuals of European ancestry (circles) were included in
subsequent analyses.
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Genome-wide association study of intrahepatic cholestasis of pregnancy (ICP), UK meta-analy-
sis and FinnGenn data. a, Manhattan plot for the genome-wide association study (GWAS) meta-anal-
ysis of ICP in the NIHR BioResource Rare Disease collaboration cohort (NIHR-RD) and 100,000
Genomes Project (100KGP) cohorts. All individuals are of European ancestry. Association testing was
performed using a generalized logistic mixed model to account for population stratification and sad-
dle-point approximation to control for type 1 error rates due to unbalanced case-control ratios, followed
by meta-analysis weighting the effect size estimates using the inverse of the standard errors. The chro-
mosomes are ordered on the x-axis; the y-axis shows the -log, (P) values for the association tests.
Four loci achieved genome-wide significance (p < 5x10%, indicated by the red line). The prioritized
gene at each locus that achieved significance in the replication meta-analysis cohort is shown. b, Man-
hattan plot for the GWAS of ICP in FinnGen (https://r4.finngen.fi/pheno/O15_ICP). Association testing
was performed using a generalized logistic mixed model to account for population stratification and
saddle-point approximation to control for type 1 error rates due to unbalanced case-control ratios.
Seven loci achieved genome-wide significance. c-e, QQ plots showing the relationship between
observed and expected —log, (P) values from the GWAS meta-analysis of NIHR-RD and 100KGP (c),
FinnGenn (d) and the combined meta-analysis (e). The genomic inflation (lambda) is shown in each
graph.
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Supplementary Figure 4
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Post-hoc power calculations based on the size of the cohort utilised for the combined
meta-analysis (1,138 cases and 153,642 controls). The power (y-axis) to detect association at
p<5x108 is shown for varying odds ratio (x-axis) and minor allele frequencies (MAF) (coloured lines).
Power calculations were performed using a logistic model under genetic additivity.
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Liver-specificity of ICP genes. a, Clustering analysis of GTEx samples based on the mean expression levels of ABCB4 and ABCB11, the two genes that most frequently
harbour rare ICP causal mutations’. The clustering shows that the two genes are highly enriched in liver tissue in comparison with all available tissues. b, Tissue-based
differential expression analysis from FUMA GENE2FUNC across GTEXx tissues reveals that ICP susceptibility genes are enriched in liver tissue (identified as upregulated
genes in liver versus other tissues). For this analysis, we considered a set of 35 genes, which corresponded to the nearest genes of all genome-wide significant ICP vari-
ants (P <5 x 108) plus all variants in high LD (EUR r2> 0.8) (see Methods). Enrichment analysis was performed using hypergeometric testing with adjustment for multiple

comparisons with Bonferroni correction. Significant enrichment at Bonferroni corrected P < 0.05 are coloured in red.
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Pathway enrichment analysis of ICP susceptibility genes. The analysis was undertaken using FUMA GENE2FUNC. Wikipathways, Gene ontology biological process
and Hallmark gene sets were examined. Genes were selected for inclusion as per Supplementary Figure 5. The genes highlighted in red were prioritised as likely causal
of ICP susceptibility after functional genomic analyses. Enrichment analysis was performed using hypergeometric testing with adjustment for multiple comparisons with
Bonferroni correction.
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Analysis of the ICP-associated loci HNF4A and ABCGS. a,b, MetaDome analysis? of the missense
variants rs1800961 (Thr > lle) and rs4148211 (Tyr > Cys), which are the lead variants at the HNF4A
and ABCGS8 loci, respectively. The plots show the position of these two variants relative to
meta-domains identified in the HNF4A and ABCG8 proteins. This analysis revealed that rs1800961 is
expected to not be tolerated and led us to prioritise this variant as the driver of the association in the
HNF4Alocus. Whereas rs4148211 is expected to be a tolerated sequence change, as it does not affect
any meta-domain identified in ABCG8. This result suggests that this variant or other variants in high LD
with rs4148211 may drive ICP susceptibility via other mechanisms, such as through changing the
activity of a cis-regulatory element. ¢, Allele-specific effects of all associated variants in the ABCG8
locus (EUR r2> 0.8 with the lead SNP rs4148211) assessed by Survey of Regulatory Elements (SURE)
in HepG2 cells®. Mean signal and two-sided Wilcoxon rank-sum test P values comparing the two
alleles for each SNP, which were obtained from 2. P values are only shown for variants that passed the
significance threshold of 5% FDR. Source data are provided as a Source Data file.

mutation tolerance



Supplementary Figure 8

200 -
150 A

50 +

# ICP loci

o
Fw

2
g
2]
2 100 -
=
**

ICP lead variants

Dixon et al. Nature Communications 2022

Gallstone disease

LDL cholesterol levels

Total cholesterol levels

Alkaline phosphatase levels
C-reactive protein

Gamma glutamyl transferase levels
Apolipoprotein A1 levels
Apolipoprotein B levels

Triglyceride levels

Alanine aminotransferase levels
Alanine transaminase levels
Calcium levels

Serum albumin level

Direct bilirubin levels

Sex hormone-binding globulin levels
Sex hormone-binding globulin levels adjusted for BMI
Metabolite levels

Serum 25-Hydroxyvitamin D levels

LDL cholesterol levels x alcohol consumption (drinkers vs non-drinkers) interaction (2df)
LDL cholesterol levels x alcohol consumption (regular vs non-regular drinkers) interaction (2df)

Total cholesterol
Hematocrit
Red blood cell count

Aspartate aminotransferase to alanine aminotransferase ratio

Overlap between genome-wide significant ICP lead variants from the final combined meta-analysis and other traits and diseases reported in the GWAS Cata-
log. All associations in the GWAS Catalog achieving p < 5x10° that were in linkage disequilibrium with the 11 identified lead variants at r> > 0.6 in European populations
were included. Only traits/diseases for which we observed an overlap with at least three ICP loci are shwn. The sum of all traits per locus (regardless of being traits with
>3 ICP loci) is shown in the blue bar graph on the top. No overlaps were identified for rs34491636.
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Supplementary Figure 9
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Enrichment analysis of genes in ICP loci for GWAS traits reported in the GWAS Catalog. Genes were selected for inclusion as per Supplementary Figure 5. The
genes highlighted in red were prioritised as likely causal of ICP susceptibility after functional genomic analyses. Enrichment analysis was performed using hypergeometric
testing with adjustment for multiple comparisons with Bonferroni correction.
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Supplementary Note on Methods

NIHR BioResource Rare Disease Collaboration (NIHR-RD)

Study and cohort descriptions

The National Institute for Health Research BioResource Rare Disease Collaboration study
(NIHR-RD) involved whole-genome sequencing (WGS) of 13,037 individuals to a clinical
standard. A detailed description of the study has been previously published’. The study
participants included 7,388 individuals assigned to one of 15 rare disease domains, 4,835
individuals recruited as part of the Rare Diseases Pilot of Genomics England, 764 individuals
from the UK Biobank with extreme red blood cell indices and 50 control individuals. The 15
rare disease domains include: bleeding / thrombotic / platelet disorders (BPD), cerebral small
vessel disease (CSVD), Ehlers-Danlos syndrome (EDS), hypertrophic cardiomyopathy
(HCM), intrahepatic cholestasis of pregnancy (ICP), Leber Hereditary Optic Neuropathy
(LHON), multiple primary malignant tumours (MPMT), pulmonary arterial hypertension (PAH),
primary immune disorders (PID), primary membranoproliferative glomerulonephritis (PMG),
inherited retinal disorders (IRD), neurological and developmental disorders (NDD),
neuropathic pain disorders (NPD), stem cell and myeloid disorders (SMD) and steroid
resistant nephrotic syndrome (SRNS).

The ICP patients were recruited from 14 UK consultant-led antenatal NHS clinics and
from three international units in Argentina, Australia, and Sweden. All patients were recruited
based on a diagnosis of severe ICP, defined as onset of pruritus prior to 32 weeks gestation
and serum bile acids 40umol/L. Women were excluded from the study if they had other known
causes of hepatic dysfunction such as haemolysis, elevated liver enzymes and low platelets
(HELLP) syndrome, preeclampsia, acute fatty liver of pregnancy, acute viral hepatitis,
confirmed primary biliary cholangitis or any cause of biliary obstruction on ultrasound. No
genetic pre-screening for causal variants in known genes was applied before enrolment.
Controls were drawn from participants in the non-ICP NIHR-RD cohorts. Individuals in the
non-ICP cohorts were not specifically screened to exclude ICP; the prevalence of ICP in these
cohorts is not expected to exceed the baseline population prevalence of the disease. None of
the other disease domains recruited were expected to have aetiopathological overlap with
ICP.

The NIHR-RD study conformed to the guidelines outlined by the 1975 Declaration of
Helsinki and permission was obtained from the Ethics Committees of the East of England
Cambridge South National Research Ethics Committee (REC 13/EE/0325), the Hammersmith
Hospitals NHS Trust, London (REC 97/5197, 08/H0707/21), the Women and Children’s Health
Network Human Research Ethics Committee South Australia (HREC/15/WCHN/189), the

12
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Swedish Regional Ethics committee (dnr 162-16, 2016-04-20) and the Ramén Sarda Mother’s
and Children’s Hospital ethics committee (MSNSF 07-2016).

Whole-genome sequencing, variant calling and quality control

Full details of the methods employed for whole-genome sequencing (WGS), variant calling
and quality control (QC) for the NIHR-RD dataset have been described previously'. In
summary, DNA was extracted from whole blood, underwent QC assessment and was
prepared using the lllumina TruSeq DNA PCR-Free sample preparation kit. 100-150 base pair
paired-end sequencing was undertaken using an Illlumina HiSeq 2500 or HiSeq X. Sequence
reads were aligned to the Homo Sapiens NCBI GRCh37 assembly using the Illlumina Isaac
Aligner® (version SAAC00776.15.01.27). The minimum coverage required per sample was at
least 95% of the autosomal genome at 215X read depth. Single nucleotide variants (SNVs)
and indels were called using the lllumina Starling software (version 2.1.4.2 2) and normalized
and combined into gVCFs. For each variant, the overall pass rate (OPR) was enumerated as
the product of the pass rate (the proportion of alternate genotype passing the original variant
filtering) and the call rate (proportion of non-missing genotypes). A genotype quality (GQ)
threshold of 20 and depth (DP) threshold of 10 were imposed per genotype per individual,
calls failing to meet either of these criteria were set to missing. Sample duplicates (n = 136)
and those with poor data quality (n = 14) were excluded. Variants were annotated using the

Ensembl Variant Effect Predictor (https://www.ensembl.org/info/docs/tools/vep/index.html)

(version 89)® and their frequency in gnomAD? (https://gnomad.broadinstitute.org/). Variants

were retained if they passed the following quality filters: OPR 2 0.9, missingness < 0.01, minor
allele frequency (MAF) = 0.01, minor allele count (MAC) >10, gnomAD Non-Finnish European
(NFE) 2 0.01 and < 0.99. Variants were filtered using bcftools® (version 1.8)
(http://samtools.github.io/bcftools/) and further filtered using PLINK®'" (version 1.9)

(https://lwww.cog-genomics.org/plink/) and with custom scripts written in  Python

(https://www.python.org/) and R (https://www.r-project.org/).

Ancestry and relatedness estimation

A subset of 32,875 high-quality common (MAF = 0.3) autosomal biallelic SNVs in linkage
equilibrium (r? < 0.2) was identified as previously described’ and genotype data extracted. An
initial kinship matrix was computed using KING'" (https://www.kingrelatedness.com/), PC-
AiR'2 and PC-Relate™ in the R Bioconductor package; GENESIS (https://bioconductor.org/

packages/release/bioc/vignettes/ GENESIS/inst/doc/pcair.html) were then utilised to correct

the kinship matrix for population structure. The resulting kinship matrix was analysed using

PRIMUS™ (https://primus.gs.washington.edu/) to identify the maximal set of unrelated

individuals (with relatedness defined by a pairwise kinship coefficient kinship coefficient >

13
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0.09). The ancestry of all samples was estimated with GENESIS by calculating principal
components (PC) using unrelated individuals of variable defined ancestry from the 1000

Genomes Project’® (https://www.internationalgenome.org/) and projecting the NIHR-RD

samples onto this vector space. A multivariate model was used to classify each individual’s
ancestry based on the 1000 Genomes populations. A total of 8,718 unrelated European
individuals were identified of which 217 had ICP (Supplementary Fig. 2a). A further 66
individuals, including one ICP case, were excluded due to a heterozygosity rate greater or
less than 3 standard deviations from the mean (indicating sample contamination or evidence
of inbreeding) or missingness > 0.005. The final dataset comprised 216 ICP cases and 8,436

controls.

The 100,000 Genomes Project (100KGP)

Study and cohort descriptions

The Genomics England dataset (htips://www.genomicsengland.co.uk/initiatives/100000-

genomes-project) consists of whole-genome sequencing (WGS) data, clinical phenotypes

encoded using Human Phenotype Ontology (HPO) codes, International Statistical
Classification of Diseases and Related Health Problems (ICD) codes, and retrospective and
prospectively-ascertained National Health Service (NHS) hospital records for 88,844
individuals recruited with cancer, rare disease, and their unaffected relatives
(https://figshare.com/articles/dataset/GenomicEnglandProtocol pdf/4530893/5). Ethical
approval for the 100KGP was granted by the Research Ethics Committee for East of England
— Cambridge South (REC Ref 14/EE/1112). ICP was not a targeted recruitment cohort for the

100KGP; however, given the size of the cohort, the population prevalence of ICP and the

availability of detailed phenotypic coding, we hypothesised that a number of cases would be
present within the dataset. By utilising the ICD-10 code 026.6 (https://icd.who.int/browse10/
2019/en#/026.6) (“Liver disorders in pregnancy, childbirth and the puerperium” including

“cholestasis (intrahepatic) in pregnancy” and “obstetric cholestasis”) we identified 225 ICP
cases. No phenotypic exclusions were applied to the control cohort which consisted of
individuals with rare disease, cancer and unaffected relatives without documented evidence
of ICP.

Whole-genome sequencing, variant calling and quality control

DNA was extracted from whole blood, underwent QC assessment, and was prepared using
the lllumina TruSeq DNA PCR-Free sample preparation kit. 150bp paired-end sequencing
was undertaken using an lllumina HiSeq X and processed on the lllumina North Star Version
4 Whole Genome Sequencing Workflow (NSV4, version 2.6.53.23). Sequence reads were
aligned to the Homo Sapiens NCBI GRCh38 assembly using the lllumina Isaac Aligner
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(version 03.16.02.19). The minimum coverage required per sample was at least 95% of the
autosomal genome at 215X with mapping quality > 10. SNVs and indels were called using the
lllumina Starling software (version 2.4.7). gVCFs were aggregated using lllumina
gvcfgenotyper (version 2019.02.26) with variants normalised and multi-allelic variants
decomposed using vt (version 0.57721). Variants were retained if they passed the following
quality filters: missingness < 0.05, median depth = 10, median GQ = 15, percentage of
heterozygous calls not showing significant allele imbalance for reads supporting the reference
and alternate alleles (ABratio) = 25%, percentage of complete sites (complete GTRatio) = 50%.
Variants were filtered using bcftools'™ (version 1.10.2) and further filtered using PLINK® ™
(version 2.00).

Ancestry and relatedness estimation

Broad genetic ancestry of the 100KGP samples was estimated using unrelated samples from
the 1000 Genomes Project (Phase 3)'°. A common subset of 62,523 high-quality autosomal
biallelic SNVs with MAF > 0.05 in linkage equilibrium (r? < 0.1) was used to calculate 20

principal components (PCs) using GCTA' (version 1.92.4) (https:/cnsgenomics.com/

software/gcta/#Overview) The 100KGP data were projected onto the 1000 Genomes PC

loadings and a random forest model trained to predict ancestries using the first eight PCs.
Using this model with a probability threshold > 0.8, 62,349 individuals (183 ICP cases and
62,166 controls) of European ancestry were identified (Supplementary Fig. 2b). A subset of
unrelated samples was ascertained using a kinship coefficient threshold of 0.0884 (2" degree
relationships) estimated using KING''; one case and 16,336 controls were excluded. A further
245 controls were removed due to a heterozygosity rate greater or less than 3 standard
deviations from the mean. A cohort of 182 cases and 45,585 controls remained. The majority
of these cases (n = 147, 80.8%) were unaffected relatives of rare disease participants. A
smaller number had non-liver related rare disease (n = 23, 12.6%) or cancer (n = 12, 6.6%).
Using this final unrelated European cohort, ten principal components were generated using

PLINK'® (version 2.00) for use as covariates in the association analysis.
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